

Developing the DFS Standard – A Laboratory Perspective

Mark Briggs Elliott Labs – An NTS Company mark.briggs@ntscorp.com

Key Elements

Elliott

- Test methodology had to be repeatable
- Test procedure had to be commercially viable
- Test procedure had to be able to handle non "standard" equipment

CElliott

Repeatability

- Tests performed by one lab must be repeatable by another
- FCC performing pre-grant testing on ALL master devices
 - All master devices are tested twice by the lab and by the FCC
 - We want confidence that products passing the test in our lab also pass at the FCC lab

Elliott

- Conducted method versus radiated method
 - FCC use the radiated method for all master devices
 - Conducted method is easier to set up
 - More repeatable
 - Assumptions about antenna gain
 - Radiated method
 - More "realistic"
 - Have to align receive antenna to radar antenna

Less repeatable/higher measurement uncertainty

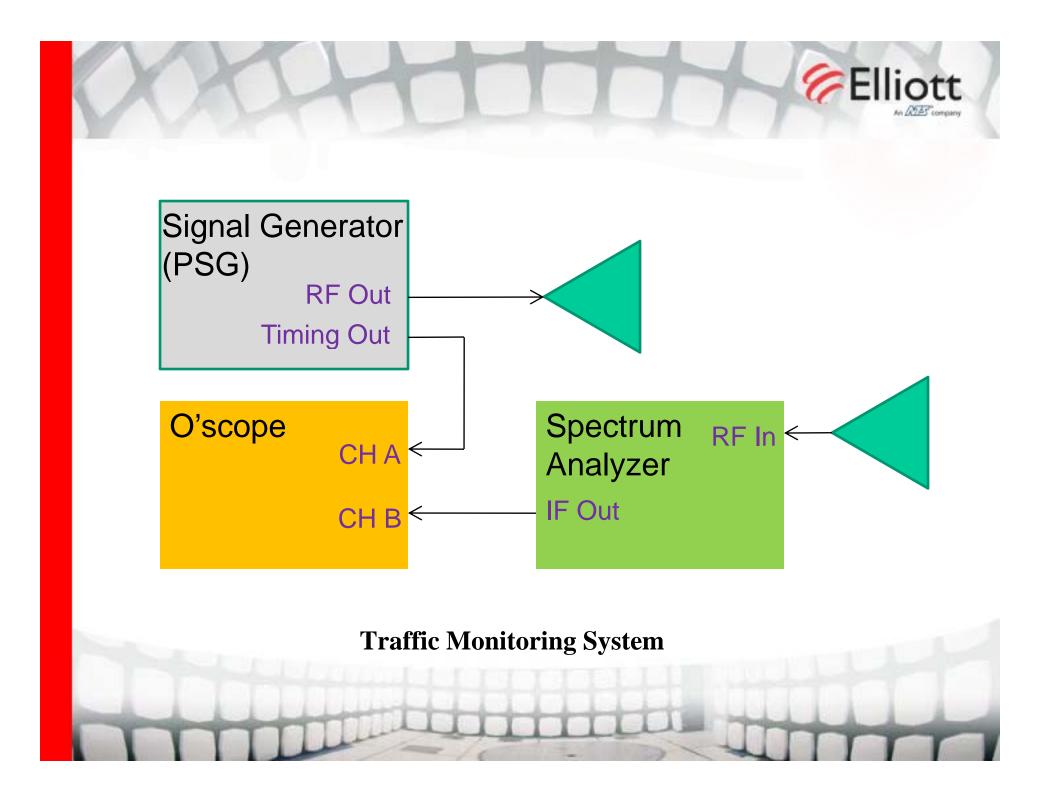
Filiott

- Build in margins into testing to account for
 - Measurement uncertainty associated with radar level calibration
 - Uncertainties associated with the EUT
 - Large, high gain antennas may be tested in Rayleigh near field for the radiated test, gain not fully realized
 - Measured antenna gain outside of the system may over-estimate actual gain when antenna is installed into a system

- FCC Method tests at threshold +1dB
 FCC lab does radiated test at threshold +1dB
- Conducted measurements we recommend testing at threshold -3dB
- Radiated method we test at threshold and seem to have good correlation with the FCC

