

1998 International Symposium on Advanced Radio Technologies

SPEAKeasy Military Software Defined Radio

Wayne Bonser
Technical Advisor
Air Force Research Laboratory
Rome, NY

SPEAKeasy System

- The "PC of the Communications World"
- Fully Programmable Waveform and COMSEC for Voice, Multimedia and Networking Use
- Multiband . . . continuous from 2MHz to 400MHz
- Open Modular HW Architecture
- Open SW Architecture
- Commercially Successful HW and SW
- Legacy Systems Compatibility

SPEAKeasy Phases

FY95 FY96 - FY99 FY00+

PARTICIPANTS

• DARPA

• AIR FORCE/AFRL

• ARMY/CECOM

• NAVY/NRaD/SPAWAR

• NSA

Military Benefits

- Interoperability
 - Emulates Legacy Systems
 - Bridges Diverse Non-interoperable Systems
 - Provides Data Gateways
- Flexibility/Adaptability
 - Reconfigurable, Modular, Scaleable to Platform Requirements
- Responsiveness
 - Reprogrammable In-situ and Over-The-Air
 - Enables P3I
- Mobility & Sustainability
 - Reduces Logistics SWAP Spares
 - Reduces # of Terminals and Ancillary Boxes
- Reductions in Cost
 - Initial Production is Competitive
 - LCC Savings: Common Equip, Volume Buy, COTS

Communications Revolution

Speakeasy Phase-1

Objective:

- Demonstrate the feasibility of a Multiband, Multimode Radio
- Develop technologies that facilitate programmability and implementation of MBMMR

Accomplishments:

- Demonstrate multiband, multimode operation at JWID95
- Operation of HF, SINCGARS, Have Quick
- Bridging between voice networks

Phase-1 Equipment Rack

Lessons Learned:

- INFOSEC is paramount to acceptable architecture
- All areas (HW/SW, subassemblies) need open system
- Beware of growing requirements
- Requires cutting-edge technology

SPEAKeasy Phase 1

- A proof of concept, research and development program
- Awarded in 1990 to Hazeltine, TRW, Lockheed-Martin, Motorola, and Rockwell-Collins
- 2 programmable channels
 - VME bus architecture
 - Texas Instrument quad-TMS320C40 multi-chip module for digital signal processing
 - SUN Sparc 10 workstation as man-machine interface.

Initial SPEAKeasy Phase 1 Architecture

Revised SPEAKeasy Phase 1 Architecture

SPEAKeasy Phase 1 Lessons Learned

- OVER DESIGNED
- PERFORMANCE/COST TRADE-OFFS
- SECURITY AT CORE
- OPENNESS IN ALL AREAS
- REQUIREMENTS CREEP

SPEAKeasy EVOLUTION TOWARDS MBMMR

	PHASE 1	PHASE 2
DEVELOPMENT EMPHASIS ARCHITECTURE	MODEM ONLY	ENTIRE RADIO
WAVEFORMS	MODULAR BY FUNCTION FOR MODEM	MODULAR BY FUNCTION FOR RADIO (PUBLISH "OPEN" INTERFACE STANDARDS)
RESULT	EMPHASIS WAVEFORM CAPABILITY FOR LAB	WIDEBAND & NARROWBAND, NETWORKS & BRIDGES
FORM FACTOR	PACKAGED FOR LAB USE	TEST AND DEMONSTRATION

Speakeasy Phase-2

Objective:

- Develop and Demonstrate
 - Open Architecture
 - Software Reprogrammability
 - Package in near "field ready" enclosure

Phase-2 TF-XXI Model

Accomplishments:

- Successful demo at TF-XXI AWE Ft. Irwin, March 97
- Interoperation with HF, VHF, UHF
- Bridging between any diverse radios
- In-Field Reprogramming
- In-Field Repair w/ COTS Components

Lessons Learned:

- Composing Lessons Learned Report
 - RF
 - INFOSEC
 - Control
 - Software
 - Modem
 - Man-Machine Interface
 - Internetworking
 - General Comments

Accomplished

SPEAKeasy Objective Interconnectivity

STANDARDS BASED SPEAKeasy SOFTWARE Open Architecture

STANDARDS BASED SPEAKeasy Open Systems

SPEAKeasy Phase 2 Modular-by-Function Architecture

SPEAKEASY MULTIBAND, MULTIMODE COMMUNICATIONS TERMINAL

Capabilities at a Glance

- Frequency Range: 2 MHz 2 GHz Initial Capability, Extendable Through 45.5 GHz
- Data Rate: 75 bps 10 Mbps
- Initial Capability Includes 22 Programmable Waveforms, Plus GPS and Cellular
- Four Simultaneous, Programmable Channels, Plus GPS and Cellular (Available PCI Bus Margin Can Support Additional Simultaneous Channels)

Open Architecture "Wireless Communications PC"

- Modular by Function "Library of Common Modules"
- Bus/Form Factor Independent Design Provides Multimission/Multiplatform Utility
- Minimizes Technological Obsolescence; Allows Periodic Insertion of State-of-the-Art Technology

Programmable Waveforms and INFOSEC

- Update/Add New Capability Without Hardware Modifications
- Reprogrammed via Over-the-Air Download

Networking

- Voice/Data Bridging Between Disparate Networks
- Tactical Internetworking (MIL-STD-188-220)

SPEAKeasy Phase 2 Hardware Architecture

Voice Bridges Demonstrated

 Established a SPEAKeasy Voice "Bridge" at Brigade Tactical Operations Center That Allowed Air Force Tactical Air Control Party (TACP) Personnel, Using a VHF/AM Radio to Communicate With an F-16 Operating on a UHF Radio

SPEAKeasy Accomplishments at TF-XXI-AWE

Integrated SPEAKeasy into Army tactical vehicles (HMMWVs with SICPS shelters).

