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Abstract—We propose a network access optimization for
cognitive radio nodes aimed at throughput maximization
under the constraint of primary node queue stability. To
maintain primary queue stability, our approach moves
beyond the traditional listen-before-talk opportunistic ac-
cess by allowing cognitive radios to over-hear and utilize
ACK/NAK feedback signals on packet reception from the
primary receiver. In addition to primary transmitter’s ac-
tivity sensing in listen-before-talk, the secondary cognitive
radio can track the primary queue status through inference
based on the primary feedback information. By defining
a Lyapunov function that characterize the primary queue
stability, we devise a distributed secondary power allocation
strategy to control the access of cognitive radio nodes that
approximates the optimal solution of a static global sum-
utility maximization problem. This distributed cognitive
access method can achieve high bandwidth utilization
under the primary queue stability constraint.

I. I NTRODUCTION

While opportunistic-spectrum-access (OSA) has
firmly established as a new paradigm capable of
overcoming the current debacle of spectral scarcity
and under-utilization, most research efforts in this field
focus on the traditional “Listen-Before-Talk” (LBT)
framework and stress the mechanism of radio spectrum
sensing. LBT is a sensing-based OSA that allows
secondary users to access primary users’ frequency
bands, provided they are detected as “white space” [42],
[43]. Indeed, the Federal-Communication-Commission
(FCC) report on TV white-space prototype testing [41]
only fuels the LBT-based research and development
activities with respect to cognitive radio access.

We note, however, that the simple LBT framework has
its special limitations. First, LBT focuses only on the
primary transmitter activity, paying no attention to the
quality of primary signal reception at the receiver side.
A well known problem in LBT is its inability to protect
a hidden (receiver) node. For this reason, LBT has to
be conservative and highly sensitive in order to deal
with the worst case fading environment and to anticipate
the possibility of aggregated interference from multiple
SU transmissions. For example, the sensing threshold is

set 20dB below the noise level in the DTV detection
scenario [41], which significantly under-estimates the
amount of available spectrum opportunities. On the other
hand, LBT assumes that the primary links are very
fragile and does not allow SU systems to exploit extra
capacity when a PU system, not fully loaded, can tolerate
substantial interference. In particular, when an exposed
(transmitter) node is discovered while the receiver node
is far from the cognitive radio, LBT is a very conserva-
tive strategy since it does not take into account the ability
of most well designed primary systems to apply mech-
anisms such as forward error correction, beamforming,
or spectrum spreading to combat interference.

Recognizing the aforementioned weakness of LBT
cognitive access, we would like to develop more ad-
vanced approaches to cognitive spectrum access that can
better protect the primary user links and, at the same
time, enable better utilization of the channel capacity
when primary users are resilient. In fact, we advocate a
more advanced form of “cognitive” radio: in addition to
normal primary transmitter’s activity sensing,secondary
users should exploit the inherent primary receiver’s
control signals that can provide useful information
on primary communication link quality.In most two-
way digital communication systems, such information is
available in a variety of forms, e.g.: “data-link-layer”
ARQ information such as ACK/NAK packets feedback
by primary receivers to their transmitters, LTE/WIMAX
channel-quality-information feedback packets for power
control, IS-95 1dB power level increase/decrease noti-
fication. Furthermore, many primary feedback informa-
tion is typically transmitted at low data rate with high
redundancy and error protection, thus is easier for SUs
to detect, decode, and utilize.

More specifically, we consider the following problem
which consists of a network with one PU pair whose
bandwidth may also be accessed by multiple distributed
SU pairs of lower priority. We hope to maximize the
overall SU utility while maintaining PU transmitter’s
queue stability. Intuitively, we need to exploit multiple
sources of information. The absence of PU transmission
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and feedback information indicates an empty PU queue,
which assures PU queue stability. The ACK/NAK feed-
back information from the primary receivers allows the
SUs to learn the PU transmission process and to estimate
aggregated SU interference. Through such observations
and by inference, secondary users can extract informa-
tion with respect to the interaction between the inter-
ference from their own secondary transmission and the
primary transmission success. Secondary access based
on this learning process can outperform pure LBT by
making more intelligent channel access decisions.

In particular, we generalize the pure LBT algorithms
such that, in addition to primary transmitter’s activity
sensing, secondary user access is controlled also by
allowing secondary users to overhear primary receiver’s
ACK/NAK feedback packets. We show that, through
primary’s activity sensing, packet status (in terms of out-
age) eavesdropping and primary transmission rate knowl-
edge, secondary users can better access primary users’
frequency bands without de-stabilizing primary queues.
Moreover, we show that information collection from
the primary receiver helps cognitive radios shift from
pure LBT style opportunistic channel access towards
communication overlay strategies as mutual secondary-
primary interference becomes less severe.

