Radio Spectrum Analytics

Radio Spectrum Analytics

Making sense from and understanding what is going on in the radio spectrum

Unauthorized spectrum uses: malicious or accidental

Unused spectrum licensed or assigned that may be under-utilized

Spectrum Measurement of usage efficiency, user types, propagation models, allocation efficiency and other enablers for optimization

Challenge boils down to

Consuming large amounts of unlabeled radio signals

Labeling and digesting important events and actions into **concise intelligible information** for operators, enforcement, policy makers, and researchers

Generalized Spectrum Analytic Process

Signal Detection

Which spectrum lies vacant, which spectrum is occupied

Signal Identification

What kinds of signals are occupying which bits of spectrum

Signal Localization

Where are the emitters spatially that are occupying our spectrum

Signal Measurement and Metrics

How fully utilized are existing radio access networks

What does the propagation environment look like in the real world

Other specialized tasks

Changing Requirements in Spectrum Analytics

Monitoring More Critical: As dynamic assignment and security concerns

Software Defined Modems: Dynamic Waveform Behaviors

Flexible Radio Frontends: Wide Many-Band Capabilities

New and Shared Spectrum: Opening up as allowed by regulators

Increasing standards complexity: expensive DSP implementations for

specialized algorithms, optimization on low SWaP hardware, etc.

Result: Difficulty relying on highly constrained expert systems!

Potential Solution: Radio analytic systems which **learn to find, identify, and summarize** important events rather than relying on manual methods or specialized expert systems.

Traditional Methods

Signal Detection

Energy based methods: Power Spectrum Density, Spectrogram, Wavelet methods, ...

Specialized Methods: Signal Specific Detectors

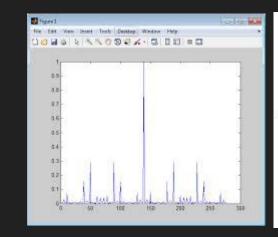
Matched filters, correlations, expert-feature based detectors

Wide band dwelling vs scanning systems

Manual inspection of interferers

Automated methods based on energy

Traditional Methods



Signal Identification

Expert modulation-feature based methods

Moment based methods (known properties of modulations)

Wavelet based signatures (known shapes of modulation spectrum occupancy)

Cyclic features of the modulation (known peaks in the autocorrelation)

Expert specific-signal based methods

Preamble correlation / expert synchronizers (LTE PSS, SSS / Zadoff Chu)

WiMAX / WiFi -- Delay conjugate multiplies / Schmidl & Cox type methods

Many others ...

All relatively labor intensive to implement, lack generality to numerous other types of signals

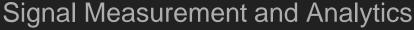
Traditional Methods

Signal Localization Methods

Mobile-subscriber reported location information

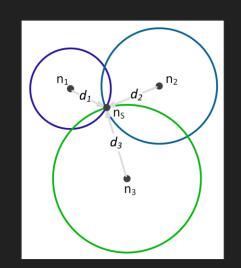
Tower/cell/sector localization information

Spatial observations of power, propagation delay, doppler offsets



Base-station provided coverage and CQI statistics Highly specialized signal-specific demodulation, diagnostic client devices, etc

Resource Block allocation percent, traffic types, UEs associated, ...



System Deployment & Analysis Models

Range of System Deployment Methods

Spectrum Analyser Recordings → Offline MATLAB manual analysis

Deployed sensors:

Remote minimal - occasional remote IQ collection & maybe PSD plots (fixed/mobile)

Remote processing - detection and feature based identification, compute requirements

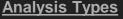
Cloud RAN style Radio backhaul, streaming IQ, bandwidth requirements - no compute Remote storage - significant storage

requirements

Realization of algorithms in Dense Neural

Networks in high level language all map easily to concurrent, energy efficient dense matrix algebra, i.e.

Keras/TensorFlow/Cuda



Offline IQ file analysis (all manual)
Online detection / energy plotting
Online recognition / identification -metadata backhaul

Online detection, identification, localization - metadata backhaul

Richer learning systems, online feature extraction, adaptation, learning, summarization

Lots of these techniques can be improved ...

