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Problem Formulation
• Base station antenna used in a Rayleigh fading

environment
• We wish to use polarization diversity with equal mean

power on both branches; thus the two antenna channels
should be symmetrical

• We assume un-correlated envelopes of vertical and
horizontal incident field components

What is the output signal correlation from the antenna?
Is there a difference between different antenna configurations?

What is the impact in terms of diversity gain of using different types of
base station antennas?
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Measurements of the radio channel

Environment and source Mobile Orientation � (dB) Frequency Correlation �env

Urban [1] Vertical car antenna 4-7 920 MHz median 0.02

Urban [2] 30� on large groundplane 7 463 MHz -0.003

Sub-urban [2] 12 0.019

Urban & sub-urban [3] 0� 10 1790 MHz <0.7 for 95%

45� 4.6-6.3 <0.7 for 95%

Urban [4] 70�15� in- and outdoor 1-4 1821 MHz <0.2 for 90%

Sub-urban [4] 2-7 <0.1 for 90%

Urban & sub-urban [5] 0� 4-7 1848 MHz <0.5 for 93%

45� 0 <0.5 for 93%

Urban [6] Car mounted monopole 7:6� 2:1 970 MHz 0:09� 0:09
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Antenna model

   The channel
vectors a,b are
projected onto
the polarization
ellipse of axial
ratio χ0.5
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Derivation of Power Correlation from
Far-field Coupling

Incident �eld:

E� = E� ^� = r�(t)e
�j��(t) ^� (1)

E� = E�
^� = r�(t)e
�j��(t) ^�. (2)

where

p(r) =

r
�2

e�r
2=2�2 (3)

Antenna representation by far-�eld vector functions:

a = a(�; �)^a(�; �) (4)

b = b(�; �)^b(�; �) (5)

If we de�ne a matrix:

A =
�
a�h^�; ^ai a�h^�; ^ai

b�h^�;^bi b�h^�;^bi
�

(6)

then the output from the antenna is

�
Va

Vb
�

= A

�
E�

E�
�

or y = A�. (7)

The covariance matrix of the input signal is

C� =
�
VarfE�g 0

0 VarfE�g
�

. (8)

and the corresponding matrix for the output is thus:

Cy = AC�A
H (9)

The complex normalized cross-covariance is

�c =

C
(2;1)

yq
C

(1;1)

y C
(2;2)

y

=

C
(1;2)

y

�

q
C

(1;1)

y C
(2;2)

y

(10)

and for the circularly symmetric Rayleigh signals:

�power = j�cj
2 =

jC
(2;1)

y j2

jC
(1;1)

y C
(2;2)

y j
: (11)

For the un-polarized case with equal mean power in

the vertical and horizontal components, (10) equals

�c = h^a;^bi�e�jargfab
�g: (12)

So (11) reduces to:
�power = jh^a;^bij2: (13)

Thus, the power correlation is equal to the square of

the far-�eld coupling.
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Output Correlation
Ideal ±45º Slanted Dual Polarized Antenna

Environment

(XPD in dB)
Received Polarization

Statistical Distribution

Output Correlation
Coefficient ((ρρpower))

0 (indoor-microcell)

3 (urban)

6 (urban-suburban)

9 (rural)

0.00

0.11

0.36

0.77
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Geometry of the simulated antennas

Aperture Coupled Patch over
an infinite groundplane

Slanted dipoles over an
infinite groundplane



9

Simulated Patterns
(HP-Momentum and λ/2 dipole theory)

Aperture Coupled Patch over
an infinite groundplane:

HBW = 72 degrees

Slanted dipoles over an
infinite groundplane:

HBW = 75 degrees
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Simulated Patterns, cont.
Phase between horizontal and vertical

far-field components
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Far-field coupling

The scalar product of the normalized far-fields of
the two channels: <a,b> = (a,b*)
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Calculated Output Power
Correlation for Rayleigh Distributed

Incident Fields

Aperture Coupled Patch over
an infinite groundplane

Slanted dipoles over an
infinite groundplane
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Geometry of the
two Measured
Base Station

Antennas

•Dual polarized
antenna arrays of 8
elements.
•Aperture Coupled
Patch elements are
symmetrical and
centred
•Dipole elements are
displaced to increase
isolation
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Measured Radiation Patterns:
Co- and Cross-Polar

ACP antenna Slanted dipole antenna
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Measured Radiation Patterns:
Vertical and Horizontal Polarizations

ACP antenna Slanted dipole antenna
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Simulated Output Envelope Correlation from
Measured Radiation Patterns: 10000 samples

ACP antenna:
ρenvelope ~= 0.3 at -60 degrees

Slanted dipole antenna:
ρenvelope = 0.8 at -60 degrees

Both antennas: ρenvelope = 0.38 at boresight
due to projection onto the polarization ellipse
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Far-field coupling from
amplitude-only radiation patterns

Project a and b onto the vertical and horizontal

polarizations:

a = av^v + ah^h (1)

b = bv^v + bh^h. (2)

Now, if there is a symmetry in the radiation

patterns with respect to the vertical axis, i.e:

bv = e�j�av (3)

bh = �e�j�ah, (4)

the Far-�eld coupling ha;bi can be expressed as:

ha;bi = (a;b�)

= (av^v + ah^h) � (e
j�a�v^v � ej�a�h
^h)

= ej�(javj
2 � jahj
2)

(5)

since h^v; ^hi = 0.

For the unpolarized case �power = jha;bij2,

hence the output power correlation is simply:

�power = (javj
2 � jahj
2)2: (6)
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• Mobile at -60 degrees azimuth (cell border):
ρenvelope = 0.3 for ACP and 0.8 for slanted dipole antenna

• Radio channel XPD (vert./hor. power) = 6 dB

Impact of correlation on diversity gain

a) Selection diversity
(Schwartz, Bennett, Stein 1966)

Dipoles:
ρpower = 0.8 = 0.92

ρpower = 0

~2.5 dB

ρpower = 0.8 = 0.92

b) Maximum Ratio Combining
(Yongbing Wan, J.C. Chen 1995)

ρpower = 0

~2.8 dB

Note: ρenv ∼=ρpower = ρ2     for Rayleigh signals

ACP:
ρpower = 0.3 =

= 0.552

ACP: ρpower = 0.3 =  0.552

= loss of diversity gain

1% level
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Slant ±45° vs.
vertical/horizontal polarization

Pre-detection combining:

•With orthogonal far-fields of the two channels, all power is   
received at the antenna and thus all the information in both cases
•We can change slant ±45° to vertical/horizontal using loss-less,
reciprocal networks
•The eigen-values of the covariance matrix and thus the probability
density function are identical in both cases

⇒
no difference between the two with optimal combining (MRC)

digital signaldetection 
of 

RF-signal

non-linear!

RF signals MRC



20

Conclusions
• A closed form expression for the output correlation as a function of

far-field patterns has been shown.

• The output correlation is a function of the antenna far-field coupling as
well as the XPD of the environment.

• For an un-polarized environment (XPD = 0 dB) the output correlation
equals the square of this coupling.

• Symmetrical antenna designs with equal patterns for vertical and
horizontal polarizations provide orthogonal far-fields <=> low far-field
coupling.

• The aperture coupled patch provides the lower output correlation in all
investigated cases.

• For symmetrical radiation patterns, the far-field coupling can be
calculated from amplitude-only patterns.

• A high far-field coupling, i.e. poor orthogonality, could result in a loss
of 2-3 dB diversity gain for selection or MR combining.