This paper is organized as follows. In Section II, we
present works that relate to our paper; In Section III,
we present the basic system model for investigation. In
Section IV, we present the problem formulation and an
effective distributed approximated solutions. We provide
simulation results in Section VI, before concluding re-
marks in SectionVII.

II. RELATED WORKS

In the past, LBT based cognitive access strategies have
been extensively studied. Among others, the authors of
[2] presented a survey on spectrum sensing for cognitive
radios. Cyclostationary feature detection for OSA has
been treated in [6]. In [5] [4], the authors analyzed the
tradeoff between spectrum-sensing time and secondary
throughput. Distributed cooperative spectrum sensing
has been investigated, among others, in [10], [14] and
[24]. The interesting SNR-wall limitations on spectrum
sensing have been shown in [29] and [30]. A Markov
decision process framework has been employed in [26],
[27], [28], [38] and [37]. The authors of [27] and [28]
devise secondary channel access policy for multiple pri-
mary user channels. On the other hand, cognitive access
strategies utilizing primary receiver feedback signals
have been studied in [36], [7], where the authors ex-
plored opportunistic spectrum access exploiting the hid-
den primary radio power loop. In [8] the authors inves-
tigated PU-SU cooperation for cognitive link throughput
maximization. In [20] the authors proposed a secondary

user power allocation algorithm under an interference
constraint based on primary’s feedback observation. In
[37] a Markov-decision-process framework was applied
to maximize the secondary users’ throughput, subject to
limits on primary’s performance loss. In [38], the authors
explored overlay of secondary communications through
exploiting primary H-ARQ feedback. The authors of
[3] study primary transmission-rate guarantee through
primary ACK/NAK eavesdropping by secondary users.
In [1], the authors propose the framework we base the
current paper on. They apply Lyapunov stability theory
to devise a network-layer algorithm that maximizes the
aggregated utility function of the nodes of a wireless
network subject to network-layer queue stability. The
authors of [12] and [13] proposed a secondary channel
access control framework based on ACK/NAK packet
eavesdropping from the primary receiver. The latter
presents a strategy, where secondary transmitters access
primary channel based on primary transmitter’s activity
sensing and primary receiver’s ARQ observations.

III. SYSTEM MODEL
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Fig. 1. An illustration of network topology.

We now present our basic system model of cognitive
secondary user channel access under investigation. We
consider a heterogeneous wireless network with one
PU transmitter-receiver (Tx-Rx) pair and multiple SU
transmitter-receiver pairs, as shown in Fig. 1. The PU
pair has its own channel and accesses its channel for
transmission whenever there are packets to send. The PU
also has a low rate feedback channel from the receiver to
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the transmitter. The SU pairs want to opportunistically
access the same PU channel. Our objective is to max-
imize the aggregated utility of secondary users subject
to primary transmitter’s queue stability. For simplicity,
we assume that both PU and SUs have fixed-length
packets. Packet transmission time depends on channel
conditions and mutual interference. Based on queue
backlog and primary receiver’s outage information sent
on the feedback channel, the secondary users will control
their transmission power to stabilize PU queue while
maximizing SU performance.

We assume that the PU transmission system is time-
slotted and that the SUs synchronize to the PU time-
slot by tracking PU transmissions. We assume the PU-
transmitter (PU-Tx) sends packets to the PU-receiver
(PU-Rx) on a forward channel which SUs are willing
to opportunistically access. The PU-Rx sends feedback
packet through a reverse channel that the SUs are able
to overhear. We further assume the primary forward and
reverse channels are logically separated. Given a slot
duration of ts, we refer to thet−th time slot as the
time interval[(t−1) · ts, t · ·ts). If the PU-Tx has data to
send, it will access the channel at the beginning of the
next time slot. In this work, we do not consider any form
of primary power control, though PU-Tx power control
can certainly be incorporated into our framework. At the
end of every primary transmission, the primary receiver
(PU-Rx) feeds back a1-bit information to the PU-Tx to
notify the latest transmission success or failure. When
PUs have no packets to transmit, we assume that both
the PU-Txs and PU-Rxs are silent.

With respect to the cognitive users, we assume sec-
ondary transmitters (SU-Txs) can sense PU-Tx’s activity
via a signal detector and have the capability of detecting
the feedback signal from PU-Rx on packet success and
outage. We assume the sensing activity takes place at the
beginning of each time slot and that it is short enough to
allow SUs to sense and then to transmit their (shorter)
packets for the remainder of the same time slot.

In addition, we will be using the following notations
throughout the manuscript:

• Ns = {1, . . . , Ns}: the set of active secondary
users.

