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Rationale for Measurement System  

● We want a system to provide accurate mobile channel 
measurements  

● Capture high-fidelity data that permits flexible post-
processing and statistical analysis 

● Measure selected propagation effects: 
Path Loss 
Fast-fading  
Examine the local scattering environment  
Determine the amount of signal power that arrives directly 

from the transmitter compared to the amount of power 
that comes from scattering 
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Development of a Suitable System 

●Wanted to benchmark an ITS broadband 
propagation measurement system using a CW 
measurement system 

●Used a portable spectrum analyzer but wanted to 
do better 

●Sound card/receiver…time base issues 

●Spectrum analyzer…data latency issues, envelope 
only 
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Vector Signal Analyzer 

● Baseband complex I-Q data acquisition 

● Laboratory grade, self-calibrating 

● Continuous I-Q data stream without gaps 

● The VSA we used did not permit real-time monitoring of 
signals 

● The VSA we used had no GPS 

● We added a portable spectrum analyzer with built-in GPS  
for signal monitoring and to GPS discipline the VSA data 
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The ITS Mobile-Channel Measurement System 
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Mobile Channel Measurement System 

● Simple fixed-to-mobile transmitter/receiver architecture 

● Single-frequency (CW) transmitter at a fixed location 

● Receiver located on a mobile platform that moves around 
on a prescribed route  

● Implemented by ITS engineers for both outdoor mobile and 
indoor building environments 
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Benchtop Fading Simulation System 

● Tool for simulating mobile measurements 

● Simulates fast-fading and shadowing effects  

● Simulates Rayleigh, Rician, and other channel profiles 

● Adjustable velocity, Doppler, shadowing parameters 

● We use this system to validate data acquisition parameters 
and signal processing algorithms 

● Deeper understanding of our measurement system 
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Benchtop Implementation with Fading Simulator 
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Benchtop Receiver Deployment 
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Outdoor Mobile Channel Measurements-1 

8/30/2016 www.its.bldrdoc.gov 10 

Fixed Transmitter Receiving Van 



Institute for Telecommunication Sciences 

8/30/2016 www.its.bldrdoc.gov 11 

Transmitting System at Fixed Field Location on ITS 
RSMS Vehicle 
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Scanning-Probe Measurement System 

● Our measurement system is designed as a scanned probe 

● This is our receiving antenna moving through the radio 
channel on the van 

● Ideally we like to do this at a constant velocity—not always 
possible due to road conditions 

● Movement enables us to resolve scatterers 

● Movement is needed to estimate a local mean signal level—
mandatory for path loss estimation 

● Static measurements can be done but difficult to interpret 
with CW single-frequency source—tuning effects due to 
both static and moving scatterers 
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Scanning-probe measurement system 
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Complex Scattering 
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Nature of the Received Signal  

● We transmit a pure CW signal into the environment 

● The signal travels from the transmitter to the receiver over a 
number of paths: 
Direct path (if available) 

Diffracted paths due to blockage of terrain, vegetation, and 
structures 

Scattering from nearby buildings, cars, etc. 

The components constructively and destructively interfere as a 
function of the motion of the receiver 

● This results in a modulated received signal—no longer CW! 
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What does the received signal look like at 3.5 GHz? 

● Benchtop testing with a synthesizer with fading simulator 

 

1) Examine a pure CW signal with no fading 

2) Fading simulator  

Rayleigh fading (non line-of-sight conditions, a rich 
distribution of local scatterers) 

At 3.5 GHz, l = 8.6 cm 
Assume a speed of 20 mph (8.9 m/s or 104 l/s) 
Maximum Doppler spread=208 Hz 
VSA captures 3,840 samples/sec 
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CW Signal Envelope and I-Q  

● Single-tone sinusoidal CW signal, no channel variations, 1s record 
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Turn on the Fading Simulator 

● Select Rayleigh fading, set speed at 20 mph 
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A Closer Look 
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I-Q with Rayleigh Fading 
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Some Observations 

● Envelope and I-Q variations are caused by motion through 
the channel, channel path variations, and nearby moving 
objects (cars, people, etc.) 

● How do we extract useful information from this data? 

