Satellite Communications using Ultra Wideband(UWB) Signals

March 3, 2004

Yoshio KUNISAWA Hiroyasu ISHIKAWA Hisato IWAI Hideyuki SHINONAGA

KDDI R&D LABORATORIES

Background (1)

- UWB (Ultra WideBand) is expected to realize high speed data transmission for terrestrial short distance communications.
- The standardization activity of the UWB radio system was started in IEEE802.15.
- UWB devices have good features for terminals such as simple hardware configuration, low power consumption, etc.

Background (2)

- Effective use of an electric wave is desired also in the satellite communication.
- Assuming UWB signal can be overlaid on other system spectrum without vast interference.

- Satellite communications using UWB signals have possibility to enable new services and new markets.
- Initial results on link budget calculation and estimation of signal transmission speed is presented.

What's UWB ? (Short pulse type)

 Short duration pulse has wide bandwidth.

 Data is encoded by pulse modulation such as PPM or PAM.

UWB regulation of FCC (1)

Specifications for communication devices using UWB

BANDWIDTH :

Fractional bandwidth equal to or greater than 0.2, or bandwidth equal to or greater than 500 MHz.

UWB regulation of FCC (2)

□ PEAK LEVEL OF EMISSIONS :

A peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission is 0 dBm EIRP.

Concept of Satellite UWB

- Adopt UWB in Satellite Communications
- Using Ku-band FSS

Satellite UWB spectrum

Overlaying onto existing systems

Link budget

 Received power level is much smaller than signal level of terrestrial UWB.

Center frequency	12	GHz
Bandwidth	500	MHz
Transmission power	20.3	dBW
Satellite antenna diameter	1.27	m
Satellite antenna gain (efficiency = 60%)	41.8	dBi
EIRP	65.1	dBm/MHz
Link margin	5	dB
Rain margin	3	dB
Path loss to the earth surface (at 12 GHz)	205.2	dB
Power density at earth surface	-148.1	dBm/MHz

3m from the terrestrial UWB transmitter is -100.0 dBm/MHz

Throughput using PAM (1)

Employ PAM (Pulse Amplitude Modulation)Symbol error probability of M-ary PAM

$$P_{M} = \frac{M-1}{M} \operatorname{erfc}\left(\sqrt{\frac{3}{M^{2}-1} \times \frac{E_{s}}{N_{0}}}\right)$$

 E_s/N_o : signal power per symbol to noise power density ratio

Bit error probability

$$P_b = \frac{1}{k} P_M$$

k: the number of bits transmitted in a symbol

• Required E_s/N_o for BER = 10⁻³

Μ	Required E_s/N_0 [dB]
2	7
4	13.75
8	19.77
16	25.5

Throughput using PAM (3)

• E_s/N_o presented by pulse repetition frequency

$$E_{s}/N_{0} = P_{ave}T_{p}/N_{0} = [P_{sd}/N_{0}] \times [B_{s}/B_{p}]$$

 P_{ave} : Average received power T_p : Pulse repetition period P_{sd} : Average power spectral density B_s : Equivalent occupied bandwidth B_p : Pulse repetition frequency

$$\boldsymbol{B}_{p} = [\boldsymbol{P}_{sd} / \boldsymbol{N}_{0}] \times \boldsymbol{B}_{s} / \boldsymbol{N}_{F} / [\boldsymbol{E}_{s} / \boldsymbol{N}_{0}]$$

Throughput using PAM (4)

Achievable throughput

Assuming free-space propagation

 $P_{sd} = -208.1 \text{ [dBm/Hz]}$ $B_s = 500 \text{ [MHz]}$ $N_0 = -174 \text{ [dBm/Hz]} \text{ (at room temperature)}$ $N_F = 6 \text{ [dB]}$

[bit/s]

	2-ary	4-ary	8-ary	16-ary
0 [dBi] (Same as terrestrial UWB)	9.96 k	4.21 k	1.58 k	563
5.0 [dBi] (Patch antenna)	31.5 k	13.3 k	4.99 k	1.78 k
19.8 [dBi] (10 cm dish)	951 k	402 k	151 k	53.7 k
33.7 [dBi] (50 cm dish)	23.3 M	9.87 M	3.70 M	1.32 M
39.8 [dBi] (1 m dish)	95.1 M	40.2 M	15.1 M	5.37 M

Multiband-UWB signal

Symbol structure example of MB-UWB

Throughput using MB-UWB (1)

Subpulse error probability of MB-UWB

$$P_s = 4(S-1)Q\left(\sqrt{\frac{2E_{sp}}{N_0}}\right)$$

S: Number of frequency bands E_{sp} : Energy per subpulse N_0 : Noise spectral density

$$E_s = E_{sp} \times S$$

• Required E_s/N_0 for subpulse error rate of 10⁻³

S	Required E_s/N_0 [dB]
4	14.5
8	18

Throughput using MB-UWB (2)

Pulse repetition frequency

 $B_{p} = [P_{sd} / N_{0}] \times B_{s} / N_{F} / [E_{s} / N_{0}]$

Achievable throughput

 $R = B_p \times \left[\log_2(S!) + SP \right]$

S: Number of frequency bands

P: Number of polarity bits

[bit/s]

	4-bands		8-bands	
	BPSK	QPSK	BPSK	QPSK
0 [dBi] (Same as terrestrial UWB)	15.2 k	22.3 k	18.4 k	28.4k
5.0 [dBi] (Patch antenna)	48.1 k	70.5 k	58.3 k	78.3 k
19.8 [dBi] (10 cm dish)	1.45 M	2.13 M	1.76 M	2.36 M
33.7 [dBi] (50 cm dish)	35.6 M	52.3 M	43.2 M	58.1 M
39.8 [dBi] (1 m dish)	145 M	213 M	176 M	236 M

KDDI R&D Laboratories Proprietary

Conclusion

- Possibility of satellite UWB is considered.
- Received signal power density at the earth's surface is much smaller than the signal level of the terrestrial UWB.
- High throughput can be realized by satellite UWB under our assumptions.
- The satellite UWB has possibility to enable new services, and is expected to open new markets.

Thank you !

http://www.kddilabs.jp/english/index.html