• Pp: the transmission power of the PU-Tx.
• gp: the large scale channel gain between PU-Rx and

PU-Tx with full reciprocity between the primary
and secondary nodes.

• gi, gip, gpi, i ∈ Ns: the large scale channel gain
between SU-Txi and its receiver, the large scale
channel gain between thei−th SU-Tx and the PU-
Rx, the large scale channel gain between the PU-Tx
and SU-Rxi, respectively.

A. PU Stability

In this work, our goal is to develop a network-layer
rate control algorithm for each SU-Tx to maximize the
aggregate SU utility function, while maintaining PU
queue stability.

To proceed, we first define the concept of PU queue
stability. Additional notations are needed. For each time
slot t, define:

• Ap(t): the exogenous packet arrivals at the PU
queue.

• Qp(t): the backlog of PU-Tx queue.
• µp(t): the instantaneous transmission rate of pri-

mary user.
• µi(t), i ∈ Ns: the controlled transmission rate of

secondary useri.
In order to control the SU transmission rates, we first

need to characterize the effect of mutual interference
between PU and SU transmissions on their data rates.
Here, we assume SUs are distributed and sufficiently far
apart that they do not interfere with each other. As a
result, given the PU forward channel bandwidth ofW
Hz, we have

µi(t) = W log

(

1 +
Pi(t)gi

N0 + Ppgpi

)

, (1)

µp(t) = W log

(

1 +
Ppgp

N0 +
∑Ns

i=1 Pi(t)gip

)

. (2)

The PU updates its queue as:

Qp(t+ 1) = max {(Qp(t)− µp(t), 0)}+Ap(t). (3)

Note that, without loss of generality (WLOG), we as-
sume PU queue is at the network layer. We consider PU
queue stable if:

lim sup
t→∞

1

t

t−1
∑

τ=0

E{Qp(τ)} < ∞. (4)

From the instantaneous rates, we define the following
long-term average quantities

• λp −− the long-term average primary arrival rate:

λp = lim
t

1

t

t−1
∑

τ=0

E{Ap(τ)}. (5)

• µ̄p −− the long term average primary transmission
rate:

µ̄p = lim
t

1

t

t−1
∑

τ=0

E{µp(τ)}. (6)

• ri −− the long-term average throughput of sec-
ondary useri:

ri = lim inf
t→∞

1

t

t−1
∑

τ=0

µi(τ). (7)
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B. SU Model

We assume that SU-Tx nodes always have data to
send. For each SUi ∈ Ns, its utility function fi(·) is
defined as:

fi(ri) = αi · ri, (8)

whereαi is a constant merit factor, which reflects the
importance of SUi throughput or the SU traffic priority.

In order to develop SU rate control optimization, we
assume that the SU transmitters can accurately estimate
the busy/idle state of the PU-Tx. This task can be
accomplished by a combination of sensing PU trans-
missions and observing PU-Rx feedbacks. We assume
that the SUs have been given the knowledge of the PU
transmission power as well as the associated channel
gains. We also assume SUs to have the knowledge on
the arrival rate of the PU packetλp, possibly through
estimation from PU’s busy/idle activities.

We assume the SUs do not actively cooperate with
one another. In other words, there is no message passing
among them and there is no centralized SU controller.
Each SU can only control its own transmission power
based on the observation of the PU activities.

IV. PROBLEM FORMULATION

Without loss of generality, we assume that, in the
absence of secondary transmissions, the PU network-
layer queue is stable, i.e.,

λp < lim
1

t

t−1
∑

τ=0

E{µp(τ)|µi(t) = 0}. (9)

With SU transmission, the interference at the PU-Rx
becomes stronger, thereby reducing the effective PU
transmission rate. For this reason, secondary opportunis-
tic channel access can affect the PU queue stability.

In order to mitigate the impact of SU transmission
on the PU link, our explicit objective for the secondary
cognitive users is to maximize their sum-utility subject
to the stable PU queue condition. More explicitly, our
goal is to control the SU ratesµi(t) to

maximize
{µi(t)}

∑Ns

i=1 fi(ri)

subject to: λp < µ̄p.
(10)

To optimally control the SU transmission rates
{µi(t)}, we should rely on a central controller with
global network information such as channel state and
queue backlogs available at every secondary user. Such
a centralized optimal SU access scheme is less prac-
tical and potentially difficult to implement. In particu-
lar, global network information at all participating SUs
would be difficult to obtain and update with sufficient
accuracy. Therefore, our goal is to develop a distributed

solution to Problem (10) by allowing individual SU to
control its rate/flow.

