

ITS: The Nation's Spectrum and Communications Lab

Realizing the full potential of telecommunications to drive a new era of innovation, development, and productivity

Introduction to Clutter Modeling Tutorial

June 10, 2024

William Kozma Jr, Max Hollingsworth, Anthony Romaniello {wkozma, mhollingsworth, aromaniello}@ntia.gov

Boulder, Colorado • its.ntia.gov

Outline

- Introduction to Clutter
- Software Tooling
- Environmental Data
- Modeling Overview
- Measurement Datasets

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Overview

- Present short overview on clutter, models, data, and software tools
- Familiarize the user with basic concepts
- Background information on tutorial activities

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Radio wave Propagation

- ► Radio waves travel, or *propagate*, through the environment from a transmitting source
- To prevent harmful interference, need to develop methods to predict signal strength at an arbitrary location for a given transmitter configuration
- Propagation losses are caused by:
 - Free space loss
 - Ionosphere
 - Terrain (diffraction theory)
 - Rain (hydrometeor scatter)
 - Atmospherics (troposcatter)
 - Clutter...

Line-of-sight

P.0452-01 Cite: Recommendation ITU-R P.452

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Institute for Telecommunication Sciences

Defining Clutter

What is clutter?

Clutter refers to objects, such as buildings or vegetation, which are on the surface of the Earth but not actually terrain.

- Recommendation ITU-R P.2108

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Institute for Telecommunication Sciences

6/10/2024

Impact of Clutter

- Clutter can have a significant impact on radio wave propagation
- Losses depend on
 - Structure makeup
 - Vegetation
 - Frequency
 - Elevation
- Sharing analysis results between new commercial cellular systems and incumbent government radars can be strongly influenced by clutter models used

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Institute for Telecommunication Sciences

ITS Propagation Library

- Software implementations are a requirement of modern model development
- Open source, cross-platform, and multilanguage support
 - Democratization of capabilities
 - Authoritative and trusted source
- Public development with beta releases
- ITS has defined an architectural structure, with a software maturity pipeline
- Will soon start publishing to PyPi and NuGet

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Environmental Data

- Multiple data sources used in clutter models
- Bare earth terrain data
 - Seamless coverage of contiguous U.S. at 1/3 arc-second (~10 meter)
- Land cover / land use
 - Approximately 30 meter resolution
 - Classifies pixels into categories of land use
- Building models
 - Provide 3D geometries of building structures
 - Vector-based data
- Lidar
 - 3D information on structural and vegetative environment
 - Can be post-processed into high resolution raster data (1 meter)

ITS: The Nation's Spectrum and Communications Lab Boulder, Colorado • its.ntia.gov

6/10/2024

Clutter Modeling

- Variety of ways to construct a clutter model
- Point-to-point (site-specific) methods
 - Use of location specific information (lidar, etc.)
 - Generally, computationally more expensive
- Point-to-area (site-general) methods
 - Statistical prediction results, suitable for Monte Carlo simulations
 - Use clutter categories or statistics
- Examples of clutter models
 - Okumura-Hata
 - Recommendation ITU-R P.2108
 - ITS EuCAP paper

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Okumura-Hata Model

- Set of curves for median loss
- Designed for a base station / mobile link
- Corrections for terrain effects
- Classifies environment into three environments: Urban, Suburban, Open (Rural)
- Empirical data from 1960 Tokyo and environs
- Used to predict basic transmission loss

Ref: Okumura, Y., et al, "Field Strength and Its Variability in VHF and UHF Land-Mobile Radio Services," Review of the Electrical Communication Laboratory, Vol 16, No 9-10, Sep-Oct 1968

Fig. 15—Prediction curve for basic median attenuation relative to free space in urban area over quasi-smooth terrain, referred to $h_{te}=200 \text{ m}, h_{re}=3 \text{ m}.$

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Recommendation ITU-R P.2108, §3.2

- Terrestrial statistical model
- Predicts clutter loss only
- Valid for both ends of a link (min distance)
- No clutter categories valid for urban and suburban environments
- Assumptions
 - Terminals are well below the clutter
 - Path geometry is approximately horizontal

Ref: Recommendation ITU-R P.2108, <u>https://www.itu.int/rec/R-</u> <u><i>REC-P.2108-1-202109-I/en</u>

Median clutter loss for terrestrial paths

P.2108-01

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

ITS EuCAP Model

- Models clutter as a slab on top of terrain
- Empirical data from Boulder, CO
 - Suburban neighborhood
 - Two different transmitter heights
- Based on 3D clutter distance, which incorporates elevation angle
- Optimized regression analysis to determine representative height of clutter
- Detailed investigation on following slides ...