Deployed and operated SPEAKeasy in the Ft. Irwin National Training Center's field environment.

Repaired SPEAKeasy on-site using parts from a <u>commercial</u> computer (an IBM-clone).

Demonstrated single channel operation of: **HF**/SSB, **VHF**/AM, VHF/FM, VHF/FM-SINCGARS, **UHF**/FM, UHF/AM and UHF/AM Have Quick **hopping**.

While deployed at Ft. Irwin: received & installed software upgrades and new waveform capabilities for SPEAKeasy; using laptop computer and commercial phone line.

Controlled A-10 and F-16 aircraft, performing close air support (CAS) mission, using a standard military UHF radio waveform.

Colocated SPEAKeasy and existing TACP communications suite (GRC-206) at Division Tactical (TAC) for comparative evaluation.

SPEAKeasy ACCOMPLISHMENTS

- Developed an Open, Modular, COTS-based Architecture
- Model-1 Demonstrated TF-XXI
 - Modular Repair w/COTS
 - Software Re-programmability
 - HF, VHF, UHF (Voice/ECCM) Waveforms
 - Voice Bridging
 - Secure Voice (CYPRIS Crypto) 1998
- Provided Baseline Documents to the Programmable Modular Comm System IPT and the Joint Tactical Radio System's Joint Program Office (JTRS-JPO)
- Future Multiband Multiwaveform Modular Tactical Radio (FM3TR)
 - Allied (4 Power) ECCM waveform created
 - Software Radio Interoperability Demo Planning
 - SPEAKeasy Phase-1 used in US/UK Demo June 98

- Facilitated Formation of Modular Multifunction Information Transfer System (MMITS) Industry/Government Forum
 - International Participation (>35 members)
 - Service Providers, Component Mfgs,
 System Integrators & Regulators
 - Publications:Architecture/APIs/Download
- R&D Not Completed Under SPEAKeasy

Advanced INFOSEC (Context Sw)

Data Modes

Wideband Waveforms

Data-Gateways

Summary of Benefits

- Open Architecture
 - Eliminates Stovepipe Solutions
 - Reduces Cost (Purchase and Life-Cycle)
 - Allows for Keeping Pace with the Technology Revolution
- Reprogrammability
 - Provides a Flexibility to Support Doctrinal and Mission Changes
 - Modifications and Upgrades in the Field
 - Gracefully Degrades
- Simultaneity
 - Multiband, Multimode Operation
 - Enables a Broadcast Mode
- Internetworking and Bridging
 - Seamless Connection Interconnects Diverse Radios
 - Enables Incremental Fielding Benefit

SPEAKeasy Transition to JTRS

Modular Functionally-Partitioned System **COTS-based Hardware Interfaces Application Programming Interfaces** Message-passing Protocols

Chinear RF (HF/VHF/UHF) **ECCM Capability** Military Radio Compatibility Voice Bridging Of Diverse Legacy Systems

COTS-based DSP Modem Programmable, CYPRIS-based: TRANSEC & COMSEC

Re-programmability: Field Addition of New Waveform

WINDOWS-based Radio Control

JTRS

Multiband Multimode Multichannel Multifunction Multiwaveform

Future Enhancements:

A/J and LPI Waveforms Interference Mitigation Adaptive Control Smart Radio Techniques **Air Force**

Navy

Smart Networked Radio

- Develop Wideband Waveforms [LPI, ECCM, High Capacity, Packet-Switched]
- Adaptive Radio Control
 - Power
 - Data Rate
 - Coding
 - Bandwidth
 - AJ/LPI
 - ACE/BER
- Develop Adaptive Antennas
 - Receive Interference Cancellation
 - Tracking
 - Power Control
 - Bandwidth
 - Tuning
 - Enemy Emitter Location
 - Automatic Dynamic Matching

Smart Networked Radio (cont.)

- Media Resource Control
 - Routing/Switching
 - Packet control
 - Multiplexing
 - Priority/Preemption
 - Media/Channel selection
- Information Warfare
 - Info Gathering Analysis
 - Active ECM

Smart Networked Radio

Adaptive Antenna Technology
Dynamic Power Control
LPI & AJ Techniques
Optimization Techniques
Media Resource Allocation

Navigation Identification Surveillance Mission Planning

TRAP TIBS TADIX-B

Have Quick SINCGARS
JTIDS

A Software Defined System IS what you make it!