

Propagation Measurement Workshop

July 7/14/21/28, 2016 1:00 p.m. to 2:00 p.m. (MST)

Institute for Telecommunication Sciences

Eric Nelson

Bob Johnk

Chriss Hammerschmidt

Paul McKenna

Context

- Spectrum sharing compatibility analyses demand more precise propagation models
- Propagation measurements are needed to refine existing models or develop new ones
- Recent rulemakings have spurred more measurements by government and private sector groups
- Confidence in other groups' measurements would dramatically increase model developers' access to useful data sets
- Data collection and processing techniques need to be well-understood, well-documented, and harmonized. If not, there is a risk of measurement/modeling silos developing

Workshop Motivation

Increase propagation model developers' access to trusted measurement data by creating a forum to facilitate measurement system validation and information sharing

- Increase measurement data quality by sharing best practices
- Increase trust in shared data through system validation and demonstrated repeatability
- Improve understanding of test systems and test conditions through standardization (for each system type) and documentation of measurement systems and methods
- Promote information sharing by standardizing measurement data formats and defining and standardizing required metadata

Workshop Outline

July 7, 2016 – Setting the Stage

Presenters: Eric Nelson / Chriss Hammerschmidt

 July 14, 2016 – Design of a Measurement System – ITS Vector Signal Analyzer (VSA)-based System

Presenter: Bob Johnk

• July 21, 2016 – Propagation Models and Overview of the Irregular Terrain Model

Presenter: Paul McKenna

 July 28, 2016 – Uncertainties and Measurement Guidelines

Presenter/Moderator: Chriss Hammerschmidt

July 7, 2016 – Setting the Stage

- Meeting Overview
- Background
- ITS/NIST CAC Research Collaboration
- ITS Propagation Measurements
- Possible System Testing
- Preparation for Future Meetings
- Contacts
- References
- Acronyms

VSA

July 14, 2016 – Design of a Measurement System

- ITS VSA-based Measurement System Overview
- Data Processing Method
- System Verification
 Measurements

July 21, 2016 – Propagation Models and ITM Overview

- Free-space path loss
- Empirical
- Deterministic
- Physical/Statistical Models
- Irregular Terrain Model (ITM)
 - What are the benefits of using ITM
 - What are valid parameters?
 - How does it calculate basic transmission loss?
 - How does it compare to other propagation models?
 - What role does it play in estimating clutter losses?

July 28, 2016 – Uncertainties & Guidelines

- Antennas directional vs. omnidirectional
- System link budget
- Terrain database
- Geolocation
- Discuss measurement guidelines
 - Test planning/documentation
 - System validation
- Next steps

Background

- Major propagation measurement campaign 1960s-1970s — seminal results published as ITS reports
- Current need: Propagation measurements in the 3.5 GHz and AWS-3 bands to study aggregate interference into government systems
 - ITS began a new round of propagation studies in 2013
 - Investigation with NIST Statistical and Engineering Division (SED) in 2014

CSMAC Studies Prior to Advanced Wireless Service (AWS)-3 Rulemaking

- Commerce Spectrum Management Advisory Committee (CSMAC)
 Working Groups interference analysis
 - CSMAC Working Group analyses used conservative assumptions
 - No terrain (for air-to-ground analysis)
 - No antenna patterns (except in the case of aeronautical mobile telemetry systems)
 - No clutter* losses
 - Which led to large estimated protection distances (100s of km)
 - Further analysis needed to refine protection distances
- Industry participants sought to acquire real world information
 - Verify or refine CSMAC Analysis
 - Airborne measurements provide basis to understand interference potential
 - Developed test plan and conducted airborne measurements
 - Received input from Department of Defense (DoD) on test plan

^{*}Clutter is defined as man-made structures or foliage in the radio propagation path

Analysis of Comsearch* Measured Airborne Data

- Measurements to characterize aggregate UE uplink signal levels at several altitudes and flight paths
- Objective: Assess interference potential to federal aeronautical systems
- Measured uplink emissions in
 - 777-787 MHz (LTE)
 - 824-849 MHz (Cellular)
 - 1710-1755 MHz (AWS-1)
 - 1850-1910 MHz (PCS)

* Comsearch Government Solutions, LLC.

