

#### **ITS: The Nation's Spectrum and Communications Lab**

*Realizing the full potential of telecommunications to drive a new era of innovation, development, and productivity* 



## Clutter Modeling: Today's Shortfalls and Tomorrow's Opportunities

June 11, 2024 William Kozma Jr wkozma@ntia.gov

#### Outline

#### Shortfalls

- Incorrect Model Selection
- Ignoring Variabilities
- "Tacking on" Clutter Loss
- Applying Terrain Diffraction Models to Clutter Predictions
- Opportunities
  - Improved Localization
  - Bridging the Gap to Analyses
  - Machine Learning / Data Science
  - Technical Transparency



**ITS: The Nation's Spectrum and Communications Lab** 



#### Disclaimer

- I'm going to pick on a few models and methods during this talk, some of which are pulled from real experience
- Point is not to disparage, but to demonstrate and motivate improvements
- I'm well aware the "engineering compromises" are perhaps more prevalent than we would prefer to see



**ITS: The Nation's Spectrum and Communications Lab** 



## Today's Shortfalls



**ITS: The Nation's Spectrum and Communications Lab** 



#### **Incorrect Model Selection**

- Broadly speaking there are two types of clutter models
- Point-to-point (site-specific) methods
  - Use of location specific information (lidar, etc.)
  - Generally, computationally more expensive
- Point-to-area (site-general) methods
  - Statistical prediction results generate CDFs of clutter loss
  - Suitable for Monte Carlo simulations
  - Use clutter categories or statistics instead of location specific information
- Model selection must align with problem



**ITS: The Nation's Spectrum and Communications Lab** 



#### Incorrect Model Selection (example)

How to model interference into radar?

Start with ITM, to capture diffraction losses



Base station is in clutter. Want to include a clutter loss.

+ P.2108 Sec 3.2?

P.2108 is a statistical clutter model designed a distribution of locations.

- Base stations are fixed infrastructure
- Base stations not enmeshed in clutter
- A site-specific model is more appropriate



**ITS: The Nation's Spectrum and Communications Lab** 



### Ignoring Variability

- Propagation modeling is non-deterministic
- Must think in terms of statistics and distributions of loss
- What does location variability of 80% mean?
- What does time variability represent?
- If a system needs to be protected from interference 95% of the time, from a distribution of user equipement, how is that achieved in the analysis?
- Don't correct a perception of "too much margin" by abusing variability distributions



ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov





**ITS: The Nation's Spectrum and Communications Lab** 

Boulder, Colorado • its.ntia.gov

### "Tacking on" Clutter

- Clutter loss is treated as independent of other losses (diffraction, troposcatter, etc.)
- Does not imply one can simply take a general-purpose model and simply "tack on" an additive clutter loss component, such as ITM+P.2108
- Clutter loss is dependent on path geometry
- Consider:
  - No consideration of terrain geometry is accounted for in the clutter term
  - Handling of variabilities
    - If a general-purpose model considers variabilities, are those statistics being correctly combined with the clutter distribution?
    - In an ITM+P.2108, you have two different concepts of location variability, terrain with ITM and clutter with P.2108
  - No consideration of mid-path clutter effects



ITS: The Nation's Spectrum and Communications Lab Boulder, Colorado • its.ntia.gov





**ITS: The Nation's Spectrum and Communications Lab** 

Boulder, Colorado • its.ntia.gov

### Using DSM Data in a General-Purpose Model

- Idea is to take a general-purpose, site-specific model and replace the terrain profile with a surface profile
  - Underlying physics of the general-purpose model is applied to the clutter surface
  - Ex: TIREM+Clutter
- Assumes that clutter loss is a function of vertical plane knife-edge diffraction
  - No back reflections at terminals
  - No off-axis scattering
  - No negative clutter losses
  - Highly dependent on DSM resolution, in which increased resolution does not always result in increased performance



