

Clutter Measurement Research at 3500 MHz

Chriss Hammerschmidt & Bob Johnk

Outline

- Motivation (Post-CSMAC Analysis)
- Measurement Data at 3500 MHz
- Component Characterization & Sensitivity Analysis
- Clutter Modeling
- Measurement System
- Post Processing Information

Post-CSMAC Airborne Analysis

CSMAC Analysis

ITS Analysis w/antenna corrections, deltah ≠ 0, clutter corrections

Transmission Gain

Transmitting Antenna on Green Mountain

Transmitting Antenna on building 1 rooftop

Transmitting Antenna on Green Mountain NGT

11.74 12.85 13.96 15.07 16.17

9.52

8.41

1.75

3.97

5.08

Clutter Loss (dB)

17.28 18.39 More

Transmitting antenna on building 1 rooftop

Antenna Pattern Measurements

- Antenna Pattern Measurements
 - Measured omni antenna on receiving van at various elevation angles.

NIS

• Measured elevation and azimuthal patterns for transmitting antennas.

Screening Experiments

Screening experiments are designed under the assumption that real-world processes are driven by only a few relevant factors.

GOAL: determine the sensitivity of six variables

on the criterion measure (e.g. path loss or

"clutter") [Kirk, 2013]:

- Elevation Angle
- Frequency
- Local Traffic
- Clutter
- Power
- Speed

and all two-way interactions via the mean square error measure :

	Elev. Angle – Hi	Frequency — Hi	Traffic – Hi	Clutter – Hi	Power – Hi	Speed – Hi
Elev. Angle – Lo	+	+	+	+	+	_
Frequency – Lo	+	+	_	+	+	_
Traffic – Lo	-	-	+	-	_	_
Clutter – Lo	+	+	_	+	+	+
Power – Lo	+	+	+		+	_
Speed – Lo	_	_	+	+	_	_

Clutter Modeling based on LiDar data

Additional Measurement System Capabilities: Power Spectral Analysis

Power Spectral Analysis

- Baseband I-Q data acquisition with precise frequency references on transmitter & receiver
- De-trend received signal to isolate the fast-fading portion of the waveform
- Perform power spectral analysis in complex I-Q series
- The result of this is a baseband Doppler Spectrum
- Doppler shift: Fd = (carrier freq) x (speed) x $cos(\theta)$

Doppler Shift

• Fd = (carrier freq/) x (speed)/c x $cos(\theta)$

Observations

- The Doppler frequency is related to the direction of a radio wave relative to the direction of travel of the mobile measurement system
- The "radio wave" could either be directly from the transmitter or a scattered component
- Insight into the scattering environment
- Powerful enhancement!

NIST

At point "A"-unobstructed

At Point "B" Reflections from hill

At Point "C"-Residential Area

Joint Time Power Spectrum Plot

Conclusions

- CW measurements combined with precise frequency references yields high performance measurement system
- Data can be processed at various levels to study path loss, power spectrum, and statistical analysis
- Practical system with high dynamic range & interference immunity
- •Thank you 🙂
- •Questions???