Additional Continuous-Wave (CW) Measurement Setup

CW Transmitter:

Frequency: 1887.5 MHz

Power: 40 dBm (10 Watts)

Antenna Gain: 1.9 dBi

Antenna height: 1.8 m (6') AGL

Antenna type: Omni-directional

Known transmitting location

• CW Receiver:

- Inside aircraft
- Mean system noise floor: approx. -115 dBm
- Antenna type: Omni-directional

Clutter and the Radio Propagation Path

Analysis Needs

- Power (measured/calculated) at input to antenna
- Air-to-ground propagation model
 - ITU-R, P.528 Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF, and SHF bands
 - IF-77 ITS/FAA 1977 Propagation model (see references)
- Antenna Patterns for transmitting and receiving antenna

- Clutter loss model
 - ITU-R, P.833 Attenuation in vegetation

Clutter Extraction Process

- Experimental design
- Measure antenna gains/cable losses/system losses
- Collect measured data
- Process data to extract path loss/gain
 - Correct for antenna gain/cable losses/system losses
 - Calculate path loss/gain
- Run the ITM model to obtain basic transmission loss/gain
 - ITM is run in point-to-point mode for each transmitting/receiver pair
- Subtract measured data from ITM model to obtain clutter/terrain loss
 - Need a proper implementation of ITM and a good terrain database

Propagation Measurements near Boulder Labs

Clutter Loss Results

ITS/NIST System Verification/Uncertainty Analysis

- System improvements
 - Component loss measurements using Vector Network Analyzer (VNA)
 - Replaced lossy cables with lower-loss cables
 - Shortened cable lengths
 - Antenna pattern gain measurements
 - Transmitting antenna
 - Antenna on van
 - Center of van vs. Antenna on van mast
- Measurements
 - 32 screening measurements to study environmental variable dependencies
 - Power, speed, clutter, elevation angle, traffic
 - Table Mountain in Boulder (clutter-free environment)
 - Martin Acres near laboratory
 - Power Spectral Analysis
 - Clutter model based on LiDar data

- Measurements (cont')
 - Downtown Denver
 - Three transmit locations
 - Two frequencies
 - Three regions (urban, suburban, residential)
 - Each region measured at least two times (at one frequency three times)
 - San Diego
 - Two transmit locations
 - Two frequencies
 - Three regions (urban, suburban, residential)
 - Each region measured at least two times
 - Static measurements
- Variability/uncertainty analysis
- Remaining issues
 - GPS positioning errors
 - Propagation model Improvements
 - Uncertainty/variability new Propagation Working Group with NIST

ITS/NIST CAC Research Collaboration

Objective: Use modern metrology tools, such as the NIST Microwave Uncertainty Framework (MUF), to place modern propagation (channel) measurements and models on a sound metrological foundation

- Compare measurements for four channel sounders
 - Phase I: Intercomparison of channel sounders in a conducted environment
 - Phase II: Intercomparison of channel sounders on an open-area test site
 (OATS) controlled external environment
 - Phase III: Mixed-path propagation study with one antenna on the OATS and one antenna off the OATS
 - Phase IV: Field testing at Table Mountain facility
- Improve models based on measurements
- Improve computational processing algorithms

ITS/NIST CAC Research Collaboration Conducted Measurements

ITS/NIST CAC Research Collaboration OATS Facility

ITS/NIST CAC Research Collaboration– Table Mountain Field Test Site

Turntable

ITS Clutter Loss Measurement Project

San Diego, C.	A
---------------	---

Denver, CO

Washington, D.C.

