

Institute for Software Integrated Systems Vanderbilt University

Accuracy Enhancements for TDOA Estimation on Highly Resource Constrained Mobile Platforms

Kumar Chhokra, Ted Bapty, Jason Scott, Mitch Wilkes

{kumar@isis.vanderbilt.edu}

Overview

- Introduction
- Motivation
- Challenges
- Solutions
- Results
- Demo
- Supported by DARPA / IXO

Introduction

- Increase in location aware systems and services, E911
- Need for close range monitoring
 - urban and hostile environments
- Need for intelligence in hazardous areas
- Availability of enabling technology
 - Low-cost, low-power DSP
 - RF networks
 - Positioning services (GPS)

Existing systems

- Large form factors
- Large stand off / fixed locations
- High cost
 - Cell phone base station ~\$10,000
 - Military units (~\$50,000-100,000)
- High precision, networked systems
- Urban clutter
- "Theater" level vs. field level

Challenges

- Effective in urban areas
 - Uniform high precision in all scenarios
- Mobile = Small and low weight
- Longevity = low power
- Stealth = limited bandwidth
- Spatially separated = No global clock
- Low cost = No high precision sampling clock
- Varying environmental conditions
 - Differing radio characteristics

Solutions

- Local processing
 - Matched filtering with template
 - Stealth, low power, Low bandwidth
- GPS for global clock
 - Jitter correction, introspection
 - Lack of common global clock
- Doppler and time-shift correction
 - Using GPS clock for local clock calibration
 - Varying sample rates
 - Low precision clock

TOA electronics package

DSP Module

Analog Front-End

A/D Converter (2MHz)

Power Supply GPS, RF Modem March 9, 2004

Weight: under 1 lb

4"x5"x6"

FRS Radio Modifications for IF

Benefits:

- -Ability to use any radio
- -Cheap
- -Flexible

Challenges:

- Phase Linearity
- Poor Demod Perf.
- Poor Baseband Perf.
- Near Field Effects
- Limited Range

Effect of different sampling frequencies

$$g(t) = f(s(t-\tau))$$

$$G(\omega) = s^{-1}F(\omega/s)e^{-j\omega s\tau}$$

Approximating frequency scaling as shifting

- Doppler shift explanation
 - Taylor series approximation
- Let s = 1 a, then

$$G(\omega) = 1/(1-a)F(\omega/(1-a))e^{-j\omega(1-a)\tau}$$

if a << 1, we have

$$G(\omega) = (1+a)F(\omega(1+a))e^{-j\omega(1-a)\tau}$$

(Typically, a = 20-200 ppm)

Doppler approximation

For narrow band signals,

$$F(\omega_0 + \delta\omega) = 0, |\delta\omega| > \frac{\omega_b}{2}$$

$$F(s\omega) = F(s\omega_0 + \delta\omega) = 0, \delta\omega = \omega - \omega_0$$

$$G(\omega) \approx (1+a)F(\omega + a\omega_0)e^{-j\omega\tau}$$

$$g(t) \approx f(t-\tau)e^{-j\omega_d(t-\tau)}$$

• where $\omega d = a\omega o = (1-s) \omega o$

Disadvantages of Doppler shifting

 Input signals modulated by complex exponential before Fourier domain correlation

$$\tau = \arg\max \left| \int_{-\infty}^{\infty} f(u)g^*(u+t)e^{-j\omega_d t} du \right|$$

- Input signals become complex
- Memory requirement doubles
 - Greater memory access times
 - Lower through put
 - More power consumption
 - More memory / faster memory = greater cost

Alternative correction

- Can we shift in time instead of frequency?
 - Accomplished by multiplication by complex exponential in frequency domain
 - Performed during frequency domain correlation operations
- Time and frequency are duals
- Shifting and approximating in time = shifting and approximating in freq

Time domain effects of different sampling rates

- Faster sampling rate "delays" features in the sampled domain
- Compensate by advancing delayed signal

$$\widetilde{F}(\omega) = F(\omega)e^{j\tau_d\omega}$$

$$|\tilde{f}(t) = f(t + \tau_d^o) = f(t + (s-1)\frac{T_2 - T_1}{2} - s\tau)|$$

Comparing the two

- Trade-off between accuracy and performance
 - Doppler
 - Affords greater accuracy
 - Requires more memory / computation
 - Modulates entire signal with complex cosine before xcorr
 - Time-shifting
 - Provides acceptable accuracy
 - Uses lesser memory (input signal stays real)
 - Applies only to few significant frequency bins
 - Faster throughput
- Approximations are easy to apply

$$\exp(j\omega_d t) = 1 + j(\omega_d t)$$

Results - Evaluating correction techniques

- Corrected error is within allocated error budget for the signals of interest
- Signal of interest (1Khz 3kHz) PRN
- Oscillator clock drift: ±100 ppm
- Delay in uncompensated case: ~1-10 μ-sec
- Duration of signal of interest (template): 0.2 sec
- Nominal sampling freq: 2 MHz

Testing Results
Time-of-arrival Consistency

Demo

Conclusion

- Developed a new TDOA system
 - Highly constrained
 - Solved several problems due to distributed clocks
 - Developed algos
 - Tested in field

Questions/ Applause?

Road Map

- Overview
 - Present all the different topics we are going to talk about
- Introduction
 - Increase in location aware systems and services, E911
 - Need for close range monitoring urban and hostile environments
 - Need for intelligence in hazardous areas
- Motivation
 - Cost compare cell phone/ E911
 - Large stand off
 - Urban clutter
 - Theater level vs. field level
- Challenges
 - Saptially separated Lack of global clock
 - Stealth + low-power Lack of bandwidth for communication
 - Cost No high precision common sampling clock
 - Varying environmental conditions changing sample rates

- Solutions
 - Local processing matched filtering with template
 - GPS for global clock jitter correction, introspection
 - Doppler and time-shift correction varying sample rates
- Signal processing system architecture
 - Insert picture here
- Effect of different sampling frequencies
 - Show picture of how things scale with changing sampling freq
 - Show equation
- Approximating scaling with frequency shifts
 - Doppler shift explanation Taylor series approximation
 - Include figure from Sonar signal analysis
- Disadvantages of Doppler shifting
 - Input signals modulated by complex exponential
 - Input signals become complex
 - memory requirement doubles -> greater memory access times

March 9, 2004 23

- Alternative correction
 - Time shifting
 - Time and frequency are duals
 - Insert picture for gate function and sinc function
 - Shifting and approximating in time = shifting and approximating in freq
 - Include relevant equations here
- Advantages
 - Reduces memory requirements
 - Reduces access times
 - Approximation is easy to apply
 - Add equation for 1 + jw
 - Trade-off between accuracy and performance
- Results
 - Simulation results
 - Field results
- Demo