● One critical thing to do is to compute a local mean  
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Local Mean 

● The local mean is needed to compute path loss and to de-trend data for 
fast-fading and power spectral analysis 

● We compute a local mean by applying a moving average window to our 
received I-Q voltage envelope 

● The averaging window width sets the scanning interval (20l-70l) 

● This averaging window width also sets  minimum spatial resolution for 
path loss computation—this is a key point! 
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Windowed Averaging 0.5s=52l  interval 
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In Decibels—note the variations are roughly 1 dB after 
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Impact of Averaging Window Width (Rayleigh Fading) 
raw data (blue) and averaged data (red) 
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Let’s Look at Some Field Data 
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West Martin Acres 
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Raw Received Signal 
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Next Processing Steps 

● We want to isolate the fast-fading  

● Suppress the effects of path loss and shadowing 

● We divide (in linear voltage) the received I-Q time series by 
the smoothed envelope 

● This results in a normalized time series that emphasizes the 
fast fading and suppresses other effects 

● Let’s see what happens… 
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De-Trended Martin Acres Received Envelope 
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Examine the Fast-Fading envelope distributions for 
the NLOS and LOS intervals of the time series 
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Power Spectral Analysis 

● Requires precise frequency references on both transmitter 
and receiver  

● De-trend received complex baseband I-Q signal to isolate 
the fast-fading  

● Perform power spectral analysis in complex I-Q time series 
series to yield a baseband Doppler Spectrum 

● We used a periodogram and Welch’s method  

● Requires a stationary time series—can be challenging in 
field measurements! 
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Doppler Shift 

● Doppler shift: 𝑓𝑑 =
𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝐹𝑟𝑒𝑞∗𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

3.0∗108 ∗

cos (𝜃)  

● The Doppler frequency is related to the 
direction of a radio wave relative to the 
direction of travel of the mobile measurement 
system 

● The “radio wave” could either be directly from 
the transmitter or a scattered component 

● Insight into the scattering environment 

● Powerful enhancement! 
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At point “A”-unobstructed 

From the transmitter 

At Point “C”-Residential Area 

Power Spectra on a Drive Test 
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How Do We Geolocate Data in Mobile Outdoor 
Measurements? 

● Operate in the “zero-span” mode, sample detection, RBW=3 
kHz, VBW=3 kHz—this mimics the VSA 

● Sweep time=500 ms…50% efficiency in terms of data 
acquisition—limited by data acquisition latency and sweep 
“flyback” 

● Observe fast fading envelope during a sweep interval 

● GPS active 

● Assigns a GPS time stamp and coordinates to each sweep 

● The 500 ms sweep time matches the smoothing window 
width of the VSA 
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Benefits 

● Time and location reference 

● Back up path loss measurement and cross check 

● Simple path loss calculation for each 500 ms trace 

● Now some details… 
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Sample Spectrum Analyzer Trace 
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What do we do with the traces? 

● Convert to the linear domain (w) and average the entire 
trace 

● Average received power in a trace 

● Compare this SA averaged data  to VSA windowed-averaged 
data at the GPS time stamp locations 

● Data acquisition initiation times for the VSA and spectrum 
analyzer differ by 1-10 seconds 

● We shift the VSA data to harmonize the sample times 
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So how do we get Path loss? 

For mobile measurements we calculate basic path loss (dB): 

BPL(dB)=Pt-Pwindowed VSA +(Gt – Lcables+coupler)+(Gr – Lcables+splitter) 

 

  

 

 

● We measure the transmit power with a power meter 

● Characterize cables, coupler, and splitter using a precision network 
analyzer and store resulting S-parameter data 

● Use either our own measured antenna patterns or manufacturers’ 
data to compute transmit and receive antenna gains  
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Path Loss Results 
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Conclusions 

● We have developed a powerful and versatile propagation 
measurement tool 

● We are collaborating with the University of Colorado and 
NIST CTL to improve geolocation accuracy for our outdoor 
mobile measurements as well as in-building measurements 

● Working on joint ITS/NIST CTL project to intercompare 
channel Sounders and assess measurement uncertainties 

● Goal: develop best measurement practices 

● Thanks! 
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Questions? 
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Contact info for questions 

Bob Johnk bjohnk@its.bldrdoc.gov  

Phone: (303) 497-3737 

ITS Website: http://its.bldrdoc.gov 

 

Look forward to discussions and answering questions  
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