Los Angeles, CA

Location	Fr	equency Bands (MHz)	Transmitting Locations	
San Diego, CA	1) 2)	1755-1780 3500	1) 2)	Point Loma Navy Sub Base
Denver, CO & Boulder, CO	1) 2)	1755-1780 3500	1) 2) 3) 4) 5)	Hackberry Hill Diamond Hill DMNS† Green Mountain Commerce Labs
Washington, DC	1) 2)	1755-1780 3500 (static)	1) 2) 3)	Alexandria St. Eliz. Campus Ashburn
Los Angeles, CA	1)	1755-1780	1) 2) 3)	Angels Pt Griffith Park* Point Mugu*

[†] Denver Museum of Nature and Science

^{*}Future Measurement Campaigns

San Diego, CA

Point Loma

Mean clutter losses: ~15 dB in downtown urban area

ITS

Denver, CO

Hackberry Hill

lower downtown urban core suburban

-110

-110

-120

-130

-140

-160

-170

-180

-100

1000

2000

3000

4000

5000

Elapsed Time (sec)

Free-Space

ITM Model × Measured

Mean clutter losses: ~15 dB in downtown urban core

Los Angeles, CA

Angels Point

Clutter Only Loss Probability Distribution -Angels Point-Elysian Park-Route1-Ru

Mean clutter losses: ~43 dB in downtown urban area

Washington, DC

St. Elizabeth Campus

Mean clutter losses: ~30 dB in suburban area

Observations

- Washington, DC higher propagation loss than expected buildings closely spaced, narrow streets, lots of vegetation
- Interior of Downtown Los Angeles higher propagation loss than expected (surprising because of wide streets)
- Propagation into region beyond downtown Denver highly shielded by downtown buildings – site-specific, end-point clutter corrections vs. whole path clutter corrections
- Different urban areas showing differing amounts of clutter loss. Time for ray-tracing models?
- Resolution and accuracy of terrain databases very important

ITS Lessons Learned

- Choose antenna carefully highly directional antennas can lead to problems in the processed data
- Document system carefully and don't change it on the fly
- Manufacturer's specifications are not always accurate
- Site surveys are very important get the lay of the land
- Always bring duplicate equipment
- Process the data while on site hard to go back
- Measure the system noise floor
- Elevation Angle and Azimuth with respect to receiving area important
- Pictures are helpful to document measurement area
- Studies need to be done on reciprocity of transmitter in clutter vs. receiver in clutter

Possible System Test Setup

Bench Top Testing

Fading Simulator Settings

- CW signal
 - 0 dB path loss
 - 70 dB path loss
- Rayleigh fading signal
 - 0 dB path loss
 - 70 dB path loss
 - 20 mph, 50 mph
- Rician fading signal
 - 0 dB path loss
 - 70 dB path loss
 - 20 mph, 50 mph
 - 10 dB power ratio
 - Doppler shift

Bench-top System Verification Testing

Post-processed Measurement Data

CW Signal

 0 dB simulated path loss

Rayleigh fading signal

- 0 dB simulated path loss
- 20 mph

Rician fading signal

- 0 dB path loss
- 20 mph
- 10 dB power ratio
- No Doppler shift

Proposed Reference Field Test Sites

Table Mountain (uncluttered environment)

Martin Acres (cluttered environment)

Vision

- System verification testing
 - Bench-testing at ITS
 - Reference faded waveforms (for participants with access to vector signal generators that lack a fading option)
 - Intercomparison testing at previously measured locations
 - Field testing at reference test sites in Boulder, CO
- Shared understanding of system architectures, measurement techniques, post-processing algorithms, and data analysis
- Lessons learned
- Measurement guidelines
- Open data repository of community accepted measurement data

