4-D-Networks
Architectures for Efficient Networking of Satellite and Terrestrial Networks

by

Vincent W. S. Chan

Department of Aeronautics & Astronautics
Department of Electrical Engineering & Computer Science
Laboratory for Information and Decision Systems (LIDS)
MIT
WDM Wide Area Network in Space

- GEO/MEO/LEO
- Streams & Packets
- WDM trunks
- RF & optical accesses
- Fixed/mobile users
Space Communication Networks

Iridium

Globalstar

SkyBridge

Teledesic
Optical Space Cross-Link

- Space backbone
- Digital or analog
- On-board demod
- Transponded
- E/O routed

Source → Coder Interleaver → Master laser → Modulator → Power amp → Mux → Demux → Pre-amp → Demodulator → Decoder → Data

![Graph showing cost vs. rate x distance]

- 10 Gb/s/λ 1,000Km (2000)
- 10 Gb/s/λ 50,000Km (2005)

![Power Amplifier graph]

- Power Amplifier
- Pump Power (W)
- Output fiber
Business Case: 100 Gbps - 20,000 Km

• Assumptions:
 • End-to-end duplex system
 • Includes bus, launch, O&M
 • Y2K$
 • Conservative estimates

• GEO system:
 • RF U/L, D/L dominates
 • ~$1B/100Gbps/20yr
 • 0.6 s propagation delays

• LEO:
 • Optical X/L dominates
 • ~$1.5B/100Gbps/20yr
 • 0.06 s propagation delays
Node Concepts

- e/o switching/routing
- Streams/packets
- Interconnect with RF

MIT
Future 4-D Network

• Market
 • Long-haul
 • MAN/LAN interconnect
 • Mobile/portable users

• Technical Challenges
 • High-power/low-loss WDM
 • Efficient modulation/coding
 • High sensitivity receivers
 • Power efficient systems
 • Spacecraft LAN
 • BEM/coding RF links
 • Dynamic resource allocation
 • Internetworking protocols
Dynamic 4 - D Network

- **Dynamic Capacity**
- **Dynamic routing:** deterministic & stochastic
- **Heterogeneous network:** Satcom, fiber, wireless
- **Differentiated services:** cost-based, time-deadline, ...

- **Satellite resources** extremely precious

Layers:
- **Physical**
- **DLC**
- **Network**
- **Transport**
- **Appl**

Components:
- Mod/Demod
- Variable R
- Media Access Control
- FEC
- ARQ
- Router/Buffer
- Net Management
- Congestion & Flow Control
- Gateways

Agent-Mediator

Convergence Layer

- LIDS

Key Points:

- Satellite resources extremely precious

Network Features:

- Dynamic Capacity
- Agile beams
- MAC

Routing:

- Dynamic routing: deterministic & stochastic

Network Types:

- Heterogeneous network: Satcom, fiber, wireless

Services:

- Differentiated services: cost-based, time-deadline, ...
Dynamic 4 - D Network
Physical & Data Link Control Layers

- Weather induced variable capacity channel
 - Channel measurements:
 - Direct/indirect power measurements
 - Via DLC BER
 - Via ARQ
 - Adaptation:
 - Power management
 - Variable rate mod/demod
 - Variable rate coding
 - Cost advertisement

- Media access control of agile antenna beams
 - MAC protocol for efficient access:
 - Random access
 - Reservation/scheduling
 - Differentiated services and pre-emption
 - Beam pattern design for efficient:
 - Multicast
 - Power management
Multiple Beam (MBA) and Phase Array Antenna

MBA

φ-array

PA

IF

Mod

Coder

Router

Filter

IF

Demod

Decoder

Vector Processor

Demod

Decoder
Variable Rate Modulation

BPSK

$P[\varepsilon] \sim \exp \{-\frac{E_s}{N_0}\}$

QPSK

$P[\varepsilon] \sim \exp \{-\frac{E_s}{2N_0}\}$

M-PSK

$P[\varepsilon] \sim \exp \{-\frac{(E_s/N_0)(\pi/M)^2}{2}\}$

4-QAM

$P[\varepsilon] \sim \exp \{-\frac{E_s}{2N_0}\}$

16-QAM

$P[\varepsilon] \sim \exp \{-\frac{E_s}{18N_0}\}$

$E_s = 3E_{av}$

64/256/M…-QAM

$P[\varepsilon] \sim \exp \{-\frac{(E_s/N_0)/2M}{2}\}$

$\log_2 M$ bits
Atmospheric Model

0-3 db → Light rain → Moderate rain → Heavy rain

Scintillation: \(f^{-2.3} \sim f^{-3.7} \), corner frequency 0.1 Hz ~ 1 or 2pole model
Rain attenuation: \(f^{-2} \), corner frequency \(10^{-3}, 10^{-4} \) Hz ~ 1 pole model
\(u[k] = a.u[k-1] + b.u[k-2] + w[k] \)
Measurement via: (1) power monitoring, (2) BER, (3) ARQ
Dynamic 4 - D Network Routing

- Dynamic routing
 - Deterministic
 - Satellite topology
 - Scheduled services
 - Stochastic
 - Time-varying capacities
 - Unscheduled traffic

- Heterogeneous network
 - Routing
 - Faster time scales
 - Multiple modalities
 - Internetworking
 - QoS dependent
 - Profit maximization

- Differentiated services
 - Cost-based
 - Time-deadline, jitter, ...
Dynamic 4 - D Network
Congestion/Flow Control, Transport/Applic Layer

- Convergence layer
 - QoS negotiation
 - Cost minimization
- End-to-end reliability/
Congestion/flow control
 - TCP modifications
 - Gateway/proxies
Fading dispersive multi-path channel
Multi-access/multi-user information theory
Robust communications over unpredictable random channels
Antenna and signal processing technology
Multi-layer network design and optimization

\(f = \) carrier frequency
\(W = \) available bandwidth
\(P = \text{max power/user} \)
\(M = \# \text{ of users} \)
\(N = \# \text{ of antennas} \)
\(\{x\} = \text{user locations} \)
\(\{y\} = \text{receiver locations} \)