Regulatory Lab Perspective on Iterative Regulatory Improvement

June 13, 2022
Michael Cotton
mcotton@ntia.gov

Boulder, Colorado • its.ntia.gov
Receiver Performance and IPC Testing

- **ITS Receiver Performance Testing**
 - Field measurements using actual system antennas and hardware in real-world propagation geometries to assess how in- and adjacent-band signals affect receiver performance
 - Laboratory measurements to assess receiver front end, end-user experience, and interference protection criteria (IPC) under controlled signal conditions
 - Simulation based on communications and radar models and assumptions are performed to validate and generalize results

- This work is mostly reactive today

- A long-term commitment to systematic testing and modeling receiver performance in interfering environments would help move feasibility studies move away from worst-case analysis. Testing should begin at an early stage of receiver development.
Antenna Characterization

- **ITS Antennas Characterization and Modeling**
 - Field measurements performed with mounted antennas at Table Mountain turntable
 - Anechoic chamber measurements performed at NIST facilities
 - Antenna models used in analyses are static and assume no environmental interaction
 - New planned R&D initiative to characterize active antennas

- A long-term commitment to systematically characterize advanced antennas in real-world spectrum sharing scenarios would help make antenna models more accurate for feasibility analyses

- More generally, modern active antennas are dynamic and algorithm based. Advanced active antennas should be evaluated and regulations adapted to proven mitigation techniques.
Propagation applied to Modern Use Cases

- ITS Propagation Modeling and Measurements
 - Propagation models are developed from first principles, simplifying assumptions, and field measurements
 - Field measurements are designed to fill-in gaps and address inaccuracies. This is a large measurement challenge.
 - Model standardization at ITU-R SG3
 - New mid-band propagation measurements will expand propagation measurements 4×

- Propagation models can be mistakenly used outside their intended scope and inherent set of assumptions resulting in inaccurate predictions

- A long-term commitment to systematic improvement and validation of propagation models applied to specific priority scenarios is needed to improve accuracies and reduce margins where practical
System Deployment Models

- ITS System Deployment Models
 - Obstacles to acquiring accurate and granular data on government and industry system deployments exist
 - Measurements are performed, but results are extremely limited in scope
 - Aggregate models and simulations based on population and random laydowns. Power levels are modeled at the authorized emission level and/or system emulation assumptions

- Data is limited in its applicability and results have limited validation

- A long-term commitment to model and validate network densities, improved data on government system operating ranges, and power levels is needed to enable risk-informed interference analyses
NTIA Spectrum Management R&D Program

- Quick Reaction technical support
- One-and-done regulatory process falls into Quick-Reaction style of work
- Planned R&D
 - Interference modeling and analysis
 - Propagation modeling, measurements, standardization, and software
 - Antenna characterization, measurements, and modeling
 - Spectrum quantification, characterization, and validation
- The NTIA Planned Spectrum Management R&D program could be expanded to support an iterative regulatory process, engage with stakeholders, negotiate priorities, and create a pipeline for new science, data, and technologies to be tested, better understood, and used by the regulator