Dynamic Channel Model for Static Mobile Terminals in Indoor Environments

Yoshichika OHTA and Teruya FUJII Softbank Telecom Corp.

Presentation Outline

- Background
- Proposed Model
- Theoretical Analysis
- Results
- Conclusions

Background

- Recently, customers who communicate with a cellular phone in indoor environments are rapidly increasing. In such a case, mobile terminals are used in static conditions rather than in moving conditions.
 - In static usage, the terminal itself doesn't move, but the environment around it changes due to the moving objects such as people.
 - In order to evaluate communication characteristics in static usage, a channel model for the terminal is necessary.

In this presentation, we propose a physical channel model for Indoor static usage.

Proposed Model

- In surrounding moving environment, we assume that moving objects block the radio waves and absorb the power of radio waves.
- When radio waves absorbed by moving objects are changed, the received level of terminal changes dynamically

Theoretical Analysis of LOS condition

Let the direct path's level and the *i*th multipath's level at the terminal with a position of *x* be $e_0(x)$ and $e_i(x)$, respectively as follows.

Direct path

Multipaths

$$e_0(x) = A_0 \exp\left[j(\frac{2\pi x}{\lambda}\cos\theta_0 + \phi_0)\right]$$

where A_0 , θ_0 and ϕ_0 represent the amplitude, arriving angle and phase

Each of Multipaths has the same power and arrives uniformly from all horizontal direction.

$$e_i(x) = A \exp\left[j(\frac{2\pi x}{\lambda} \cos\left(\frac{2\pi (i-1)}{N_{path}}\right) + \phi_i)\right] (i = 1, --, N_{path})$$

Total power of multipath

$$P_m = A^2 N_{path}$$

where A, θ_i and ϕ_i represent the amplitude, arriving angle and phase of *i*-th radio wave

Analysis Model

Surrounding Moving Environment

A moving object assume as moving person and the number of person is N_{person}

Received Level of LOS

The received level of terminal can be presented as two conditions; LOS (direct wave is not blocked) and NLOS (direct wave is blocked).

Analysis of Received Level Distribution

The received level of terminal can be presented as the combined Nakagami-Rice distributions with two conditions;

- LOS (direct wave is not blocked).
- NLOS (direct wave is blocked)

To calculate the received level of terminal, it is necessary two key parameters

 K-factors of Nakagami-Rice distributions for two conditions

- the ratio of two conditions.

Distribution of Received Level (1/2)

Nakagami-Rice Distribution

K-factor

$$p(r_{p},K) = \frac{1}{s^{2}} \exp[-(\frac{r_{p}}{s^{2}} + K)]I_{0}(\sqrt{4K\frac{r_{p}}{s^{2}}})$$

The level of the surrounding static environment

$$K_{LOS} = |e_0(x) + e(x)|^2 / \left|\sum_{k=1}^{N_{person}} \eta_k(t)\right|^2 = (e_0(x) + e(x)|^2) |e_G(t)|^2$$

The total power of the absorbed paths
$$K_{NLOS} = |(1 - \zeta)e_0(x) + e(x)|^2 / \left|\sum_{k=1}^{N_{person}} \eta_k(t)\right|^2 = (1 - \zeta)e_0(x) + e(x)|^2 / |e_G(t)|^2$$

When all moving people are distributed uniformly in the moving area, total power of the absorbed paths $e_G(t)$ is as follows.

$$\left|e_{G}(t)\right|^{2} = \left(\frac{N_{person}P_{m}\left|\zeta\right|^{2}\Delta w}{\pi(r_{max}+r_{min})}\right)$$

K factor depends on the level of the surrounding static environment.

Distribution of Received Level (2/2)

Distribution of Received Level

The probability of received level can be presented as a combination of two Nakagami-Rice distributions with different K-factores.

$$p_{LOS}(r_P) = \underbrace{a_{LOS} p(r_P, K_{LOS})}_{\text{LOS}} + \underbrace{a_{NLOS} p(r_P, K_{NLOS})}_{\text{NLOS}}$$

The Ratio of Two Conditions

 $q_{\rm NLOS}$ can be expressed as the probability that the center of moving person locates within the square with the width of Δw and the length of Δl

$$q_{NLOS} = \frac{\Delta w \Delta A}{S_a}$$

The probability that the direct wave is not cut off, Q_{LOS} , can be expressed as all moving people don't locate in the square

$$\alpha_{LOS} = (1 - q_{NLOS})^{N_{person}}$$
$$\alpha_{NLOS} = 1 - \alpha_{LOS}$$

Autocorrelation coefficient of complex amplitude(1) SoftBank

Autocorrelation coefficient of complex amplitude

$$R(\Delta t) = \langle E(t,x)E(t+\Delta t,x)^* \rangle$$

= $\langle (E_d(t,x)+E_m(t,x))(E_d(t+\Delta t,x)+E_m(t+\Delta t,x))^* \rangle$
= $\langle E_d(t,x)E_d(t+\Delta t,x)^* \rangle + \langle E_d(t,x)E_m(t+\Delta t,x)^* \rangle + \langle E_m(t,x)E_d(t+\Delta t,x)^* \rangle + \langle E_m(t,x)E_m(t+\Delta t,x)^* \rangle$

