Optical CDMA for Internet Operation at Terabit Rates

Laurence B. Milstein, Yeshaiahu Fainman, Dan M. Marom, and Kwang Soon Kim

University of California, San Diego
Department of Electrical and Computer Engineering

2000 Second Annual International Symposium
on Advanced Radio Technologies
Boulder, CO, September 6-8, 2000

Funded by National Science Foundation under the Next Generation Internet initiative
Optical networking: requirements and known solutions

Desired system requirements:
- Large information bandwidth per user
- Many supported communicating users
- Minimal system management

WDM data networks:
- Tunable lasers and/or receivers
- Wavelength assignment and control

TDM data networks:
- System synchronization
- Access management
Optical networking with ULP CDMA

Desired features:
- Short pulse communication for large capacity
- CDMA encoding for interference suppression
- Minimal system management

$H(\omega)$

Frequency domain

CDMA filter

Encoded

signal

Encoded signal

Encoded signal +

encoded interference

Time

filter

$H^*(\omega)$

Decoded signal +

interference

Spatial Fourier transform by a lens generates spatial dispersion

Grating diffraction generates angular dispersion

User i

User j

Shared network

Hybrid PPM/CDMA optical networking

Proposed solution:
- Short pulse communication for large capacity
- CDMA encoding for interference suppression
- Efficient data modulation (PPM)

Transmitter
- Ultrashort laser pulse source
- Data symbols
- Time delay generator
- Signal pulse at one out of M possible locations
- CDMA encoder spectral filter

Receiver
- Detection circuitry
 - “Choose largest” logic
- Data symbols
- Detector array with M detectors behind a mask
- **time-to-space converter**
- CDMA decoder spectral filter
- Ultrashort laser pulse source

Broadcast

Added layer of sophistication:
more complexity for greater performance
Femtosecond-rate time-to-space conversion

Spectral domain wave mixing of a signal waveform and a reference pulse:

Interaction of spectrally decomposed waves: \(Y(\omega) = \chi^{(2)}S(\omega)R(-\omega) \)

After spatial Fourier transform: \(y(x) \propto s(kx) \otimes r(-kx) \approx s(kx) \)

Output spatial signal
Space domain representation of temporal signals
Inverted reference spectrum
Signal spectrum

Time-to-space: Principle of operation

- Wave mix inverted spectrally decomposed waves
- Generate monochromatic plane wave
- Image with spatial Fourier transform

Energy conservation: $\omega_{\text{low}} + \omega_{\text{high}} = \omega_{\text{high}}\omega_{\text{low}}$

Momentum conservation: Quasi-monochromatic

Δt ω_{low} ω_{high} Δx
Femtosecond-rate space-to-time conversion

Interaction of spectral and spatial waves:

\[Y(\omega) = (\chi^{(2)})^2 R(\omega) M(f_x) \]

After spatial Fourier transform:

\[y(t) \propto r(t) \otimes m(kt) \approx m(kt) \]

Space-to-time: Principle of operation

Energy conservation:

\[\omega_{\text{low}} + \omega_0 = \omega_{\text{high}} + \omega_0 \]

Momentum conservation:

\[k_{\text{temp input}}(t) + k_{\text{spatial 1}} + k_{\text{spatial 2}} = k_{\text{temp output}}(t) \]

Instantaneous wavevector of temporal channel

spatial information bandwidth

conjugated plane wave from delta function

information imposed on instantaneous wavevector
Pulse packet generation and detection experiment

Real-time space-to-time conversion

Detected image by CCD

Real-time time-to-space conversion

Experiment: 0.8 μm center wavelength, 1 mJ combined energy, 100 fs pulse, free space propagation between transmitter and receiver
Typical parameters used in our evaluation:

\[
\begin{align*}
\tau &= 100 \text{ fs} \\
T_s &= 10 \text{ ns} \\
\Omega &= 25–100 \text{ GHz} \\
T_{ps} &= 100–200 \text{ fs} \\
N_{eff} &= 50–200 \\
M &= 4–64
\end{align*}
\]

- Ideally, desire large \(M \) for a large orthogonal alphabet size
- Ultrafast detection time window technology determines \(M \cdot T_{ps} \)
- Minimal \(T_{ps} \) is chosen, with limit determined by signaling orthogonality
PPM/CDMA performance analysis: 1

The received waveform, \(y(t) \), consists of the superposition of all the users’ encoded waveforms. Each user transmits with an independent time and phase.

\[
y(t | t_1, t_2, ..., t_J, \phi_1, \phi_2, ..., \phi_J) = \sum_{i=1}^{J} y_i (t | t_i, \phi_i)
\]

After the CDMA decoding filter and time-to-space conversion, the received waveform is converted to a spatial signal and its intensity detected, implementing a noncoherent detection scheme.

\[
R_x (x) \propto \left| p (t - X \cdot T_{PS}) + \sum_{i=2}^{J} y_i (t | t_i, \phi_i) \right|^2
\]

Assumptions for analysis:

Each user’s transmitted waveform is modeled as non-stationary, conditionally Gaussian (dependent on knowledge of transmission time and phase).

Expectation of transmitted waveform is zero and variance follows \(\text{sinc}^2(\cdot) \) profile.

Transmission times are uniformly distributed on \((-T_s/2, T_s/2)\).

Transmission phases are uniformly distributed on \((0, 2\pi)\).

Gaussian temporal pulse profile.

PPM/CDMA performance analysis: 2

Solution technique:

1. The pair-wise probability of error is calculated (error between the desired slot to another one $r \cdot T_{ps}$ apart, where r is an integer).
2. The expectation over the possible transmission times and phases of all users as a function of r is calculated.
3. The union bound is applied for the error probability with M detection slots.

When Ω decreases, encoded waveforms’ duration increases and process converges to stationary Gaussian case. Interference is “less bursty.”
PPM/CDMA performance curves

Using central limit theorem
Experiment: 0.93 µm center wavelength, 10 µJ energy, 200 fs pulse, 100 GHz spectral chip bandwidth, $N_{eff}=58$, PPM time shifts $T_{ps}=1.7$ ps.
A hybrid modulation scheme that combines CDMA encoding of ultrashort optical pulses with pulse position information encoding has been theoretically investigated and experimentally evaluated.

- The performance of the system improves with greater available pulse positions, smaller spectral chip bandwidths, and shorter laser pulses.
- PPM scheme provides a high bandwidth efficiency figure.
- Asynchronous network operation relieves management problems.
- Capacities exceeding 1 Tbps obtainable with today's components.