Preparation for Future Meetings

- Document the details of your measurement system (Due date: July 14, 2016)
 - System schematic with link budget
 - Data post-processing algorithm
 - Describe system verification testing
 - Antenna measurements
 - Receiver system
 - Post-processing software
- Develop a list of previous or currently planned propagation measurements (Due date: July 21, 2016)
 - e.g. if you are going to San Diego, would you like a set of our measured coordinates so that we can compare data?
- Develop a list of lessons learned (Due data: July 28, 2016)
 - This will be shared with the group via e-mail

Contacts:

- Eric Nelson: enelson@its.bldrdoc.gov
- Chriss Hammerschmidt: chammerschmidt@its.bldrdoc.gov
- Bob Johnk: <u>bjohnk@its.bldrdoc.gov</u>
- Paul McKenna: <u>mckenna@its.bldrdoc.gov</u>
- Lee Pucker: <u>Lee.Pucker@WirelessInnovation.org</u>

Reference Documents

- P.L. McQuate, J.M. Harman, A.P. Barsis, <u>Tabulations of Propagation Data over Irregular</u> <u>Terrain in the 230- to 9200- MHz Frequency Range Part 1: Gunbarrel Hill Receiver Site</u>, NTIA Technical Report ERL 65-ITS 58, March 1968.
- P.L. McQuate, J.M. Harman, M.E. Johnson, A.P. Barsis, <u>Tabulations of Propagation Data</u>
 <u>Over Irregular Terrain in the 230-to 9200-MHz Frequency Range Part 2: Fritz Peak Receiver Site</u>, NTIA Technical Report ERL 65-ITS 58-2, December 1968.
- M.E. McClanahan, A.P. Barsis, <u>Tabulations of Propagation Data Over Irregular Terrain in the</u> <u>230- to 9200-MHz Frequency Range Part 3: North Table Mountain-Golden</u>, NTIA Technical Report ERL 65-ITS 58-3, July 1970.
- P.L. McQuate, J.M. Harman, M.E. McClanahan, <u>Tabulations of Propagation Data over</u> <u>Irregular Terrrain in the 230-TO 9200-MHz Frequency Range Part 4: Receiver Site in Grove</u> <u>of Trees</u>, NTIA Technical Report OT/TRER 19, July 1971.

Reference Documents

- Commerce Spectrum Management Advisory Committee, Working Group 5 Final Report 1755-1850 MHz Airborne Operations, September 16, 2013.
- G.D. Gierhart, M.E. Johnson, <u>The IF-77 Electromagnetic Wave Propagation Model</u>, NTIA Sponsor Report FAA-ES-83/3, September 1983.
- K. J. Keeping, J. C. Sureau, 'Scale Model Pattern Measurements of Aircraft L-Band Beacon Antennas,' Lincoln Laboratory, Project Report ATC-47, FAA-RD-75-23, April, 1975.
- A.G. Longley, P.L. Rice, <u>Prediction of Tropospheric Radio Transmission Loss Over Irregular Terrain: A Computer Method 1968</u>, NTIA Technical Report ERL 79-ITS 67, July 1968.

Acronym Definitions

- ACTS Air Combat Training System
- AGL Above Ground Level
- AWS Advanced Wireless Services
- CAC Center for Advanced Communications
- CSMAC Commerce Spectrum Management Advisory Committee
- CW Continuous-Wave
- DoD Department of Defense
- FAA Federal Aviation Administration
- ITM Irregular Terrain Model
- ITS Institute for Telecommunication Sciences
- ITU-R International Telecommunications Union Radiocommunication Sector
- LTE Long Term Evolution

Acronym Definitions

- MUF Measurement Uncertainty Framework
- NIST National Institute of Standards and Technology
- OATS Open Area Test Site
- PCS Personal Communications Service
- SA Spectrum Analyzer
- SED Statistical Engineering Division
- SHF Super High Frequency
- VHF Very High Frequency
- UHF Ultra-High Frequency
- VNA Vector Network Analyzer
- VSA Vector Signal Analyzer