A Full-Scale Ad Hoc Networked UAV Test Bed

Timothy X Brown
Interdisciplinary Telecommunications
Electrical and Computer Engineering
University of Colorado

CU-Boulder

Presented at the International Symposium on Advanced Radio Technologies

March 2, 2005

Thanks to

University of Colorado

- Brian Argrow
- Cory Dixon
- Jack Elson
- Sheetalkumar Doshi
- Harvey Gates
- Daniel Henkel
- Jesse Himmelstein
- Sushant Jadhav
- Gerald Jones
- Marc Kessler
- Jake NelsonPhillip Nies
- Bill Pisano
- Roshan-George Thekkekunnel

Institute for Telecommunication Sciences

- Wayde Allen
- John Ewan

Fidelity-Comtech

Joe Carey

L3-Corporation

Ken Davey

Air Force Material Command

005 T.X Brown (http://ece.colorado.edu/~timxb)

Overview

- UAVs and the test bed need
- Test bed design
- Results
- Conclusions

3/3/200

T.X Brown (http://ece.colorado.edu/~timxb)

Unmanned Aerial Vehicles
(UAVs)

Small (10kg) Low Cost (Streen Low Cost (S

The test bed need

- There is much research in ad hoc networks
 - Mostly simple models or in simulation
 - Test bed work is small-scale, indoor, or limited mobility
 - Some commercial and military deployments
- There is little work on open, full-scale, highly mobile ad hoc networks

3/3/2005

T.X Brown (http://ece.colorado.edu/-timxb)

Wireless Test Bed Goals

- Provide a realistic environment
 - Outdoors
 - Full scale
 - Real time
- · Collect concise, detailed and accurate test data
 - Embedded collection design
 - Provide GPS time and position of all test elements
 - Terrestrial fixed and mobile
 - Airborne systems
- Make the test bed scalable and transportable

3/3/200

T.X Brown (http://ece.colorado.edu/~timxb)

Long Range UAV Communication

- UAV meshing over a few km worked well
- Long range did not work
 - 7km could not connect reliably
 - Throughputs zero or 0.01Mbps

Problem

- Dynamics + weaker signal = choppy links (have since tuned routing for this)
- High antenna over residential area sees many interferers (experimenting further)

3/3/2005

T.X Brown (http://ece.colorado.edu/~timxb)

29

Conclusion:

- UAV Test bed up and collecting data
- Low Delay, Good Throughput: Can do VoIP
- Multi-UAVS can effectively network
- UAV maneuvering affects performance

Next Steps:

- UAV Flocking
- UAV specific routing
- Security
- NSF ERC

Project website: augnet.colorado.edu

3/3/200

T.X Brown (http://ece.colorado.edu/~timxb

31