Machine learning holds potential for many of these tasks

Let's explore this by:

Reviewing recent ML advances, causes, capabilities

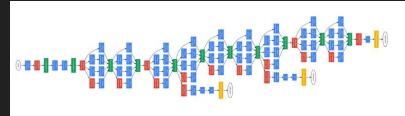
Identifying areas for enhancement of existing tasks

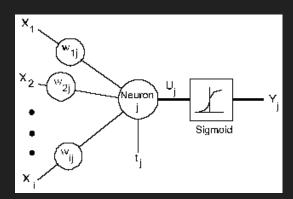
Demonstrating efficacy and improvement in this area

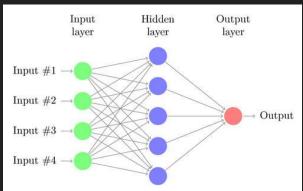
Maturing and vetting realistic benchmarks for these tasks

Brief (NN) Machine Learning Background

- Deep neural networks: resurgence in recent time and state of the art on many tasks
 - Network of layers of neurons with inputs, weight vectors, activation functions (sigmoid, ReLU, linear, etc), outputs
 - Trained based on backpropagation of loss gradient with respect to network weights (Wij -= delta*dL/dWij)
 - Loss can be categorical cross-entropy, mean squared error regression, or many other tasks --
 - Scales to very large tasks, datasets, representations
 - Somewhat "model free": General DNN can learn many tasks and representation without expert knowledge
 - Architecture does affect performance -- but can also be







Selected Recent advances in Machine Learning

Rapidly growing area principally focused in Computer Vision, Natural Language, Voice Recognition, Question Answering, Information Retrieval

Way too many advances to list here, but some key advances in the deep neural network area in recent years include

Gradient Descent Methods: Async-SGD, Momentum: RMSProp, Adam

Regularization Methods: Dropout, Dropconnect, Noise Injection

Computational Methods: Concurrent Architectures (GPUs and high level languages)

Framework Methods: Auto-differentiation, Modularization of Components

Dataset Availability: Large well-characterized tasks and benchmark datasets

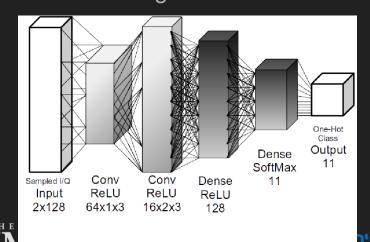
End-to-end learning: Objective based whole system learning

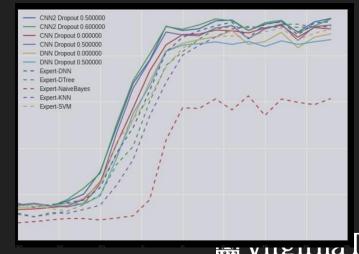
Attention Models: Learning parametric transforms to canonicalize examples

Adversarial Models: Training with learning adversarial components

ML Driven Signal Identification

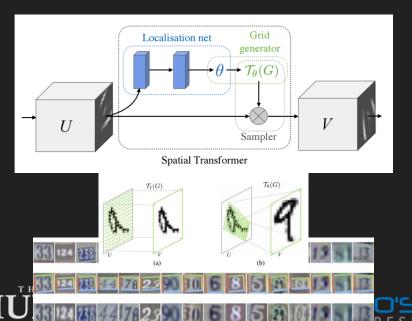
Focus on data driven methods, feature learning, minimization of expert knowledge which limits generality -- Supervised learning of deep conv-net Initial results show sensitivity improvements, less data needed, ability to generalize, significantly lower computational complexity, no expert knowledge or feature design used in classifier design.

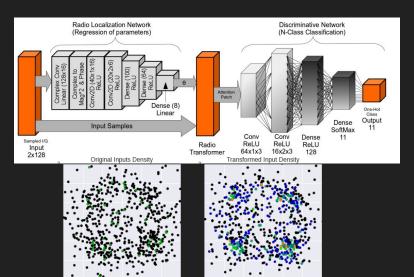




ML Driven Signal Reception

Learning attention models, highly successful in image canonicalization (for example in street view). Also some success so far in canonicalization of RF Ultimately learn to synchronize and discern high layer effects on carriers





ML Driven Anomaly Det. & Summarization

Sequence learning for signal behavior learning beyond modulation ID

Learning end-to-end representation

Protocol and temporal behavior recognition

Anomalous PHY and MAC layer event detection

RNN Based sequence models have been wildly successful in natural language

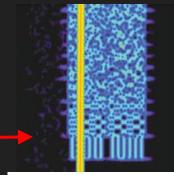
embedding and translation

Image to N.L. Sequence Tasks

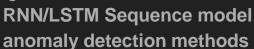
'a man with a uniform standing

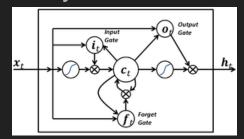
next to a stop sign'