We propose several distributed solutions by extending
the Lyapunov stability framework [1]. The basic idea
is as follows. As in [1], we create an artificial control
knob for each SU, as shown in Figure 2. In particular,

Fig. 2. Control-knob queues for useri

we define
• Ri(t), i ∈ Ns: the rate of data flowing from

secondary user level-1 queue to its network-layer
queue at timet, which is the artificial knob intro-
duced here.

• Qi(t), i ∈ Ns: the network-layer queue length of
SU-Tx i at time t.

With these definitions, the network-layer queue at SU-Tx
i is updated via

Qi(t+ 1) = max {(Qi(t)− µi(t), 0)}+Ri(t). (11)

Each SU independently updates its queue and decides
its transmission in two-steps [1].First , for every SU-
Tx, determine the amount of data to flow from the
level-1 queue to the corresponding network-layer queue;
and second, control the secondary transmission power
(and hence rate) based also on primary queue backlog
information.

More specifically, we investigate four different control
algorithms that can be designed within this framework,
each relying on different level of knowledge and assump-
tions.

• AcQu −− Based on the ideal case where all the
SUs perfectly know the accurate PU queue length
(AcQu), this idealized algorithm AcQu constitutes
our benchmark optimum solution to be compared
against.
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• EstQ −− without knowledge on the PU queue
length the SU power control modifies our baseline
algorithm by letting every SU to estimate the PU’s
queue length assuming the knowledge of its average
arrival rateλp.

• Forced-queue-clearing (FQC)−− FQC ensures
PU queue stability by letting the SUs estimate the
PU queue length and by forcing SUs to stop all
transmissions if they observe a PU busy period
longer than a pre-defined thresholdτ > 0. All
secondary transmissions are then forbidden until a
PU idle period is observed.

• PU-assisted queue alert (PUaq)−− as a general-
ization of the previous schemes, we let the PU-Tx
broadcast an “alert” message whenever their queues
reach a thresholdQth. Similar to the FQC policy,
when a SU receives this alert message, it quits
transmitting until a primary idle period is observed.

The details of these SU access control algorithms will
be described next.

V. SU CONTROL ALGORITHMS

This section is devoted to detailing the algorithms
previously descripted. Note that, since in a realistic case
SUs cannot directly observe the PU queue length, we
associate the PU queue stability with the observation by
the SUs of infinitely many PU idle periods.

A. AcQu SU Network Access Control

AcQu is the idealistic case where we assume each SU
has perfect information on PU queue length. Under this
assumption, the solution to Problem (10) AcQu is based
on the following two steps:

(a) Flow control. Each secondary useri ∈ Ns solves
the following optimization problem:

maximize
Ri(t)

V · fi(Ri(t))−Ri(t) ·Qi(t)

subject to: Ri(t) ≤ RMAX ,
(12)

whereV is an adjustable parameter to characterize
the aggressiveness of the secondary users whereas
RMAX is the maximum allowed per-slot data flow.

(b) Resource control. Each secondary useri ∈ Ns

solves the following optimization problem:

maximize
Pi(t)

Qi(t)µi(t) +Qp(t)µp(t)

subject to: Pi(t) ≥ 0
Pi(t) ≤ PMAX ,

(13)

where PMAX is the maximum allowed secondary
transmission power;

In what follows, we focus only on part (b) of the access
control for SU-Tx , as it is the only part that affects
primary user’s queue backlog.

Note that AcQu algorithm is similar to theCLC1
algorithm proposed in [1]. To develop SU access control
algorithms for more realistic scenarios, however, we need
to address several challenges in our problem: 1) SUs are
distributed and individually determines their own trans-
mission power; 2) the PU transmission power cannot be
controlled; 3) SU may have to estimate PU queue length
based on its observations, which motivates the following
algorithms designed for such more practical scenarios.

B. EstQ SU network control based on PU queue esti-
mation

Here, we describe a more realistic version of Prob-
lem (13) that does not require perfect primary user queue
backlog knowledge. First, we use the following estimate
of Qp(t):

Q̂p(t) =

{

((λp + ǫ) · t− µp(t))
+
, if PU busy,

0, if PU idle.
(14)

In (14), SUs assume a constant arrival rate of (λp + ǫ)
at the primary transmitter. The primary queue length is
shortened by the successfully transmitted packetsµp(t)
known to the SUs. Note that, in addition to tuning the
parameterV , we also over-estimate the primary arrival
rate byǫ > 0. The value ofǫ can also be dynamically
adjusted to affect SU behaviors.

Given the queue estimate, the secondary access control
can be modified into
(b) EstQ resource control. Each secondary useri ∈ Ns

solves the following optimization problem:

maximize
Pi(t)

Qi(t)µi(t) + Q̂p(t)µp(t)

subject to: Pi(t) ≥ 0
Pi(t) ≤ PMAX .

