

#### For the 2015 ISART Spectrum Sharing Workshop

Frank Sanders, Chief, ITS E Division 13 May 2015

> fsanders@its.bldrdoc.gov 303-497-7600



# Spectrum Sharing Studies: Overall General Approach

- This is the process flow for spectrum sharing studies Best Practices
- ITS performs all of these elements for sharing studies
- IPC are critical part of spectrumsharing EMC analyses

May 2015





#### **IPC Measurement & Simulation**

- IPC used by regulatory bodies to set interference power limits for spectrum sharing
- IPC are often evaluated through field measurements
- However, field measurements are:
  - Difficult to execute because of system location / availability
  - Prone to error because of lack of access to performance metrics / subsystems
  - Can only be performed on existing systems
- Simulation addresses shortfalls of field measurement
- Measurements & simulations complement each other



# 3550-3650 MHz (Radar-LTE) Band Sharing



- Most significant incumbents are Navy air traffic control radars
- Operate in littoral waters adjacent to 55% of US population
- Must be protected from new entrants (e.g., LTE systems) in 3550-3650 MHz band



- New entrants will be broadband terrestrial communication systems (e.g., LTE systems)
- Biggest markets in U.S. coastal areas
- Must be protected from radar interference
- QUESTION: What's the longest technical pole in this spectrum-sharing tent??



## Fast Track Report Radar 1 Emission Spectrum

- Emission spectrum needs to be measured to -100 dBc or better
- Theoretical predictions only good to about -40 dBc
- Measurement Best Practices defined in NTIA TR-05-420



#### Fast Track Radar 1 IF Response Curve

- Receiver IF response curve, measured
- Needed for FDR analyses (see EMC studies Best Practices flow diagram)
- Measured with procedure described in NTIA TR-05-420





#### Fast Track Report Radar 3 Spectrum

 This radar operates just below the proposed bandsharing lower edge





#### Radar 1 Antenna Pattern

 This radar antenna scans 360 degrees every 4 seconds





#### Radar 1 Pulse Sequence

 About 19-20 pulses occur in main beam once every 4 seconds



9



#### Radar 1 Pulse Envelope: On-Tuned

 Envelope of an ontuned radar pulse at 3600 MHz





### Radar 1 Pulse Envelope: Off-Tuned

- Envelope of an offtuned radar pulse at 3600 MHz.
- Classic example of the rabbit ears effect (see NTIA Technical Report on this topic)
- This phenomenon could complicate dynamic bandsensing schemes





#### Example Radar 3 Pulse Sequence

 40 seconds' worth of pulses from Radar 3.





# Example Radar 3 Single Pulse: Partly On-Tuned

- Single Radar 3 pulse
- Starts on-tuned and then moves offtuned relative to the detection system's frequency
- An interesting example of the rabbit ears effect





# Example Radar 3 Single Pulse: Completely Off-Tuned

- Single Radar 3 pulse completely offtuned from the detection system
- Another interesting example of the rabbit ears effect





#### **Example LTE Emission Spectrum**

- This is one of many LTE transmitters measured by ITS
- Emission spectrum needs to be measured to -100 dBc or better
- Theoretical predictions only good to about -40 dBc
- Measurement Best Practices based on NTIA TR-05-420



### Interference Injection into Navy Radars

- ITS capability for injecting interference into receivers, including radar receivers, is state-of-the-art
- For radars, target generation and interference generation and injection are individually tailored to each type of radar





## LTE Interference into Navy Radars, Measured and Simulated Results



- LTE, GN & CW interference injected into Navy radar receiver along with controlled, desired targets
- IPC threshold measured at I/N = -6 dB



Navy radar signal processing simulation block diagram with:

- Matched filter, Integrator, 1-st detector
- CFAR, 2-nd detector

The last two blocks compute and save probability of detection.



### LTE Interference into Navy Radars, Measured and Simulated

Measured/Simulated/Theoretical comparison for GN interferer



Measured: Blue

Simulated: Red and Green

Theoretical: Black

Simulated closer to Theoretical than Measured



## Radar Interference into LTE Receivers, Measured and Simulated Results





- 26 types of radar pulsed interference injected into LTE(TDD) and LTE(FDD) uplinks and downlinks at multiple private-sector lab facilities
- LTE performance in the presence of radar interference found to be highly variable, ranging from highly robust to somewhat vulnerable, depending on interfering radar modulations and power levels
- Measured results checked against theory, and some simulation work undertaken

### 3550-3650 MHz Sharing: Conclusions

- Propagation studies at 3.5 GHz (needed to complete the spectrum EMC Best Practices flow process in the first slide and determine delta-f/delta-d curves) are still ongoing between government and private sector.
- -6 dB I/N IPC for Navy radar receivers is likely to be determining factor for overall spectrum sharing in 3.5 GHz band.
- I.e., radar receivers are likely going to be the long pole in the spectrum sharing tent at 3.5 GHz.
- ITS/OSM has published, and will publish, all work done in this area, for full access by other agencies and the private sector, and transparency in the technical measurements-andsimulation process



## 3550-3650 MHz Sharing: Publications

- Sanders, F. H., R. L. Sole, B. L. Bedford, D. Franc and T. Pawlowitz, "Effects of RF Interference on Radar Receivers", NTIA Technical Report TR-06-444, U.S. Dept. of Commerce, Feb. 2006. http://www.its.bldrdoc.gov/publications/2481.aspx
- Sanders, G. A., J. E. Carroll, F. H. Sanders, R. L. Sole and R. J. Achatz, "Emission Spectrum Measurements of a 3.5 GHz LTE Hotspot," NTIA Technical Report TR-15-512, U.S. Dept. of Commerce, Feb. 2015. http://www.its.bldrdoc.gov/publications/2790.aspx
- Sanders, F. H., J. E. Carroll, G. A. Sanders and L. S. Cohen, "Measurements of Selected Naval Radar Emissions for Electromagnetic Compatibility Analyses," NTIA Technical Report TR-15-510, U.S. Dept. of Commerce, Oct. 2014. http://www.its.bldrdoc.gov/publications/2781.aspx
- Sanders, F. H., J. E. Carroll, G. A. Sanders, R. L. Sole, R. J. Achatz and L. S. Cohen, "EMC Measurements for Spectrum Sharing Between LTE Signals and Radar Receivers", NTIA Technical Report TR-14-507, U.S. Dept. of Commerce, Jul. 2014. <a href="http://www.its.bldrdoc.gov/publications/2760.aspx">http://www.its.bldrdoc.gov/publications/2760.aspx</a>
- Sanders, G. A., J. E. Carroll, F. H. Sanders and R. L. Sole, "Effects of Radar Interference on LTE (FDD) eNodeB and UE Receiver Performance in the 3.5 GHz Band", NTIA Technical Report TR-14-506, U.S. Dept. of Commerce, Jul. 2014. <a href="http://www.its.bldrdoc.gov/publications/2759.aspx">http://www.its.bldrdoc.gov/publications/2759.aspx</a>
- Sanders, F. H., J. E. Carroll, G. A. Sanders and R. L. Sole, "Effects of Radar Interference on LTE Base Station Receiver Performance," NTIA Technical Report TR-14-499, U.S. Dept. of Commerce, Dec. 2013. <a href="http://www.its.bldrdoc.gov/publications/2742.aspx">http://www.its.bldrdoc.gov/publications/2742.aspx</a>