mmWave for Ultra-Dense Networks (UDNs)

David Griffith
Wireless Networks Division, CTL, NIST

Panel: 5G/mmWave Capacity Improvements: A Systems Perspective
Moderator: Chris Anderson, USNA/ITS
August 17, 2017
"What are UDNs, anyway?"*

Three features of UDNs:
1. Large number of network access points (APs) (obviously...)
 a) More APs than devices (?)
 b) Offload macro traffic
 c) Extensive frequency reuse
2. Dense and heavily interconnected cross-tier network structure
3. Fast network access & flexible inter- and intra-tier switching (i.e., rapid, seamless handovers)

Two Equations, Two Metrics

• Hwang et al.¹

 ▪ Capacity density: \(\delta_R \left[\frac{\text{bits/s}}{\text{km}^2} \right] = \delta_{\text{cell}} \left[\frac{\text{cells}}{\text{km}^2} \right] \times C \left[\frac{\text{bits/s/Hz}}{\text{cell}} \right] \times B \left[\text{Hz} \right] \)

 ▪ Increase cell density (UDN), bandwidth (spectrum migration), or spectral efficiency per cell (diminishing returns)

• Lopez-Perez et al.²

 ▪ Total network capacity: \(C \left[\text{bits/s} \right] = \sum_{m=1}^{M} \sum_{u=1}^{U_m} B_{m,u} \left[\text{Hz} \right] \log_2 \left(1 + \gamma_{m,u} \right) \)

 ▪ Densification makes \(C \) increase linearly w.r.t. \(M \)

 ▪ Densification reduces \(U_m \) but increases \(B_{m,u} \) (fewer devices per cell)

 ▪ Densification increases \(\gamma_{m,u} \) (results in slower growth in \(C \))

Some Interference Management Techniques for sub-GHz UDNs

<table>
<thead>
<tr>
<th>Technique</th>
<th>Network</th>
<th>Both</th>
<th>UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Time Slot Selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive power/attenuation control, carrier selection, beamforming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamforming codebook restriction (Sungsoo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiered spectrum assignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive frequency hopping by Small Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive-assisted spectrum aware usage by small cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear interference cancellation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Station Placement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier Aggregation, CoMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive Fractional Frequency Reuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eICIC, e.g., Almost-Blank Subframes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UDNs Are a Natural Fit for mmWave

Benefits for UDNs:
• Short propagation distances decrease the interference “horizon”
• Short wavelengths allow massive MIMO or phased arrays to support high gain along LoS/dominant path, collection of signal energy from reflective paths, and adaptive nulling of nearby interferers
• No multi-tier interference

Some challenges:
• Tracking beams/devices/paths
• Energy conservation requirements
• Management requirements
• Effect of mmWave backhaul