

ISART Panel, August 2017 Millimeter-wave channel measurement and modeling at USC

Andreas F. Molisch,

Wireless Devices and Systems (WiDeS) Group University of Southern California (USC)

About the WiDeS group

- "Bridge the chasms"
 - Communication Theory vs. Antenna/Propagation
 - Theory/Simulation vs. Experiment
 - Academic vs. industrial/standardization
- Main research topics:
 - Propagation channel measurement and modeling
 - Wireless system design
 - Multi-antenna systems
 - Ultrawideband localization and communication
 - Wireless Video
 - Interaction between channels and systems
 - Can't design a good system without understanding the channel
 - Can't measure/model the channel in a meaningful way without understanding the systems operating over it

Components of channel research

Building and calibrating channel sounders

Mm-wave sounder

USC Viterbi

School of Engineering

- MIMO sounder for device-to-device and vehicle-to-vehicle
- Ultrawideband (0 10 GHz) distributed MIMO sounder
- 2-15 GHz SISO sounder (Extendable to higher frequencies)
- Wideband (500 MHz) massive MIMO sounder @ 2.5 and 5 GHz
- Calibration in own anechoic chamber
- Careful planning of measurement campaigns is critical

• Designing extraction algorithms

- Use of high-resolution parameter extraction (10x more accurate)
 - Rimax for single-snapshot
 - Extended Kalman Filters for tracking
- Clustering algorithms as basis for models

Creating channel models

- Based on double-directional or GSCM approaches
- Constant innovation needed to incorporate new effects
- Close interaction with standardization

ALL COMPONENTS INTERACT

- Joint work with Samsung
- Electronically switched beam
- Enables real-time, dynamic measurements with directional resolution
- Enough phase stability for high-resolution evaluation
- 160 dB dynamic range

Hardware Specifications	
Center Frequency	27.85 GHz
Instantaneous Bandwidth	400 MHz (max 1 GHz)
Antenna array size	8 by 2 (for both TX and RX)
Horizontal beam steering	-45 to 45 degree
Horizontal 3dB beam width	12 degrees
Vertical beam steering	-30 to 30 degree
Vertical 3dB beam width	22 degrees
Horizontal/Vertical steering steps	5 degrees
Beam switching speed	2µs
TX EIRP	57 dBm
RX noise figure	$\leq 5 \text{ dB}$
ADC/AWG resolution	10/15-bit
Data streaming speed	700MBps
Sounding Waveform Specifications	
Waveform duration	$2 \ \mu s$
Repetition per beam pair	10
Number of tones	801
Tone spacing	500 kHz
PAPR	0.4 dB
Total sweep time ¹	14.44 ms (min 1.44ms)
[Bas et al. 2017]	

Ming Hsieh

Department of Electrical Engineering

• Exploit possibilities of dynamic sounder;

• 29 million impulse responses in a few hours

Measurement of stationarity region

Pathloss/shadowing

USC Viterbi

School of Engineering

Collinearity of PDP

Mm-wave channels in urban environments

Ming Hsieh

Department of Electrical Engineering

- Measurements
 - Selection bias: when only measurement locations are used where we can get signal
 - Leads to underestimation of pathloss coefficient
 - Compensate by model for *truncated* pathloss

 Cause for spreading of pathloss different streets have different slopes

Thanks to: Aki Karttunen, Rui Wang, Umit Bas, Katsu Haneda, Fredrik Tufvesson, Carl Gustafsson, Sooyoung Hur, Charlie Zhang

Contact information

Andreas F. Molisch FNAI, FIEEE, FAAAS, FIET, MAASc. Solomon Golomb – Andrew and ErnaViterbi Chair Professor Head, Wireless Devices and Systems (WiDeS) Group, University of Southern California (USC)

Email: molisch@usc.edu Website: wides.usc.edu

