

Multi-Band, Multi-Location Spectrum Occupancy Measurements

Presentation to:

8thANNUAL INTERNATIONAL SYMPOSIUM ON ADVANCED RADIO TECHNOLOGIES (ISART)

The Future of Multimedia Communications

7 - 9 March 2006

War and Market M

Mark McHenry
Dan McCloskey
Shared Spectrum Company
mmchenry@sharedspectrum.com
8133 Leesburg Pike, Suite 220
Vienna, VA 22182
703-761-2818 x 103

In collaboration with Gary Minden, University of Kansas and Dennis Roberson, Illinois Institute of Technology Project supported by NSF

SSC-ISART 1

© Shared Spectrum Company, 2004

Outline

- Introduction
 - Support development of dynamic spectrum sharing radio technology
- Measurement locations
- Measurement equipment
- Sample spectrum occupancy data
- Summary data
- Next steps
- Conclusions

Introduction

- Shared Spectrum Company conducted a series of spectrum occupancy measurements
 - Initially supported by DARPA, later by NSF
 - Started 2002, latest measurements in Nov 2005
- Goals
 - Prove that there are bands with low occupancy
 - Estimate "whitespace"
 - Determine characteristics of spectrum holes (time and frequency)
- Approach
 - Fixed locations, most with excellent line-of-sight
 - Long-term (hours-days) data collections at most locations
 - Optimized for best sensitivity (vs. revisit rate)
 - Spectrum analyzer with high dynamic range, "band-by-band optimized" preselector

Spectrum Measurement Locations

Location	Dates	Purpose
Inside Shared Spectrum Company offices	2/4/2004 2/9/2004 10/28/2004	Test equipment
Outside in Shared Spectrum parking lot	4/6/2004	Urban location
Riverbend Park in Northern Virginia	4/7/2004	Rural location
Tysons Corner shopping center parking lot in Vienna, Virginia	4/9/2004	Urban location
National Science Foundation (NSF) building roof in Arlington, Virginia	4/16/2004	Elevated, urban location
New York City	8/5/2004 8/30/2004	Elevated, urban location
National Radio Astronomy Observatory, Green Bank, West Virginia	10/4/2004	Very quiet, rural location
Shared Spectrum office roof in Vienna, VA	12/15/2004- 6/9/2005	Elevated, urban location
IIT Building Roof in Chicago, IL	11/2005	Elevated, urban location

Note 1: Reports available on SSC website (except for Chicago report, which will be on website soon)

Measurement Location Photos (1 of 2)

Measurement Locations (2 of 2)

SSC-ISART 6

Measurement Equipment

New York City: Excellent line of sight to urban area

Faraday cage used to reduce undesired collection equipment RF noise

Pre-Selector Provides High Dynamic Range

- Antennas
 - Discone 30-1000 MHz
 - LPA: 1000-3000 MHz
- Filtering and gain used to reject strong signals
 - Computer controlled for each band
- NF ~ 12 dB

High Utilization (Public Safety Band)

Mid-Level Utilization — TX Aux Band

Low Utilization Band

Aviation Band

UHF TV Band

Maritime Mobile and Amateur Band

Cell Phone Band

Unlicensed Band

Satellite Band

Signals At Radio Quiet Zone

Low Utilization in a Rural Environment

Average Occupancy In Each Band

Significant Occupancy Differences Between Similar Locations

~ 10 X higher occupancy difference

Needed Follow-on Work

- Establish a general and comprehensive estimate of spectrum occupancy
 - 10 urban locations
 - 10 suburban locations
 - 3 international urban locations
- Determine the size of spectrum holes
 - Simultaneous fixed and nomadic measurements
 - Synchronized spectrum analyzer trace triggering
- Determine the cause of low spectrum occupancy
 - Research the FCC/NTIA regulations and assignment databases
 - Who are the "owners"? Why they are not using the bands?
- Obtain long-term trends of spectrum usage and background noise levels
 - Collect data over a continuous, two year period
 - Determine seasonality variations
 - Long-term peak-to average occupancy ratios
- Determine the operating characteristics of the legacy users in bands with low occupancy
 - Enable dynamic spectrum sharing systems to be better designed
 - Signal parameters (transmission gaps statistics, transmitter mobility, number of transmitters, the signal bandwidths, and other parameters)

Amplitude Histogram of 2.4 GHz Band

Amplitude Histogram of Public Safety Band

Conclusions

- Measurements show there is significant spectrum "whitespace"
 - 13% in NYC peak period
 - Many bands have minimal use
 - A low agility, contiguous waveform DSS radio provides high utility
- Large occupancy differences with location
- Significant band-to-band variations in "similar" locations
 - NYC vs Chicago
- Summarized needed follow-on work