(15)

C. Forced-Queue-Clearing (FQC) Algorithm

Simple queue estimation through Eq. (14) leads to
primary queue instability if we setǫ = 0 or when the
estimation ofλp is poor. To remedy this issue, we also
devise a heuristic solution that compels SUs to stop
transmission if the current primary busy period exceeds
a pre-determined thresholdτ > 0. We calculatedτ as
an integer multiple of the average busy period of an
M/M/1 queue with average arrival rateλp and average
departure rate equal to the primary departure rate without
secondary interference. We then obtain a new SU control
algorithm.
(b) FQC resource control. Let tb denote the current

primary busy duration (as estimated by the SU).
Each secondary useri ∈ Ns solves the following
optimization problem:
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if tb < τ , then:

maximize
Pi(t)

Qi(t)µi(t) + Q̂p(t)µp(t)

subject to: Pi(t) ≥ 0
Pi(t) ≤ PMAX .

(16)

else

µi(t) = 0, until primary channel is idle. (17)

Note thatQ̂p(t) is calculated through Eq. (14).

D. PUaq SU network control

In FQC, the SU-Txs stop transmission if primary
busy period exceeds a certain pre-determined threshold.
As a generalization, we consider a partially cooperative
PU-Tx. Specifically, we require the PU-Tx to broadcast
an alert message whenever its queue reaches a pre-
defined thresholdQth. In this PUaq scenario, SU-Tx
stops transmission upon successful reception of alert
messages. This PUaq scheme requires some explicit
PU cooperation. Our goal is to examine whether PU
cooperation can significantly improve PU performance.
As a result, we can modify the resource control scheme
into PUaq as follows
(b) PUaq resource control. Each secondary user

i ∈ Ns solves the following optimization problem:

If no alert message received, then:

maximize
Pi(t)

Qi(t)µi(t) + Q̂p(t)µp(t)

subject to: Pi(t) ≥ 0
Pi(t) ≤ PMAX .

(18)

else

µi(t) = 0, until primary channel is idle. (19)

In this case,Q̂p(t) is calculated as in (14).

VI. SIMULATION RESULTS

In this section, we first consider the case withNs = 1
to show that our algorithm successfully stabilizes PU
queue in case of single SU transmitter. Next, we extend
our results to the case withNs = 2. In both cases, the SU
system overlays atop of a single primary pair’s forward
link channel. The various parameters involved in the PU
and SU pairs are summarized in the table VI:

Pp PU power 1 [dBm]
λp PU average arrival rate 2 [pkt/slot]
PMAX Max SU power 1 [dBm]
dp PU-Tx→PU-Rx distance 200 [m]
di, i ∈ Ns SU-Tx→SU-Rx distance 200 [m]
αi, i ∈ Ns Merit factor dip/40
RMAX SU data-flow factor 20
ts Time-slot duration 1 [ms]
Lp PU packet length 1024 [bits]
Ls SU packet length 512 [bits]

Note that, in all the simulation results we assume:
dip = dpi, ∀i ∈ Ns. This means that the distance
between theith SU-Tx and the PU-Rx is the same as
the distance between the PU-Tx and theith SU-Rx. It
is worth mentioning that the results forNs = 2 are
obtained withd1p = d2p to test SU-Txs behavior in case
they experience the same interference from the PU-Tx.

As performance metrics, we generate the numerical
results of different SU control algorithms in terms of the
resulting average primary queue length and the average
secondary user throughput (7). These numerical simu-
lation results are obtained by averaging100 different
realizations of1000 time-slots each. Note that we show
the average secondary PU queue length in a logarithmic
scale, whereas the average throughput results are plotted
in a semi-logarithmic scale.

To demonstrate our ability to control the outcomes of
the SU access, we adjust SU-Txs’ aggressiveness tuning
parameterV to assess its impact on the SU throughput
and PU queue length. We understand from Problem (12)
that largerV would lead to longer secondary queue
lengthQi, ∀i ∈ Ns, and that longerQi bolsters overlaid
secondary transmission attempts because of the max-
weight resource allocation of (13). Hence, more aggres-
sive SU transmission has an obvious impact on primary
queue lengthQp and long-term average throughputri,
∀i ∈ Ns. This impact depends also on the mutual
interference between the primary and secondary systems.
In what follows, we show that, when the interference
between the PU and SU pairs is high, LBT type of
opportunistic channel access is favorable, whereas, as
interference at the PU-Rx decreases, we expect our
algorithms to migrate from LBT-style channel access,
toward favoring overlaid secondary channel access. The
behavior of the SU-Txs as a function of the parameter
V shows that SUs aggressiveness is favorable only
when distance between primary and secondary users is
sufficient so as not to cause detrimental interference with
each other.

