Software Radios for Cellular/PCS Base Stations: Fact or Fiction

> presented by: Tom Gratzek Analog Devices Inc. Communications Division

(very) Simple Software Radio

"Follow the Money" Cellular/PCS Market Structure

Radio Owner Needs

• Handset -

- long battery life (talk/standby)
- small size, low cost
- clear voice
- features: handsfree, messaging, voice activation, etc.
- Infrastructure
 - low initial cost
 - BOM, size, site coverage, time to revenue, spectrum utilization
 - low lifecycle costs -
 - low utilities, site rental, radio reliability,
 - inexpensive upgrades frequency planning, vocoder change
 - network reliability uptime/service

Software Radios: Marketing Slide

Cost Implications

- Single radio for all RF channels
- Cost per channel decreases with Wideband solution

Cellular Standards Evolution

- 1st Generation FM AMPS, NMT, TAC
 - 30 KHz channels 1 call per channel
- 2nd Generation
 - IS-136 3 users/channel 30KHz channels
 - GSM; 8 users/channel 200 KHz channels
 - IS-95 CDMA; 16+? Users/channel 1.25MHz chan.
- 3rd Generation
 - in standardization process
 - -5 + MHz channels; capable of high speed data

GSM Requirements: tough job

8

Software Radio Business Cases

- Steinbrecher
 - sold to Tellabs
 - 1998 getting out of wireless; focus on fiber apps
- Watkins Johnson -changing commercial strategy
 - System "Base2" wideband software base station
- Airnet changing company message
 - mixed success in market; management changes
- Arraycom changed early technology focus to concentrate on customer needs WLL/PHS

Software Radio: the vision

- Build one radio for all standards (gsm, amps, cdma,...)
 - required performance can't be obtained
 - not much practical need for multi-standard radios
- Software radios are "future proof"
 - what are future requirements?
- Software radios are smaller/lower cost
 - RF channel count/base station declining
- Software radios can fit into your network
 - the value is the network, not the radio
 - Who cares about the network...we need financing?

Multi-Carrier Wide Band Radio Architectures

- "Holy Grail" of System and Converter Designers, offers the promise of...
 - Eliminating redundant RF signal paths (cost, size, complexity, yield, adjustments)
 - Single "software radio" is re-programable for different air interface standards
 - permits incremental channel or standards changes
- However, there are challenges to implementation.....

Multi-Channel RX Challenges

Multi-Channel Receivers need...

- Very large dynamic range (SFDR)
 - No analog channel filter to attenuate blockers
 - Mixers, amplifiers, ADCs need excellent IMD
- Systems with compatible blocker requirements
 - GSM 900 very difficult to implement with current technology...-13 dBm blocker versus -104 dBm floor
 - DCS1800/PCS1900 can be implemented with current technology
- Compelling economic reasons to replace existing solutions

Receiver Architectures

Narrowband Chipset comparison (IF to digitizer(s))

Transmit Architectures

Wideband TX Challenges

Military roots; commercial needs

- Radio Standard IS-136, GSM, CDMA, prop., etc.
- Cell Coverage Macro, Micro (5W), Pico (1W)
- Commercial applications have bounded requirements
- Must meet cost goals and have business reason
 - Component and architectures
 - ADCs, amplifiers, DACs, DSPs, etc. Have all dramatically improved
- Software radio techniques used to *fill niches*
- Must find channel to *network supplier*

Multi-Channel Applications Phased Antenna Arrays

- Increase cell range using beam forming technology to control antenna array pattern (may be dynamic)
- Changes the cost content of Basestation
 - Transmit Power amplifers are expensive. Power and cost are reduced for each element *n* transceivers *per RF channel*...
 - An ideal candidate for a Wideband Architecture!
- Simplifies design
 - One Local Oscillator for complete system
 - All tuning done digitally, all NCOs are phase synchronized
 - low incremental cost for added capacity

Transmit Phased Array

Receive Phased Array

Dataquest: "Market forces"

- Replace single channel PA with MCPA
- More robust signal processing algorithms
- Process more base band channels through fewer DSPs
- Move the digital processing of RF/IF signals closer to the antenna
- Increased demand for pico/micro cells and repeaters to fill dead spots in networks

Analog Devices Experience

- Much greater focus on commercial markets...
- "Democratization" of Military Radio technology
- Key application area
 - phased array systems frequency utilization
 - new radio architectures lower cost, smaller size
 - new single channel, high IF sampling chip sets
 - lower RF BOM, less factory tweaking,
 - higher factory yields, less development costs
 - dramatically smaller radios
 - predictable digital vs. analog filtering