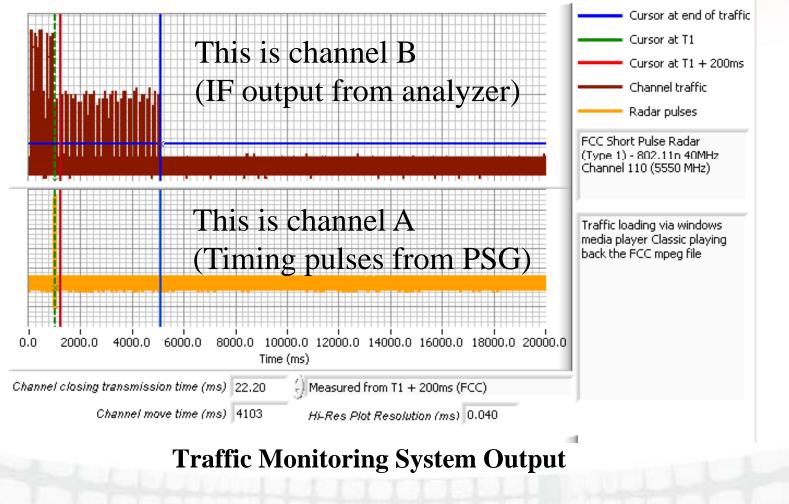
- Un-written aspects of the test
- The procedure allows for testing across the detection bandwidth
 - FCC lab varies frequency of applied radar across the system's signal bandwidth
 - Important to do the same can show deficiencies in channel-bonded systems

- Main costs
 - Test equipment
 - Signal generator
 - Traffic monitoring system
 - Actual Test Time
 - Automation of testing
 - Looking into ways to poll master devices rather than rely on the master device to send console messages for detection probability tests
 - Go/No Go overnight testing
 - Automation of report generation
 - Need to log 100's of trials and summarize data


- Test equipment, Signal generator
 - Long sequence waveform (12 seconds long) plus modulated pulses with different parameters
 - Agilent PSG + Pulse Building Software Suite
 - Frequency agility
 - Initial procedure required frequency agile signal generator with hop rate of 3kHz (later reduced to 1kHz)
 - Not commercially available in a single box
 - Developed alternate method to the frequency hopping test
 - Allowed use of a "standard" signal generator
 - Created the detection bandwidth test

CElliott

- Test equipment, Traffic Monitoring System
 - Long record lengths with high resolution
 - Channel closing 20 second plot with resolution of (ideally) 40us (500k samples)
 - Frequency selective only looking at channel being vacated
 - Synchronized to Radar burst
 - Non occupancy 30 minute sweep time


CElliott

- Test equipment, Traffic Monitoring System
 - Scope has resolution and record length but no frequency selectivity
 - Analyzer has frequency selectivity but not record length
 - Use narrowband IF output of analyzer into 'scope
 - Signal generator provides triggering

Elliott Timing Plots - Channel Closing

- Time (= Test Automation)
 - No bundled "DFS" package
 - Developed in-house control software
 - Avoided building IQ waveforms by using Agilent Pulse Building API to interface with PSG
 - Integrated data capture and report generation using LabView
 - DFS packages subsequently developed and are commercially available
 - National Instruments , Aeroflex and Tektronix
 - DFS test system must be approved by the FCC with NTIA review

- Time (= Test Automation)
 - Still reliant on console messages to determine if master device detected radar during probability tests
 - Working with Veriwave to develop integrated system
 - Poll the air for protocol-defined information elements to automate the test
 - Generate the required traffic through master device
 - Pass/fail production line testing

Non-Standard EUTs

- Specification and method for packet based systems based on 802.11an
 - Assumes client devices can stream a video file through the master
 - OK for most master devices
 - 802.11 client devices are not all laptops running MS Windows
 - Medical monitoring system
 - Hand-held device with limited data buffering

Non-Standard EUTs

- Non-standard devices need a test plan approved by NTIA/FCC
 - Causes delays in testing and approval process
 - Becoming formulaic as we see more nonstandard devices
 - Easier to create the test plan based on similar devices already approved