We remark that the SU throughput results forV ≤ 0.1
anddip = 200m correspond to a pure LBT-style channel
access. Because of paper length constraint, we omit to
show such a result that depicts the SU channel access
policy as a function of time for a simulation realization.

A. AcQu Access

Figures 3 (a) and (b), show the statistical average pri-
mary queue length and the statistical average secondary
throughputr1, as functions of the distanced1p between
the SU-Tx and the PU-Rx. From Figure 3 (a), it is clear
that our algorithm successfully stabilizes the PU queue.
As expected, for increasing values ofV , the average PU
queue length grows (while remaining stable).
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Fig. 3. AcQu Access. Average Pu queue length andr1 for different
values ofV .

Figure 3 (b) shows that, for short distance between
primary and secondary users, lower values ofV result
in higher SU throughputr1.

As expected, higher values ofV are not suitable when
the mutual interference between primary and secondary
systems is high. For example, the highest values of the
SU throughput ford1p = 200m correspond to a LBT-
style channel access. When the SU-Tx and the PU-
Rx are further apart so as not to cause severe mutual
interference, more aggressive channel access policies at
the SU-Tx can improve the throughputr1.

B. EstQ algorithm

Figures 4 provides comparative results ofr1 and
average PU queue length in the more realistic scenario
where PU queue length is estimated via Eq. (14). Since
we noticed that a value ofǫ = 0 is not enough to
stabilize PU queue, the SUs over-estimate PU average
arrival rate by an excess marginǫ > 0. In our tests,
the EstQ algorithm usesǫ = 0.01. As it can be seen
from Figure 4 (a), the PU queue is stabilized. As
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Fig. 4. EstQ algorithm. Average Pu queue length andr1 for different
values ofV .

in the AcQu case, more aggressive SU-Tx’s channel
access policies correspond to longer average PU queue
length. Moreover, Figure 4 (b) shows that, for shorter
distanced1p, the SU-TX throughputr1 is a decreasing
function of the parameterV . For larger distanced1p, the
lower mutual interference between the primary and the
secondary systems lead to system overlay and therefore
favors higher values ofV in terms of throughputr1.

C. FQC algorithm

Figures 5 shows the average PU queue length and the
secondary average throughputr1 for the FQC cognitive
access control as the distanced1p between the PU-Rx
and the SU-Tx vary. We tested FQC withǫ = 0 to
show that this version of the algorithm can successfully
stabilize PU queue in this case. From Fig. 5 (a), we
can see that, as expected, largerV leads to longer PU
queue length. Additionally, the SU throughput increases
as d1p increases because, when the SU-Tx is far from
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Fig. 5. FQC. Average Pu queue length andr1 for different values of
V .

the PU-Rx, LBT-style channel access is less favorable
than overlaid cognitive access.

D. PUaq algorithm

For the last algorithm, Figures 6 (a) and (b) show the
average secondary rater1 and the average PU queue
length as a function ofd1p, and for different values of
V . As expected, this control algorithm also successfully
stabilizes PU queue. As pointed out in the previous
subsections, for low values ofd1p, LBT channel access is
preferable. Whend1p increases, higher values ofV lead
to more overlaid transmissions and can lead to higher
SU throughput than LBT.

E. Algorithm comparison,Ns = 2

In this test, we activate two SU transmitters that
implement the same access strategy for power control.
Figures 7 (a) (b) and (c) show the resulting average
queue length, and the resulting SU ratesr1 and r2 for
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Fig. 6. PUaq. Average PU queue length andr1 for different values
of V .

the two users, respectively. Figure 7 (a) shows that the
proposed algorithms successfully stabilize the PU queue
when both SU-Txs are active and control their own
access without cooperation. As discussed earlier, larger
parameterV corresponds to longer PU queue backlog.
Perfect queue knowledge also leads to higher average
PU lengths as the SU-Tx can afford to be more active.
This is due to the fact that “EstQ”, “FQC” and “PUaq”
algorithms control the SUs’ aggressiveness by either
over-estimating PU length or stopping SU transmissions
before the PU queue becomes too long.

As mentioned earlier, since we assumed1p = d2p,
the two SU-Txs experience the same interference from
PU-Tx. We assume also that all SUs perfectly decode
PU-Rx feedback messages. For these reasons, all SUs
make the same decisions at the same time and experience
the same throughput values. As expected, when the
mutual interference between the secondary and primary
users decreases, LBT-style channel access is abandoned,
favoring overlaid communications. When the mutual
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Fig. 7. Algorithm comparison. Average PU queue length andr1 for
different values ofV .x

interference is high, LBT channel access is optimal, for
this reason, high values ofV lead to lower throughput.

