Enabling Technologies for Spectrum Operations

NEBU JOHN MATHAI
Director, Strategic Initiatives & Advanced Engineering

ISART 2016
SPECTRUM OPERATIONS

- Instrumented nation
 - Informed spectrum management
- Instrumented coasts and borders
 - Autonomous anomaly detection
 - Distributed radio algorithms
- Instrumented battlefields
 - Enhanced RF situational awareness
 - ISR sensor-actuator networks
DENSE RF SENSOR NETWORKS

- High-resolution Low-latency RF Situational Awareness
- Compress the sense-act loop
- Implications
 - Economics
 - Sensor-Actuator Node Costs
 - Network Charges
 - Performance
 - Security
ENABLING TECHNOLOGY

Powerful Edge Sensors

Secure Pipe

Powerful Backend Fuser

• High-performance computing
 • At both ends of the stack
COGNITIVE SDR-ON-CHIP

RF/analog/digital front end
+
High-bandwidth compute engines

- Keep IQ on chip
- On-chip: Analyze, Demod, De-FEC
- Send reports, not samples
BENEFITS

• Performance
 • Real-time, Low-latency, High-bandwidth
 • Low-power (2 W wide-band spectrum sensing)
 • Highly-flexible software-defined radio on-chip
 • Very low algorithm implementation overhead
 • Autonomy: No external host computer needed

• Economics:
 • Control node cost
 • Control network charges
 • IQ stays within the radio IC
 • On-chip computed intelligence goes to the cloud
SECURE SENSOR NETWORK

• High-performance *implies* responsibility
 • Want situ-awareness *not* another attack vector
 • Secure tasking
 • Secure reporting

• Backend fusion
 • RF propagation-aware
 • Supercomputer-enabled