

Past, Present, and Future

Dr. Richard Roy

ITS ART Symposium - 9-11 September 1998

Why Does Anyone Need ... Smart Antenna Systems?

Wireless Communication Systems The Real Need ...

- Capacity (bits/sec/Hz/sq-km)
 - More links per unit-area
 - High quality per link

Wireless Communication Systems A Real Solution ...

- $C_i = W_i \log_2(1 + P_i/N)$
- **Smart antenna technology**
 - Increases P_i/N for all i (better signal quality for all users)
 - Increases the simultaneous number of users (range of i)

Why Smart Antennas? The real challenges ...

- Maxwell's equations are simply stated, but ...
- Electromagnetic propagation in the real world is rather complex
- The real world is constantly changing
- Power control is the issue temporal AND spatial

 ARRAYCOMM

Ideal RF Environment

Coverage Area

Outer Space Cell

Wireless Communication Systems The Need for Adaptivity ...

Time (sec)

Smart Antenna Technology Precursors - Past and Present

- Sectorization
- Microcells
- Diversity
- Common theme: more (spatially distributed) antennas provide increased ability to control power

Ideal RF Environment Directional Antenna Coverage Area

Outer Space Cell

Real RF Environment

Directional Antenna Coverage Area

Suburban Cell

Smart Antenna Technology Road to the Future ...

Fully Adaptive Systems

Optimal Ratio Combining

Switched b

Switched Diversity

Single Antenna

Low

Environmental Complexity

High

Selection Diversity

Optimal Ratio Combining Antennas

Switched Beam Systems

Past and Present Smart Antenna Systems Commonalities ...

- Increased number of antennas of differing types
- Relatively simple signal processing (based on detection of signal power)
- Limited use of temporal properties
- Provide a discrete set of fixed alternatives from which the best alternative is chosen

Smart Antenna Technology The Future ...

- Multiple antennas
- Digital signal processing hardware
- Spatio-temporal signal processing software

Smart Antenna Technology Basic Architecture of Future Systems

Smart Antenna Technology Algorithms of the Future ...

- Analyze the RF environment
 - Estimate how signals are transformed as they propagate between (multiple antennas at) base stations and subscriber units
- Use analysis results to communicate intelligently
 - Allocate resources to maximize the number of high quality communication links that can be established simultaneously

Smart Antenna Technology Algorithms of the Future ...

- Selectively receive multiple cochannel signals from subscribers
 - **■** Optimally reconstruct signals from each subscriber
 - **■** Reject interference from noncooperative sources
- Selectively transmit multiple cochannel signals to subscribers
 - **Ensure high quality signals throughout the network**
 - Minimize transmitted power required to accomplish this goal

 ARRAY COMM

Smart Antenna Systems Factors Affecting Algorithms ...

- MOBILITY: high / low / portable / fixed
- RF ENV TYPE: urban / suburban / rural
- RF ENV VARIABILITY: low ... high
- MULTIPLE ACCESS: FDMA / TDMA / CDMA
- DUPLEX METHOD: TDD / FDD
- MODULATION: FM / BPSK / DQPSK / GMSK ...
- **CONNECTION TYPE: circuit (voice) / packet (data)**
- **PROTOCOL:** training sequences / power ctl / feedback
- •••

Future Smart Antenna Systems Commonalities ???

- Increased number of antennas of differing types
- Spatio-temporal signal processing of varying complexity for exploiting various amounts of information present
- Increasing appreciation of the system identification and optimal control aspect of the wireless communication problem
- Designed from the outset with smart antenna technology in mind

 ARRAYCOMM

Future Smart Antenna Systems Common Signal Processing Objectives

Future Smart Antenna Systems Transmit Power Efficiency Limitations

Fixed-Sector Wireless System Sample Suburban Deployment

Cochannel Interference Prohibits Intercell Reuse

Smart Antenna Wireless System Sample Suburban Deployment

Spatial Selectivity Permits Intercell Reuse

Fixed-Sector Wireless System Sample Suburban Deployment

Cochannel Interference Prohibits Intercell and Intracell Reuse

Smart Antenna Wireless System Sample Suburban Deployment

Spatial Selectivity Permits Intercell AND Intracell Reuse

Smart Antenna Technology What lies ahead ...

- Substantial increases in signal processing power (at decreasing costs) ...
- Improvements in spatio-temporal multi-user algorithms ...
- Advent of protocols designed with smart antenna technology in mind ...
- All point to a very bright future for smart antenna technology!