We close this section with a SU throughput com-
parison in caseNs = 1 and Ns = 2 for perfect

queue knowledge. Figure 8 shows that, as expected,
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Fig. 8. AcQu. Average throughput for SU-1 for Ns = 1 andNs = 2.

when Ns=1, r1 is always higher than the case with
multiple SUs. In cased1p = 800m and V = 10, the
SU throughput with one SU outperforms the case of two
SUs by almost30%. This phenomenon is mirrored by a
higher average PU queue length with respect to the case
of two SUs.

VII. C ONCLUSIONS

In this work, we introduced a power control algorithm
for SU-Tx channel access. By learning from both PU-
Tx’s activity and PU-Rx’s feedback information, we
developed a distributed SU power control framework
that approximates the optimal solution to Problem 10.
We showed that, when the mutual interference between
SU-Tx and PU-Rx is high, LBT-style channel access
performs better than overlaid communications, whereas
the opposite is true when the mutual interference be-
tween the primary and secondary systems is weak. We
compared several of our approximation algorithms both
in case of perfect PU queue length knowledge and in case
of queue length estimation. We showed that the proposed
access control algorithm EstQ, based on primary queue
estimation, can successfully stabilize the PU queue.
We furtherly explored PU cooperation through PU-alert
messages broadcasted whenever PU queue reaches a
pre-determined threshold. We established primary queue
stability by applying our proposed approximation algo-
rithms.
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[2] T. Yücek, and H. Arslan, “A survey of spectrum sensing algo-
rithms for cognitive radios”,IEEE Comm. surv. and tut., 2009.



10

[3] K. Eswaran, M. Gastpar, K. Ramchandran, “Bits through ARQs”,
IEEE Trans. on Information Theory, 2008.

[4] A. Ghasemi, E.S. Sousa, “Optimization of spectrum sensingfor
opportunistic spectrum access in cognitive radio networks”, Proc.
IEEE CCNC, 2007.

[5] Y. Pei, A. T. Hoang, and Y. -C. Liang, “Sensing-throughput trade-
offin cognitive radio networks: How frequently should spectrum
sensing be carried out?”,Proc. IEEE Int. Symp. PIMRC2007.

[6] J. Lunden,V. Koivunen,A. Huttunen and H.V. Poor, “Spectrum
sensing in cognitive radios based on multiple cyclic frequencies”,
invited paper CrownCom, July-August 2007.

[7] R. Zhang, “On active learning and supervised transmission of
spectrum sharing based cognitive radios by exploiting hidden
primary radio feedback,”accepted, IEEE Trans. on Comm., 2010.

[8] K.-B. Huang and R. Zhang, “Cooperative feedback for multi-
antenna cognitive radio networks,”IEEE VTC, 2010.

[9] Z. Quan,S. Cui and A.H. Sayed, “Optimal linear cooperation for
spectrum sensing in cognitive radio networks”,Selected Topics
in Signal Processing, Feb 2008.

[10] C.R.C.M. da Silva, B. Choi and K. Kim, “Distributed spectrum
sensing for cognitive radio systems”,ITA Workshop, Jan.-Feb.
2007.

[11] F. E. Lapiccirella; S. Huang; X. Liu; Z. Ding, “Feedback-based
access and power control for distributed multiuser cognitive
networks,” ITA. Workshop,2009.

[12] F. E. Lapiccirella, X. Liu and Z. Ding, “Distributed secondary
spectrum access based on primary user feedback”,ITA. Workshop
, Feb., 2010.

[13] F. E. Lapiccirella, Z. Ding and X. Liu, “Cognitive Spectrum
Access Control Based on Intrinsic Primary ARQ Information”,
IEEE ICC 2010.

[14] J.N. Tsitsiklis, “Decentralized detection,”Adv.in Statistical Signal
Processing,Vol. 2, 1993.

[15] F.F. Digham, M.S. Alouini and M.K. Simon, “On the energy
detection of unknown signals over fading channels,”IEEE ICC,
May 2003.

[16] N. Devroye, P. Mitran and V. Tarokh, “Achievable rates in
cognitive radio channels”,IEEE Trans. on Information Theory
Vol.52, NO. 5,May 2006.

[17] O. Simeone, Y. Bar-Ness, U. Spagnolini, “Stable throughput of
cognitive radios with and without relaying capability”IEEE trans.
on Communications, Vol. 55, NO. 12, Dec. 2007.

[18] N. Devroye, P. Mitran and V. Tarokh, “Cognitive multipleaccess
networks”, International Symposium on Information Theory
2005.

[19] S. Huang, X. Liu and Z. Ding, “Opportunistic spectrum access
in cognitive radio networks,”IEEE INFOCOM, 2008.

[20] S. Huang, X. Liu and Z. Ding, “Distributed Power Controlfor
Cognitive User Access based on Primary Link Control Feed-
back,” to appear at IEEE INFOCOM,2010.

