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Outline 

• Objectives 

• Radar signal processing and DoFs 

• Key example: array processing 

• Adaptive architectures 

• Wideband arrays 

• Example results 

• Summary 
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Objectives 

• Understand the basics of adaptive interference mitigation for 
radar 

• Highlight the fundamental radar measurements and their utility 
in interference suppression 

• Describe typical canceller architectures 

• Consider spatial nulling as a primary example 

SBR AWACS 

UAV 

JSTARS 
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Radar Signal Processing 
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Combine thousands of voltages collected using pulsed, multichannel 

sensor to detect moving targets or image fixed targets  sophisticated 

algorithms generate the radar product 
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Radar Measurements 

• Amplitude 

– Fast-time  generally, basis for detection 

– Slow-time  indicates target Doppler frequency 

– Spatial   indicates target direction of arrival 

• Time-delay 

– Fast-time  range 

– Slow-time  variation yields Doppler frequency 

– Spatial  variation yields spatial frequency or direction or arrival 

• Polarization 

– Linear  HH, VV, HV (VH reciprocal for passive targets) 

– Circular  LR, LL, RR (RL reciprocal for passive targets) 

• Multi-scan 

– Non-coherent  clutter map 

– Coherent  change detection 

Exploiting the radar measurement space is the key to improved detection and imaging 
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Processing Flow Diagram 
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Signal-to-Noise Ratio (SNR) [1] 

• Radar range equation 

– Approximation 

• Signal-to-noise ratio (SNR) 
characterizes detection performance 

– Noise assumed white Gaussian 

• Key parameters are… 

– Power 

– Aperture terms 

– System temperature 

• Noise figure times standard 
temperature (290K) 
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For a fixed false alarm rate, probability of detection is a monotonic function of SNR 
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Detection in Colored-Noise [2-3] 

• Besides providing adequate power-aperture product, 
the aerospace radar system design must 
incorporate…  
– A mechanism to suppress ground clutter returns 

– Jammer suppression capability 

• Collectively we refer to clutter and jamming signals 
as interference 

• Detection performance depends on the signal-to-
interference-plus-noise ratio (SINR) and specified 
false-alarm rate (threshold) 
– SINR = SNR x clutter loss factor x jammer loss factor 

– Also, SINR <= SNR 

• Interference-limited detection performance always 

less than noise-limited capability   

• Drives system cost and complexity 
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Radar Detection: Common Observances 

• PD and PFA move together 

– E.g., As the threshold decreases, PD and PFA  both increase 

• Decision rule operates in regions of conditional 

density overlap in an “optimal” fashion 

0( )| ( )x Hp x 1( )| ( )x Hp x

x 



PFA 

Larger SNR decreases overlap 

* Applies for white or colored noise 



10 

Receiver Operating Characteristic (ROC) 
Non-Fluctuating Target 

  , 2ln
D M o FA
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Small changes in output 

SINR lead to big changes in 

detection performance 
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Signal Diversity Enhances Detection 

• Spatial and temporal signal diversity enhances radar detection 
performance 

– Signal diversity enables discrimination between target and 
interference 

• Domains of interest… 

– Spatial domain (angle) -> multi-channel array antenna 

– Slow-time domain (Doppler) -> multi-pulse aperture 

– Fast-time domain (range) -> sample at 1/Bandwidth 

• Clutter exhibits coupling in angle and Doppler 

– Differences between clutter and target angle-Doppler responses 
enables detection 

• Ground moving target indication (GMTI) 

• Narrowband noise jamming is correlated in angle, white in 
Doppler 

• Wideband jamming and jammer multipath correlated in angle 
and fast-time 



12 

Signal Diversity Enhances  

Detection Performance [4-9] 
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Summary of Key Metrics 
Metric Definition Comments 

Signal-to-noise 

ratio (SNR) 

Ratio of signal power to noise 

power 

Noise is uncorrelated, white Gaussian; input 

SNR at pulse and element level; output 

SNR includes integration gain and weighting 

Signal-to-

interference-plus-

noise ratio (SINR) 

Ratio of signal power to 

interference plus noise power 

Interference is colored noise, exhibits 

frequency preference; integration gain 

depends on interference type 

SINR Loss Ratio of SINR values under 

varying circumstances 

(usually between 0 and 1) 

Common definitions include ratio of (1) 

maximum output SINR to SNR, (2) output 

SINR between adaptive and optimal filters 

Improvement 

Factor (IF) 

Ratio of output SINR to 

single element input SINR  

Characteristic similar to definition #(1) 

defined in above line 

Probability of 

Detection (PD) 