 $\theta_k^U(t) \approx \theta_k^L(t) + \Delta w / r_k$ $\theta_k^L(t + \Delta t) \approx \theta_k^L(t) + v\Delta t \cos \alpha_k / r_k$ $\theta_{k}^{U}(t + \Delta t) \approx \theta_{k}^{L}(t) + \Delta w / r_{k} + v\Delta t \cos \alpha_{k} / r_{k}$

Auto-covariance coefficient

2K + 1

Autocorrelation coefficient of complex amplitude

$$R(\Delta t) = \frac{N_{person}}{\pi(r_{max}^{2} - r_{max}^{2})} \int_{r_{max}}^{r_{max}} R(\Delta t) 2\pi r dr$$

$$= \begin{cases} \left| e_{0}(x) \right|^{2} \left\{ 1 - \frac{2\operatorname{Re}[\zeta] N_{person} \Delta w}{\pi(r_{max} + r_{max})} + \frac{N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} \left(1 - \frac{2f_{r} |\Delta t|}{\pi} \right) \right\} (v|\Delta t| \leq \Delta w)$$

$$= \begin{cases} \left| e_{0}(x) \right|^{2} \left\{ 1 - \frac{2\operatorname{Re}[\zeta] N_{person} \Delta w}{\pi(r_{max} + r_{max})} + \frac{N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} \left(1 - \frac{2f_{r} |\Delta t|}{\pi} \right) \right\} (v|\Delta t| \leq \Delta w)$$

$$+ \begin{cases} \left| e_{0}(x) \right|^{2} + \frac{P_{m} N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} + \frac{N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} \left(1 - \frac{2f_{r} |\Delta t|}{\pi} \right) \right\} (v|\Delta t| \leq \Delta w)$$

$$+ \begin{cases} \left| e_{0}(x) \right|^{2} + \frac{P_{m} N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} + \frac{N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} \right\} (v|\Delta t| \leq \Delta w)$$

$$+ \left\{ \left| e(x) \right|^{2} + \frac{P_{m} N_{person} |\zeta|^{2} \Delta w}{\pi(r_{max} + r_{max})} \left\{ 1 - \frac{2f_{r} |\Delta t|}{\pi} \right\} (v|\Delta t| \leq \Delta w) \right\}$$

$$+ 2\operatorname{Re}\left[e_{0}(x) e^{x}(x) \right] - 2\operatorname{Re}\left[\zeta e_{0}(x) e^{x}(x) \right] \frac{N_{person} \Delta w}{\pi(r_{max} + r_{max})} \right\}$$
Auto-covariance coefficient of complex
amplitude
$$\rho(\Delta t) = \frac{R(\Delta t) - |m|^{2}}{R(0) - |m|^{2}} \qquad \text{where, } m = e_{0}(x) \left(1 - \frac{\zeta N_{person} \Delta w}{\pi(r_{max} + r_{min})} \right) + e(x)$$
Auto-covariance coefficient of received power

$$\rho_{P}(\Delta t) = \frac{2K \operatorname{Re}\left[\rho(\Delta t) \right] + \left| \rho(\Delta t) \right|^{2}}{2Y_{r}} \qquad \operatorname{Re}\left[1 \text{ is real part} \right]$$

Analysis

First, we analyze the received level distribution and correlation by theoretical analysis and computer simulation Then, we compare them with measurements.

Major Parameters of calculation

In the calculations, we set parameters as follows.

- The number of person is N_{person} = 8
- The diameter of moving person is $\Delta w=0.3m$
- The moving speed is v=1m/s
- The moving area is within the annular area with radii of r_{min} =2m, r_{max} =6m
- The Rx antenna is omni directional in the horizontal plane.

In the calculations, we obtain the received characteristics

Measurement

In order to confirm the accuracy of analysis model, measurements was carried out in our laboratory space at the same condition of calculations.

-The carrier frequency is 5.7GHz.

Laboratory Space

-This room holds common office equipment such as desks, tables, and shelves.

-We made people walk around the received antenna at the speed of 1 m/s.

Measurement Scene

Simulation vs. Measurement with Direct Wave

In order to confirm visually the variation of proposed model, we carried out computer simulation at the same condition of calculation.

Received level with direct wave

We find that the measurement results are very similar to the simulation results

Simulation vs. Analysis with Direct Wave

The proposed model is in extremely good agreement with the simulated results.

Measurement vs. Analysis with Direct Wave SoftBank

The proposed model is in good agreement with the measured results.

Conclusions

- We proposed a channel model for static terminals used indoors in LOS and NLOS conditions.
- The received level probability and its autocorrelation coefficient of the proposed model were theoretically analyzed.
- The analysis results of the proposed model were compared to measured results and we showed that proposed model was in good agreement with the measured results.
 - From these, we confirmed that the proposed model is sufficiently valid.

Thank you for your kind attention.

Received level in static condition (no one moving around Rx antenna)

20