International Symposium on
Advanced Radio Technologies
September 9-11, 1998

DSP Architectures for Wireless
Communications

John D. Crockett
Senior Member, Technical Staff
Texas Instruments
Wireless Communications Business Unit
Agenda

♦ Current State of the Phone
 ✤ Architecture
 ✤ Implementation
 ✤ Power

♦ Future Trends
 ✤ 3rd Generation Requirements
 ✤ Application Trends
 ✤ Impact on Architectures
Complete Digital Engine ON A Single Chip

- .18 um Timeline™ ASIC design methodology
- TMS320C54x wireless-optimized DSP core
- Low-power ARM7TDMI microcontroller core
- Dual core co-emulation speeds development time
- Available system software modules
- Flexibility allows platform reuse across standards
GSM Baseband Cellular Architecture

Digital Baseband

Analog Baseband
Task Partitioning

Host
- Man-Machine Interface
- User Applications
- Data Exchange
- Data Processing
- Internet Access

Interface
- Shared Memory
- Parallel
- Serial Peripheral
- Custom

DSP
- Communications
- Speech I/O
- GPS
- Audio
- Video
- Security
Handset Power Breakdown

GSM Handset Power Breakdown - EFR : Class 5 (0.8W)

GSM EFR Class 5

1997

60%
13%
27%

Digital BB □ Analog BB ■ RF

GSM EFR Class 5

2000

81%
17%
2%

Digital BB □ Analog BB ■ RF
Viterbi Accelerator

- Compare, Select, and Store Unit (CSSU) for Viterbi Algorithm
 - Two 16b ADD/SUB operations in single cycle
 - Store max value and update state history in single cycle
Peripherals: Buffered Serial Port

- Based on serial port
- High speed data transfers
- Reduced Interrupt Latencies
- Read/Write to 2K words Ram
- CPU not burdened
Peripherals: Host Port Interface

- 8 bit parallel port
- Interfacing MCU
- Shared DARAM
 2K Word Memory
- SAM Mode:
 - DSP and MCU
 - 64MBps @ 40 MHz
- HOM Mode:
 - DSP and MCU
 - 160 MBps @ 40 MHz
- IDLE2
Power Dissipation

- **Mechanisms to Lower Power**
 - Bus Keepers / Holders - maintain state of external. Bus
 - External Bus off control - disables the external bus
 - Static design - lower clock to DC
 - IDLE 1, 2, 3, modes - drop into various power down modes
 - PLL options (31 options on C548) - use lower system clock
 - MIPS efficiency - fewer MIPS enables
Power Dissipation

◆ IDLE Modes

◆ IDLE1 7.93mA for IDLE1 (3V/66mips)
 – Turns off clocks to the process core
 – Clocks to peripherals remain active

◆ IDLE2 2mA for IDLE2 (3V/66mips)
 – Turns off clocks to the process core and to some peripherals
 – Clocks to BSP and HPI remain active

◆ IDLE3 1uA for IDLE3 (3V/66mips)
 – Turns off clocks to the process core, to all peripherals and halts PLL
1 Volt DSP For Wireless

- 63 MHz operation at 1V, 100 MHz at 1.35V
- 15x power improvement over existing technology (3.3V)
Frequency Vs. Supply Voltage

- 63 MHz at 1.0V, 100 MHz at 1.35V
- 15x power improvement over existing technology (3.3V)
Power Vs. Frequency

- 17 mW at 1V and 63 MHz
- 19x improvement in mW/MHz
- 15x reduction in power at 60 MHz
Energy Delay Product

- Minimum at 1.0V

![Graph showing Energy-Delay Product vs Supply Voltage (V)]

- X-axis: Supply Voltage (V)
Future - Terminals

♦ Data will surpass voice for wireless demand
 ✿ Killer App not yet identified

♦ Power
 ✿ Standby/Talk times equivalent to cordless needed.
 ✿ Standby times measured in weeks, talk times high enough that battery never goes dead.
Future - Terminals - Cont.

♦ Open platforms
 - More 3rd parties developing software
 - HLL/RTOS support in DSP/MCU
 - CACHE or RAM based processing predominant

♦ Standards
 - 3G will drive MIPS required into 1000s of MIPS range
Future - Terminals

Applications
- Echo cancellation/Voice Dialing - Safety of Use
- Video
- Navigation
- E911
- TBD
Wireless Processing Requirements

- GSM
- IS-95
- IS-136+
- W-TDMA
- W-CDMA

MIPS

MCU
DSP
ASIC
Speech Recognition

DSP Core
S/W

Speech Recognition

Microcontroller Core
S/W

SINGLE CHIP DIGITAL BASEBAND
Wireless Watchdog

NURSERY

ZOOM IN
ZOOM OUT
PAN LEFT
PAN RIGHT
SWITCH CAMERAS
Bibliography

♦ 3rd Generation Implementation Analysis, Carl Panasik; TI Presentation 1998
♦ Chipset Power Analysis, Mike McMahan; TI Presentation 1997
♦ Keynote Address, Christian Dupont; Wireless Symposium 1998
♦ Wireless 2000+, Thomas Wrappe; TI Internal Training 1997
♦ Other TI Technical Presentations, TI Wireless Business Unit; TI Presentations 1998