Probability correctly choose 

alternative hypothesis 

Increases monotonically with output SINR 

Probability of 

False Alarm (PFA) 

Probability choose alternative 

hypothesis when null 

hypothesis is correct 

High false alarm rate degrades tracking 

performance, overwhelms computing 

resources, biases CFAR detection threshold  



14 

Summary of Key Metrics (Continued) 
Metric Definition Comments 

Clutter-to-noise 

ratio (CNR) 

Ratio of clutter power to 

noise power 

Calculated at input or output, integration 

depends on sampling characteristics 

Jammer-to-noise 

ratio (JNR) 

Ratio of jammer power to 

noise power 

Calculated at input or output, generally 

exhibits spatial integration gain 

Signal-to-clutter 

ratio (SCR) 

Ratio of SNR to CNR Calculated at input or output, suggests 

detection performance potential 

RMS Angle Error Root mean square value of 

difference between true and 

estimated target bearing 

Generally varies in proportion to the inverse 

square root of the output SINR 

RMS Doppler 

Error 

Root mean square value of 

difference between true and 

estimated target Doppler 

Generally varies in proportion to the inverse 

square root of the output SINR 

Floating Point 

Operations Per 

Second (FLOPS) 

Number of floating point 

operations for complex 

arithmetic 

Influenced strongly by particular 

implementation 
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Optimal Filter and Detector 
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• An optimal filter meets a specified goals 
• E.g., maximize output SINR 

• E.g., minimize output power subject to a set of 

constraints 

• Its implementation is generally data-

dependent 



16 

Adaptive Vs. Optimal [10-11] 

• STAP is the data-domain implementation of the 

optimum filter 

– Statistics and target steering vector are unknowns 

Optimum  Adaptive 

Known Covariance Matrix  Estimated Covariance Matrix 

Known Target Waveform  Hypothesized Steering Vector 

Optimal Weight Vector  Adaptive Weight Vector 
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Spatial Sampling for Digital Beamforming 
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Spatial Steering Vector 

• Originally used to describe the spatial response of 

the array to signal with a specific direction of arrival 

(DOA) 

– The conjugate “steers”  the beam 

– Terminology also used to describe temporal response 

– Matched filter 

Spatial Steering Vector (uniformly-spaced linear array, or ULA) 

 2 ( 1)( ) [1 ... ]    ( )s s sj j j M T

s se e e   
 s ss v
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Maximum Signal-to-Noise Ratio (SNR) Filter 
(a.k.a. Matched Filter) 
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Narrowband Jammer Signal 
• Corrupts reflected signals with noise-like waveform occupying at 

least part of the victim radar receive bandwidth 

– Spatially correlated, generally white in slow-time 
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Multiple Jammers 

• Assumption:  Each jammer is statistically independent 

 

 

 

• Each narrowband noise jammer requires a spatial DoF 

for cancellation 

– I.e., each resolvable narrowband jammer has rank of one in 

spatial domain 
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Objectives of Adaptive Digital Beamforming 

• Processor selects adaptive weights to “optimize” 

performance 

– Maximizing SINR yields maximal probability of detection for 

a fixed false alarm rate [3, 4] 

– Minimizing output power subject to constraints [10] 

• Linear constraint on look-direction gain is most common  

• Adaptive array reduces output colored-noise to boost 

detection performance to acceptable levels 

– Noise-limited scenario always provides an upper bound on 

performance 

– Signal diversity is the key to effective adaptive beamforming 

• Discriminate between target and interference responses 

– Spatial, slow-time, fast-time, polarization 
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Some Adaptive Array Highlights [12-13] 
(1957) Paul Howells of GE, Syracuse (now Lockheed-Martin), develops technique to electronically scan antenna null in direction of a jammer 

(1959) Howells receivers US Patent, “Intermediate frequency side-lobe canceller” 

(1962) Howells and Sidney Applebaum successfully test five-loop side-lobe canceller 

(1963) Howells and Applebaum, at Syracuse University Research Corp. (now Syracuse Research Corp.) investigate application of adaptive 
techniques to radar, including OTHR and BMD radar 

(1965) Applebaum publishes “Adaptive Arrays,” SURC TR-66-001, later available in IEEE Trans AP in 1976 

(1969) Lloyd Griffiths publishes an adaptive algorithm for wideband antennas in Proc. IEEE 

(1969) V. Anderson, H. Cox and N. Owsley separately publish works on adaptive arrays for sonar 

(1971) R.T. Compton describes the application of adaptive arrays for communications systems in Ohio State Univ. Quarterly Rept. 3234-1, 
December 1971 