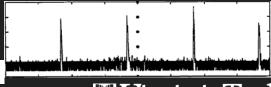
'a group of people on a skateboard'



'A powerful tone is on top of the OFDM carrier'

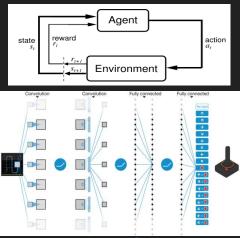






ML/RL Driven Methods

- Focus on learning of active control systems: Google Deepmind has really been pioneering this field
- Atari and AlphaGo accomplishments
- Google datacenter power savings 15-40%
 https://deepmind.com/blog



DeepQ Network Methods (DQN)

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') \middle| s, a \right]$$

Policy-Gradient Methods

$$\nabla_{\theta} \leftarrow \frac{1}{N} \sum_{j=1}^{N} \sum_{t=1}^{H_{j}} \left(\nabla_{\theta} \log \pi_{\theta}(s_{j,t}, a_{j,t}) \right) \sum_{k=t+1}^{H_{j}} R(s_{j,k})$$

Asynchronous DQN/PG Methods: (Asynchronous Actor Advantage Critic [A3C]) -- current state of the art.

ML/RL Driven Signal Detection & Control

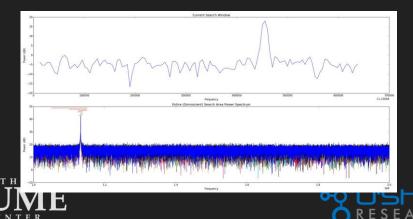
Formulate radio sensing and network control problems as active environmental simulations which can iterate very quickly.

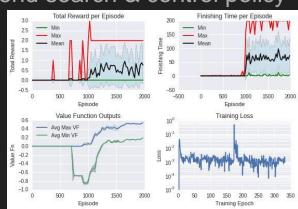
Define objectives: detection accuracy, detection time, false detection rate

Learn to find and localize tones within a wide-band scanning radio scenario

Put RL directly in charge of radio control & detection, iterate learning policy

Leverage A3C & RL to develop effective end-to-end search & control policy





ML Driven Signal Localization

Learning regression tasks for localization

Significant potential for ML driven localization methods

Channel sounding methods in dense urban/indoor environments

Regression tasks of location estimates from channel effects

Classification of legitimate emitter locations

Richer models that adapt to environment vs simplistic closed form analytic

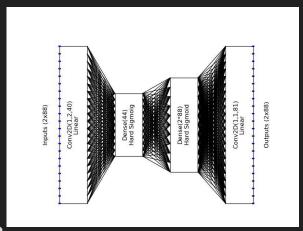
line of sight eqns

Numerous possibilities in this area yet to be explored

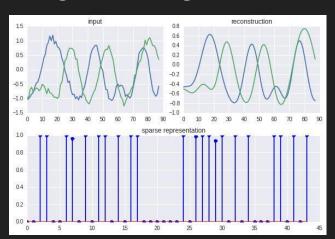
Will see more work in this area in coming years

ML Driven Radio Signal Compression

Domain aware learned compression algorithms hold potential to significantly improve Cloud RAN capacity for Carriers and for Sensors Unsupervised methods for sparse representation learning of radio signals!



- Binary Representation
 - Cpx 32 bits
 - 2*128*64 → 44 bits
 - 16384/44 = 372x
- Dynamic Range @20dB
 - Cpx 4 bits
 - $2*88*4 \rightarrow 44$ bits
 - 704/44 = 16x



Potential Early ML Impacts in Spectrum Analytics

Ability to generalize, learn good features, make sense of LARGE and unlabeled but structured radio datasets autonomously!

Reduce backhaul and storage requirements by rapidly consuming, efficiently representing and summarizing spectrum streams

Reduce expert knowledge and implementation cost & difficulty in generating low SWaP, high performance sensing algorithms through learning from data Improve portability across heterogeneous infrastructure using efficient tensor

ML frameworks. Reduce impact of special, optimized, platform code.

<u>Learn features and control systems</u> in highly complex systems of systems that <u>work better than hand crafted features, logic, and heuristics!</u>

Improve Autonomy and allow humans to interact with higher level information!

Thanks

Questions? Research collaboration Interest? oshea@vt.edu

More Information:

https://radioml.com

http://hume.vt.edu

http://oshearesearch.com

http://kerlym.com