[21] S. Huang, X. Liu and Z. Ding, “Optimization of transmission
strategies for opportunistic access in cognitive radio networks,”
UC Davis, April 2008.

[22] E. Jung and X. Liu “Opportunistic spectrum access in heteroge-
neous user environments,”IEEE DySPAN, 2008.

[23] Y. Chen; Q. Zhao; A. Swami, “Distributed spectrum sensing
and access in cognitive radio networks with energy constraint,”
emphIEEE Trans. Signal Processing, 57(2):783-797, Feb. 2009.

[24] S.M. Mishra, A. Sahai, R.W. Brodersen, “Cooperative sensing
among cognitive radios”,IEEE ICC, June 2006.

[25] Q. Zhao and J. Ye “Quickest Change Detection in MultipleOn-
Off Processes”submitted to IEEE Trans. on Signal Proc., 2010.

[26] Q. Zhao, L. Tong, A. Swami, and Y. Chen “Decentralized
Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc
Networks: A POMDP Framework”IEEE JSAC, 2007.

[27] Q. Zhao; B. Krishnamachari; K. Liu, “On myopic sensing for
multi-channel opportunistic access: structure, optimality, and
performance,”IEEE Trans Wireless Comm., 7(12):5431-5440,
Dec. 2008.

[28] S.H. Ahmad, M. Liu, T. Javidi, Q. Zhao and B. Krishnamachari,

“Optimality of Myopic Sensing in Multi-Channel Opportunistic
Access”IEEE Trans. on Inf. Theory,2009.

[29] A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits
on cognitive radio,”42th Allerton, 2004.

[30] R. Tandra and A. Sahai, “Fundamental limits on detection in
low SNR under noise uncertainty,”IEEE WirelessCom Symp. on
Emerging Networks, Technologies and Standards, Hawaii, June
2005.

[31] S. Huang; X. Liu; Z. Ding, “Short Paper: On Optimal Sensing
and Transmission Strategies for Dynamic Spectrum Access,”3rd
IEEE Intl. Symp. on New Frontiers in Dynamic Spectrum Access
Networks, 2008.

[32] S. Huang; X. Liu; Z. Ding, “Optimal Sensing-Transmission
Structure for Dynamic Spectrum Access,”IEEE INFOCOM,
April 2009.

[33] S. Srinivasa and S. Jafar, “Soft sensing and optimal power control
for cognitive radio,”IEEE GLOBECOM, Nov. 2007.

[34] 3GPP Technical Specification Group Radio Access Network
Physical layer procedures (FDD) (Release 5), 3rd Generation
Partnership Project Std. S25.214 V5.11.0, 2005.

[35] Air Interface for Fixed Broadband Wireless Access Systems, IEEE
Std. 802.16-2004, 2004.

[36] R. Zhang and Y. C. Liang, “Exploiting hidden power feedbacks in
cognitive radio networks,”3rd IEEE Intl. Symp. on New Frontiers
in Dynamic Spectrum Access Networks, 2008.

[37] M. Levorato, U. Mitra and M. Zorzi, “Cognitive Interference
Management in Retransmission-Based Wireless Networks”,Sub-
mitted to Trans. on Inf. Theory, 2010.

[38] M. Levorato, U. Mitra and M. Zorzi “Cooperation and Coordi-
nation in Cognitive Networks with Packet Retransmission”,ITW,
2009.

[39] D. P. Bertserkas, “Dynamic Programming and Optimal Control,”
Athena Scientific, 2007.

[40] “Federal communications commission: spectrum policy task
force report”, Federal Communications Commission ET Docket
02-135, Nov. 2002.

[41] “Federal communications commission: office of engineering
and technology releases TV white space phase II test report,”
http://www.fcc.gov/oet/projects/tvbanddevice/Welcome.html,
Nov. 2008.

[42] J. Mitola III, “Cognitive radio for flexible mobile multimedia
communications,” inSixth International Workshop on Mobile
Multimedia Communications, 1999.

[43] S. Haykin, “Cognitive radio: Brain-empowered wirelesscommu-
nications,” IEEE Journal on Selected Areas in Communications,
vol. 23, no. 2, pp. 201–220, 2005.


	Introduction
	Related works
	System model
	PU Stability
	SU Model

	Problem formulation
	SU Control Algorithms
	AcQu SU Network Access Control
	EstQ SU network control based on PU queue estimation
	Forced-Queue-Clearing (FQC) Algorithm
	PUaq SU network control

	Simulation results
	AcQu Access
	EstQ algorithm
	FQC algorithm
	PUaq algorithm
	Algorithm comparison, Ns=2

	Conclusions
	References