Ref: Kozma, W, et al, "A Proposed Mid-band Statistical Clutter Propagation Model Utilizing Lidar Data," 17th European Conference on Antennas and Propagation (EuCAP), 2023, <u>https://its.ntia.gov/publications/3367.aspx</u>

ITS: The Nation's Spectrum and Communications Lab Boulder, Colorado • its.ntia.gov

ITS EuCAP Model: Formulation

Clutter loss modeled as,

$$L_c = L_{c,m} + Y_L(p)$$

► Median clutter loss, $L_{c,m}$, modeled as, $L_{c,m} = a \log_{10} r_c + b$

with

$$r_c = MIN\left(d_c, \frac{h_c}{\sin\theta}\right)$$

Location variability, Y_L(p), modeled as normal distribution, in dB

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

ITS EuCAP Model: Experimental Setup

- Two transmitter locations
 - Low TX: roof of Building 1 Wing 4
 - High TX: atop mesa behind Building 1
- ► Vertical difference between TXs is ≈140 m
- Receiver was mobile measurement van with roof mounted antenna
- ► Transmitted CW signal at 3.5 GHz
- Omni-direction antennas
- Clutter environment bounded by Broadway
 - East: clutter
 - West: free space

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

ITS EuCAP Model: Data Analysis

Path Distance vs Clutter Loss

Martin Acres Neighborhood; 3500 MHz; Low Points = 1024; High Points = 954

Martin Acres; 3500 MHz; Number of Points = 1978 4.6 4.4 4.2 (qg) SWSE (qg) 3.8

40

30

Clutter Loss (dB)

10

0

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Institute for Telecommunication Sciences

3.6

ITS EuCAP Model: Results

- Regression analysis based on 3D clutter distances results in singular point cloud
- ► Height of clutter $h_c \approx \mu_c + 2\sigma_c$
- Logarithmic fit for median clutter loss $L_{c,m} = 14.6 \log_{10} r_c - 12.289$
- Location variability

$$Y_L(p) = \mathcal{N}(\mu = 0, \sigma = 3.6)$$

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Institute for Telecommunication Sciences

ISART Clutter Tutorial Introduction

Measurement Datasets

- Standardized JSON format
- Basic transmission loss values, along with supporting properties
- Available on GitHub
 - Markdown descriptions of each dataset
 - Downloads via releases
 - Coming soon:

https://github.com/NTIA/mid-band-clutter

- Upcoming data releases
 - Summer 2024: 3.1-4.2 GHz
 - Fall 2024: 1.7 GHz
 - Spring 2025: 7-8 GHz

```
"metadata": {
            "SchemaVersion": 1,
            "DatasetVersion": 1,
            "MeasurementPointsCnt": 31927,
            "DatasetName": "Boulder Drexel NCAR 3175 20221216",
            "Location": "Boulder, CO",
            "EPSG": 4326.
            "date": (
              "Date": "2022-12-16T00:00:00",
11
              "StartTime": "2022-12-16T23:14:38.7402292",
12
              "StopTime": "2022-12-16T23:44:38.740149Z"
13
14
        "RelativeNoiseFloorDb": 184,
15
            "Waveform": "CW",
16
            "notes": [
17
              "Dataset part of a larger three transmitter experiment",
18
              "Data acquired simultaneously with datasets Boulder Drexel Wing
19
              "RX was Green Van"
       · · · · ] .
21
        ..... "TxLat": .39.97957614,
22
            "TxLon": -105.2730006,
23
            "f mhz": 3175.0,
24
            "h tx meter": 19.9,
25
            "h rx meter": 2.82,
26
            "h tx ref": "AGL",
27
            "h rx ref": "AGL",
28
            "Elev t tx meter": 1846.4,
            "rxBoundingBox":
30
              "north": .39.985437,
31
              "south": 39.970543,
32
              "east": -105.248088,
33
              "west": -105.260125
34
         .... "meteorology": (
```


ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

Institute for Telecommunication Sciences

Questions?

ITS: The Nation's Spectrum and Communications Lab

Boulder, Colorado • its.ntia.gov

ISART Clutter Tutorial Introduction