# Fixed Wireless Broadband Access: Technologies and Standards

**Ender Ayanoglu** 

**ISART, Denver, CO** 9/8/2000





# What are the Broadband Access Choices for the Future?

#### DSL

good coverage
distance destroys
bandwidth
upstream bandwidth
an issue
infrastructure upgrades

#### Cable

coverage is limited to residence build-out still required upstream bandwidth is limited

#### Wireless

reach
symmetric bandwidth
higher upstream data
rates
speed of provisioning



# **Broadband Wireless Vision Into Reality**



# Broadband Wireless Access Layer System Needs

- 5 Mb/s to 20 Mb/s shared BW for consumers and business
- QoS managed, multiservice, bandwidth-on-demand MAC (Service Level Agreements)
- Standard, proven MAC
- High spectral efficiency and frequency re-use capacity
- Robust and simple to deploy
  - multipath tolerance & automated provisioning
- Low cost
- 3-20 mile range
- Easily ported to any frequency band



# **Multipath Wireless Communication**

- Wireless communication involves multipath transmission
- Each path has an associated delay which causes intersymbol interference (ISI)
- Conventional wireless approaches exhibit degraded performance
- Other approaches designed to mitigate the effects of multipath:
  - Equalization
  - Direct sequence spreading
  - Adaptive space-time coding solutions





# **Effects of Multipath**

#### Spatial diversity

 Standing-wave pattern between one transmit-receive antenna pair

#### Time-variation

- Motion in environment alters each standing-wave pattern
- Motion in environment creates time-varying frequency response





# **Broadband Wireless Access Alternatives**

- CDMA (Space-Time CDMA)
- SCQAM (ST DFE)
- OFDM (MIMO [Vector] OFDM)
- Recent Enabling Factors
  - Systems on a chip complexity
  - New practical spatial processing techniques



# **Broadband Wireless Access Alternatives**

- Not enough BW to offer broadband access with CDMA. High-speed CDMA is inefficient.
- SCQAM is not as robust, has lower spectral efficiency and is more expensive to make work
- Vector OFDM (VOFDM) has a very large link margin advantage and can be rigorously shown to be more cost effective than Space Time DFEs.



# **OFDM Concept**

- OFDM decomposes ISI channel into many ISI-free narrowband channels for any time-limited channel.
- Exploits frequency diversity rather than inverting channel.
- BER performance improves with channel ISI (delay spread).





### **OFDM**



- OFDM is composed of cyclic prefix and FFT operations
- Data at one frequency received independent of other data



# Upstream 64-QAM CER 1/2 ms Rayleigh Channel





# Downstream 64-QAM CER Ricean Channel





# Better Performance with Lower Complexity





- For high sampling rates, computational complexity is lower than conventional space-time equalization structures
- Above example assumes:  $2 \, \mu s$  delay spread, 16QAM,  $20 \, \mu s$  OFDM burst length



# **OFDM Advantages**

### Upstream processing

- Robust burst-mode demodulation possible, even in severe delay spread environments
- Higher spectral efficiency possible
- Solves the upstream problem

### Downstream processing

- Capable of operating in high delay spread environments
- Capable of operating with time-variation
- Dual antenna capability at lower complexity

#### • Interference-limited environments

- Very robust to narrow-band interference
- Interference cancellation possible with dual antennas

# **Spatial Diversity**



- In the presence of multipath fading, two received signals will have uncorrelated fading effects due to different path lengths
- Thus, a combined received signal will have a higher SNR that any of the individual signals
- The greatest processing benefits come from exploiting both frequency and spatial diversity



# **Spatial Diversity Advantage**



### **BWIF PHY Standard: Block Diagram**



- Diversity
- Interference cancellation
- Soft decoding

- Time synchronization
- Frequency locking
- Adaptive level control



## **BWIF MAC Capabilities**

### Proven, widely deployed MAC

**Best effort data** 

**VoIP** 

**IP** multicast support

**Enhanced security and privacy** 

**QoS** guarantees

**Virtual Private Networks** 

**DOCSIC 1.1 MAC:** 

Fragmentation

Concatenation

Payload header suppression



### Service Level Agreements (SLAs): Network and Service Quality Guarantees



### **Alternative OFDM Technologies**

LAN OFDM 802.11 & WILAN Simple forms of **OFDM** Lacks coherent detection **Lacks MIMO** operation and interference cancelation Spectral efficiency is low (PHY & MAC) **Limited MAC & QoS** 

**BWIF OFDM** Standards based products available today **Open standard** Service being rolled out Silicon devices available Jan **'01** Low cost CPE available early **'01** 

**WDSL OFDM** Very similar to **BWIF OFDM** Differences are expensive with marginal benefit Will be in development for > 2 more years **MIMO OFDM** intellectual property problems



# **BWIF Members** (as of 9/8/2000)

### **TOSHIBA**

































# Wireless Reference Architecture





# **BWIF Specifications**



# **BWIF Standards Compliant Base Station and CPE Product Status**









6. SX1123A mounted at 30°-J





# Future BWIF Standards Enhancement Possibilities

- More bandwidth (75 Mb/s)
- More spectral efficiency modes
- Microcell base stations and ultra low cost portable laptop/PDA implementations
- More MIMO transmit and receive diversity options
- Narrowband upstream options
- Multi-channel MIMO modulation
- Layer 1 ARQ
- Real-time adaptive modulation and coding
- All future enhancements will be customer-driven and backwards compatible with Revision 1.0 and subsequent specs