**ITS: The Nation's Spectrum and Communications Lab** 



#### Using DSM Data in a General-Purpose Model (example)

#### Comparison of Measurements with TIREM+Lidar Comparison of Measurements with TIREM+Lidar Dataset = Boulder\_Drexel\_Wing4\_3475\_20230621; Cnt = 32277 Dataset = Denver\_Downtown\_Riverside\_3475\_20230418; Cnt = 53108 – Measurements —– Measurements — TIREM + Lidar(0.5 m) [S] — TIREM + Lidar(1 m) [S] TIREM + Lidar(0.5 m) [A] TIREM + Lidar(1 m) [A] TIREM + Lidar(1 m) [A] TIREM + Lidar(5 m) [A] TIREM + Lidar(10 m) [A] — TIREM + Lidar(5 m) [A] TIREM + Lidar(10 m) [A] 0.8 0.8 0.6 0.6 Good prediction of tail Different location, and Probability Probability $\uparrow$ resolution = $\uparrow$ performance conclusions don't hold. 0.4 Over-predicting by >10 dB 0.4 0.2 0.2 130 140 150 160 170 180 190 120 140 160 180 200 220 Basic Transmission Loss (dB) Basic Transmission Loss (dB)



**ITS: The Nation's Spectrum and Communications Lab** 

Boulder, Colorado • its.ntia.gov

# Tomorrow's Opportunities



**ITS: The Nation's Spectrum and Communications Lab** 



#### Improved Localization

- Clutter categories are useful, but should be the backup option
- Further sub-dividing urban/suburban/rural is not a viable long-term solution
- Models should be tuned via objective metrics
  - Numerical and calculable
  - Computable for arbitrary locations, be it a region, an entire city, a neighborhood, or even a select few blocks
  - What makes two environments similar?
- Leverage the modern high-fidelity datasets and tooling we have available



**ITS: The Nation's Spectrum and Communications Lab** 



#### Improved Localization (example)

Measured Clutter Loss **Distribution of Average Clutter Heights** Cell size = 100 meter^2; Elevation angle [2-5) deg 0.8 0.8 0.6 0.6 Probability Probability 0.4 0.4 0.2 0.2 0 -5 0 5 10 15 20 25 30 35 40 45 50 ٥ 2 6 10 12 14 Average Clutter Height (m) Clutter Loss (dB) Martin Acres — Draper Bountiful — Yalecrest Martin Acres — Draper Bountiful — Yalecrest

**ITS: The Nation's Spectrum and Communications Lab** 

Boulder, Colorado • its.ntia.gov

#### Improved Localization (example)

**Distribution of Clutter Height Standard Deviations** Distribution of Clutter Density Cell size = 100 meter^2; Elevation angle [2-5) deg Cell size = 100 meter^2; Elevation angle [2-5) deg 0.8 0.8 0.6 0.6 Probability Probability 0.4 0.4 0.2 0.2 0 2 3 4 5 6 7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Clutter Height Standard Deviation (m) Clutter Density Martin Acres — Draper Bountiful
Yalecrest Martin Acres — Draper Bountiful — Yalecrest



**ITS: The Nation's Spectrum and Communications Lab** 

Boulder, Colorado • its.ntia.gov

#### Machine Learning / Data Science

- Must embrace machine learning and data science tools
- Approach ML/DS as a tool to solve a problem, not a magic oracle that grants us answers
  - Analyze environmental and measurement data for key features
  - Extract meaning from data to build a mathematical model
- Attempt to understand why a solutions work
  - Need new methods to evaluate
  - Incorporate known physical relationships and behaviors
- Build trust model behavior
  - Non-technical issue
  - "Comfort level" with physics/mathematics-based models in policy



**ITS: The Nation's Spectrum and Communications Lab** 



ISART Clutter Technical Talk

#### Bridging the Gap to Analyses

- Must avoid implicit assumptions
  - Folks doing an analysis often were not involved in creation of model
  - Assumptions are necessary to make problems tractable state them clearly
- Antenna patterns
  - Guidance needs to be considered
  - Simply stating isotropic assumptions is no longer enough
  - Antenna systems continue to become more complex in design and operations
- Model applicability
  - Developed for a particular purpose
  - Design decisions need to be stated



**ITS: The Nation's Spectrum and Communications Lab** 



### **Technical Transparency**

- Need to engage the community early in model development
  - Increase buy-in
  - Understand use-cases
  - Encourage collaborative thought
- Requires us to be more transparent in model development, including measurements and data processing
- Three pillars of transparency
  - Publications
  - Software
  - Data





**ITS: The Nation's Spectrum and Communications Lab** 

#### **Questions?**



**ITS: The Nation's Spectrum and Communications Lab** 

