Radio Propagation Measurements During a Building Collapse: Applications for First Responders

Christopher L. Holloway, Galen Koepke, Dennis Camell, Kate A. Remley, and Dylan F. Williams

NIST Electromagnetics Division ISART, March 2, 2005

Objectives:

- Better understanding of the complex radio environment faced by first responders
- Straightforward, cost effective, reliable, methods to improve radio communications and geolocation for first responders in difficult signal environments

Sponsors: NIST Office of Law Enforcement Standards (OLES) for the DOJ, Community Oriented Police Services (COPS) program, and Dept. of Homeland Security (DHS)

<u>Focus:</u> Techniques and data immediately useful to first responders and system designers!

Implosion Experiments

Concept: Use selected planned building demolitions as laboratories

Veteran's Stadium Philadelphia March 2004

14-story apartment building
New Orleans
January 2004

Old Convention Center Washington, D.C. December 2004

Implosion Experiments

Radios tuned near public safety frequencies are secured throughout large buildings scheduled for implosion

Ruggedized transmitters

Ventilation duct Washington, DC

Elevator shaft New Orleans

Several experiments are carried out during each implosion

Propagation Measurements

Signals are monitored at fixed and mobile receive sites

Mobile receiver

Before

After

Signal propagation in standing, collapsed building scenarios

Fischer Public Housing Project, New Orleans (Algiers)

Back side of the building – prepared for implosion

Penthouse site:
4 Pelican boxes
containing
transmitters,
batteries,
cooling system,
padding and
control

Elevator door site

Hole jackhammered into the foundation

Pre-implosion Propagation Studies

The morning of the implosion

Building Implosion

Post-Implosion Experiments

Pre-Implosion Data From Instrument Cart

Blast Data: NIST Van (Penthouse)

Blast Data: NIST Van (Elevator door)

Blast Data: NIST Van (Basement)

Philadelphia's Veteran's Stadium

Transmitters are secured to the wall and protected from falling debris by a board

Final preparations on the playing field

The weather didn't always cooperate

Three receive sites and four transmitter sites

Mobile cart: antenna, generator, UPS, laptop & spectrum analyzer

First perimeter scan is carried out

Post blast conductive measurements

Debris radiator tests were carried out under "adverse" conditions ...

Debris Radiator Experiment

Can we use conduit or cables to help couple energy out of a collapsed building?

Preliminary Results Show:

- 1) Cable and directional antenna comparable for RX when cable protected by pipe
- 2) Attenuation due to debris 60-70 dB for antenna, 70 dB or more for cable
- 3) Additional benefit by attaching transmit antenna to debris
- 4) Detection of weaker signals would be of benefit!

Propagation measurements

Debris Radiator experiments

An Array of Communication Projects for First Responders

Deliverables:

- Public-domain data on propagation in large public buildings for public safety and commercial system designers
- Improved communications in weak-signal environments
- Correlate field strength with qualitative ratings used by public safety organizations
- Guidelines for efficient search strategies
- Potential for improved public-safety radio system design

Red: before implosion

Blue and green: after implosion

Goal: Maximum utility for first responders!

Acknowledgements

- Office of Law Enforcement Standards (OLES)
- Community Oriented Policing Services (COPS), a program through the Department of Justice, Department of Homeland Security
- Members of the Technical Staff of 818.02
- Dykon Explosive Demolition
- D.H. Griffin Demolition Contractors
- Brandenburg Industrial Service Company
- Demolition Dynamics

Dylan Williams, Kate Remley, Galen Koepke, Chris Holloway, Dennis Camell

Boulder, CO Simulation of Sarin WMD Attack

Colorado Springs, Simulation of Hotel Emergency

Boulder County Wildfire, Firefighter Communications

Phoenix Firefighter Communications Study

Other Structures

Discovery Channel

