Building Trust in Software

Dr. Paul E. Black

paul.black@nist.gov

KC7PKT

Software Can Make the Hardware Your Ally

• i.e., properly written software on radios can enforce sharing protocols and following (external) policies.

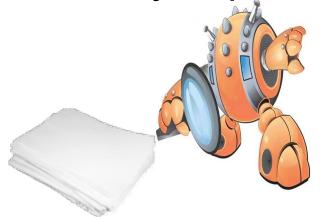
So, how can we build trust that the system will do what we want?

Trust in Software Comes From Three Sources:

National Institute of Standards and Technology • U.S. Department of Commerce

Trust Begins With Good Process

- Trustworthy software must be developed with care, for instance:
 - Validate requirements
 - Simplify the system architecture
 - Design compliance into the software
 - Prove a trust argument during development
 - Train programmers
 - Program with helpful languages

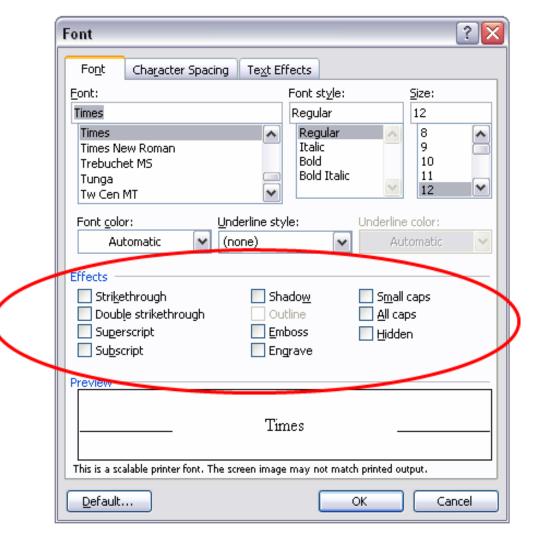

Analysis Builds Trust in Software

- There are two general kinds of software analysis:
 - Static analysis
 - e.g. design review, code review, and scanner tools
 - examines code
 - Testing (dynamic analysis)
 - e.g. simulations, fault injection, and test beds
 - runs code

Static Analysis and Testing Complement Each Other

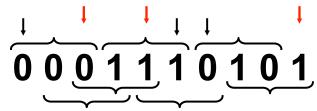
Static Analysis

- Handles unfinished code
- Higher level artifacts
- Can find backdoors, e.g., no exclusions when frequency 105.7 entered
- Potentially complete

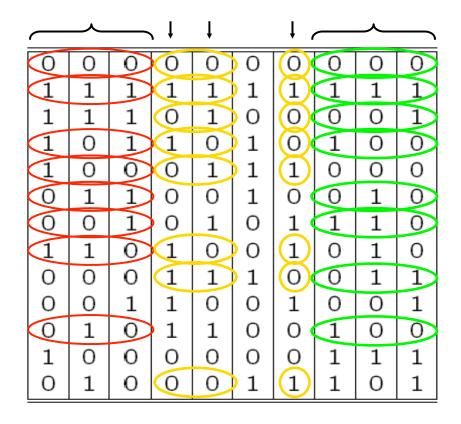


Testing

- Code not needed, e.g., embedded systems
- Covers end-to-end or system tests
- Assess as-installed
- Has few(er) assumptions



Use Combinatorial Testing


How Many Tests Would It Take?

- There are $\binom{10}{3}$ = 120 3-way interactions.
- Naively $120 \times 2^3 = 960 \text{ tests.}$
- Since we can pack 3 triples into each test, we need no more than 320 tests.
- But each test exercises many triples:

We oughta be able to pack a lot in one test, so what's the smallest number we need?

All Triples Take Only 13 Tests!