(1972) O.L. Frost publishes an adaptive algorithm for antenna arrays incorporating constraints 

(1972)  Howells and Applebaum investigate adaptive radar for AEW 

(1973) Brennan and Reed publish the seminal paper, “Theory of adaptive radar,” in IEEE Trans. AES 

(1974) Reed, Mallett and Brennan publish a paper describing the Sample Matrix Inverse (SMI) method for adaptive arrays in IEEE Trans. AES 

(1976) “Adaptive antenna systems,” published by Bernard Widrow et. al. in IEEE Proceedings 

(1980) Monzingo and Miller publish the book Adaptive Arrays 

(1983) Rule for calculating clutter subspace dimension proposed by Klemm in IEE Proc. Pt. F 

(1991) Joint STARS prototypes deploy to Gulf War using adaptive clutter suppression methods (1978, Pave Mover was pre-cursor) 

(1992) Klemm proposes spatial transform techniques 

(1992) Real-time STAP implementation by Farina et. al.  

(1994) Post-Doppler, beamspace method proposed by Wang and Cai in IEEE Trans. AES 

(1994) Jim Ward of MIT Lincoln Lab summarizes STAP techniques in ESC-TR-94-109, Space-Time Adaptive Processing for Airborne Radar  

(1998) Richard Klemm publishes first STAP text book, Space-Time Adaptive Processing: Principles and Applications  

(1999) IEE ECEJ Special Issue on STAP (Klemm, Ed.) 

(1999) STAP techniques for space-based radar, by Rabideau and Kogon, presented at IEEE Radar Conference 

(1999) 3-D STAP for hot and cold clutter mitigation appears in IEEE Trans. AES by Techau, Guerci, Slocumb and Griffiths 

(2000) Bistatic STAP techniques appear in literature (Klemm, Zatman and Kogon, Melvin et. al., Himed et. al.)   

(2000) IEEE Trans. AES Special Section on STAP (Melvin, Ed.) 

(2002) DARPA initiates Knowledge-Aided Sensor Signal Processing & Expert Reasoning Program aimed at advancing STAP (Guerci) 

(2006) IEEE Trans. AES Special Section on Knowledge-Aided Sensor Signal and Data Processing (Guerci, Melvin) 

(2006) MIMO radar (Bliss, Rabideau, Guerci, M. Davis, others) 
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Multiple Sidelobe Canceller (MSLC) [2, 10] 
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The Maximum SINR Weight Vector [3-4] 
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Interpretation of Max. SINR Weight Vector 
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Minimum Variance Distortionless  

Response (MVDR) Spectra [2, 10] 

• MVDR weight is proportional to maximum SINR weighting 

 

 

 

• Minimum power at MVDR beamformer output is 

 

 

• Pmin is an estimate of the variance of s 

– The MVDR beamformer passes the target signal, s, with unity gain 
while minimizing power from other directions 

• MVDR spectra follows by “sweeping” steering vector over all 
frequencies/directions of interest 

 

• MVDR spectra is a super-resolution spectra 

– Peaks sharper than traditional Fourier-based methods 
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Example MVDR Spectra 
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Generalized Sidelobe Canceler (GSLC) [14] 
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Orthogonal Projection [15] 
(a.k.a., Principal Components Inverse) 
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Maximum Likelihood Estimate (MLE) [11] 

(Reed, Mallett and Brennan (RMB) Rule) 
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Clairvoyant and Finite Sample Patterns 
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Pattern Synthesis [16] 
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Hung-Turner Projection (HTP) [17] 
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Beampattern Comparison 
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Wideband Effects 
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Wideband Beamforming Architecture [18-19] 
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Wideband Cancellation Example 

No Taps - One broad null 

cancels all three jammers 

2 Taps - Sharp nulls on 

each jammer  

* Compliments of Dr. David Aalfs, GTRI/SEAL 
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Wideband Beamforming Architecture 

(Sub-Banding) 
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Summary 

• Radar systems can employ sophisticated processing 

to enable detection and imaging over a range of 

operating conditions 

• Focused on spatial nulling, but same ideas extend to 

other radar measurement spaces 

– E.g., multi-pass processing 

– E.g., Polarization STAP (P-STAP) 

• G.A. Showman, W.L. Melvin, M. Belen’kii, “Performance evaluation of 

two polarimetric space-time adaptive processing (STAP) architectures,” 

in Proceedings 2003 IEEE Radar Conference, Huntsville, AL, 5-8 May 

2003, pp. 59-65. 

• Manipulating radar DoFs key to best detection and 

imaging performance 

• Other cancellation strategies can be appropriate as 

source of interference varies 
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