Weightless and white space in the UK

William Webb, CTO Neul and CEO Weightless SIG

- That billions of devices would benefit from being connected
- But that this has failed to happen to date because there is no suitable standard and network
- White space spectrum provides a new opportunity - plentiful, free, harmonised world-wide, excellent propagation
- However, it is also problematic to use with pollution from TV transmitters and interference from other users
- Need a new bespoke technology optimised for M2M in white space that can become the global standard

M2M application requirements

 Great flexibility in the data rate provided depending on the application, range and environment

- Time division duplex (TDD) operation since there are no defined uplink and downlink bands within the white spaces
- Frequency hopping to minimise the impact of interference both received and caused
- Variable spreading factors from none to 256 enabling a 30dB difference in link budgets to increase range or accommodate low power devices
- A technology that enables low-cost base stations and devices including low power consumption within the devices
- Turned into a global, open, royalty-free standard through the Weightless SIG

- "Understanding Weightless" (available from Amazon, etc)
- Join the Weightless SIG to be part of the eco-system and get the full specification (www.weightless.org)

Understanding Weightless

Technology, Equipment, and Network Deployment for M2M Communications in White Space

- Consortium included regulator, broadcasters, PMSE industry, and white space community
- Network of 6 base stations used for tests and some early M2M trials plus two rural broadband links
- Detailed tests of interference into TV receivers and PMSE equipment
- No interference reported even with co-channel BTS on theatre roof
- Much evidence gathered on minimum coupling loss and similar
- It works in practice, no need to continue to question whether it works in theory

- Near completion key documents expected into ETSI shortly and legal documents by end 2012
- In overview the same as the US
 - Use of a database, similar power levels and emission limits, etc
- But somewhat more flexible
 - No set power output database provides highest power allowed in that location
 - No predetermined rules on eg avoidance of adjacent channel, database calculates what is possible for each device
 - Multiple device classes to allow for eg low-cost poor emission devices
 - Allowance for narrowband transmissions with equivalent power to broadband
 - Realistic calculation of TV coverage, not simple coverage contours
 - Possibility of access to 8 cleared channels in 600MHz for 5-10 years
- All adds up to very much greater availability of white space

- Some countries eg Finland moving ahead with trials and regulation
- But most European countries awaiting guidance from EC / CEPT
 - Some reasonable technical work in CEPT SE43 but rather conservative and "drafted by committee"
- Not much indication of a desire to promote innovation!
- Likely that most of Europe will be a follower rather than pioneer
- Unclear whether EC will force the pace
- It will be for the UK and US to blaze a trail (and reap the rewards) and others to copy

