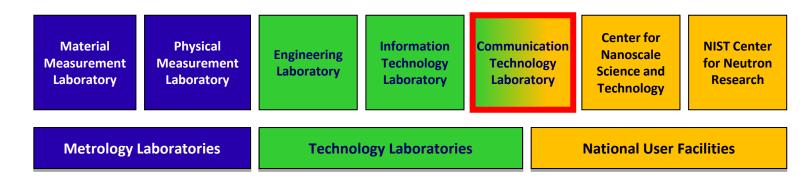


Kate A. Remley,
NIST Metrology for Wireless Systems Group
August 17, 2017

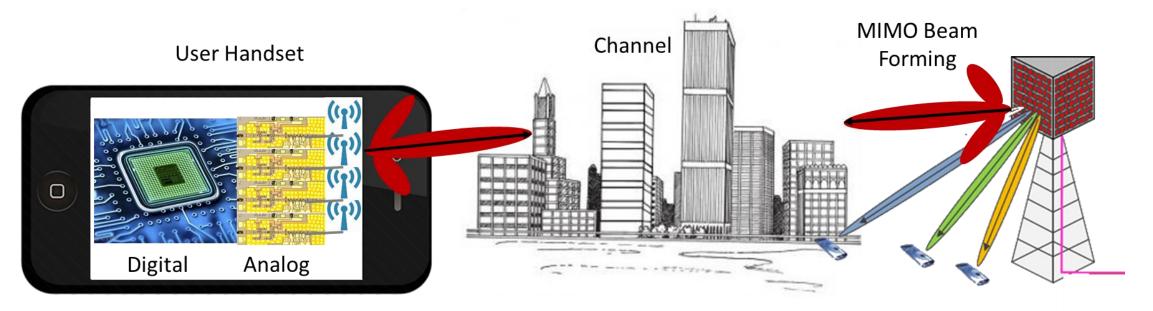


NIST and Advanced Communications

A STATE OF THE SHORT STATE OF THE STATE OF T

NIST Mission: To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life

- Communications Technology Laboratory: March 2014
- Support development and deployment of advanced communications


Targeted research: test and measurement of new communication technologies

- Calibrations and traceability for wireless instrumentation
- Validation of test-protocols, models, and simulation tools
- New test methods for spectrum sharing, 5G and other national priorities

5G and Beyond: So Many Systems, So Much To Measure

mmWave Transistors,
Amplifiers,
New materials

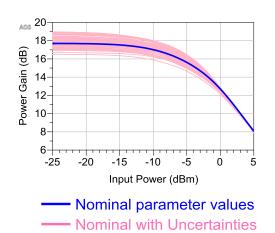
Complex mmWave Modulated Signals, Nonideal DACs, ADCs, Frequency Converters

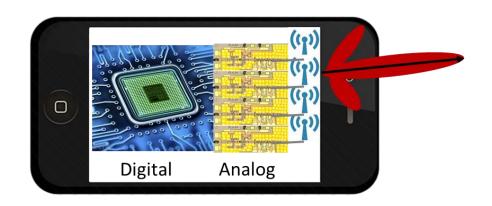
A STATE STATE STATE OF THE SECOND

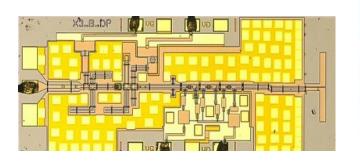
Channel Measurement and Modeling,
Standards development

Over-the-Air Test for Integrated Devices, Directional, Multiple Antennas and Massive MIMO

Measurement challenges for an industry in its infancy






Device-Level Measurements

1 Street Street Street Street Street

Errors reduce device efficiency, first-pass design success

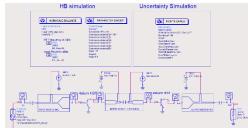
Plated on-wafer calibration structures reduce coupling

Power sweep at 94 GHz

Transistor and Nonlinear-Device Measurements

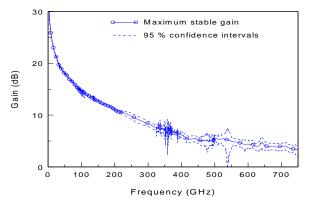
- mmWave large-signal transistor and amplifier measurements and models
- Nonlinearity, imbalance, quantization noise of DACs, ADCs
- On-wafer calibrations and coupling

NIST Device Measurements for mmWave Applications

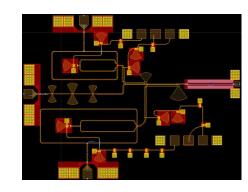

Small-Signal Device Calibrations and Measurements to 1 THz

• mmWave Large-Signal Measurements and

A STATE OF THE PROPERTY OF THE PARTY OF THE


Models with Uncertainties

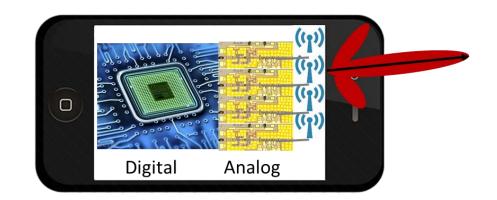
Network Analyzer

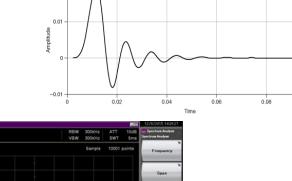


Harmonic Balance linked to Uncertainty simulations

Electro-Optic-Sampling-Based mmWave Large-Signal

750 GHz transistor measurements with uncertainties (DARPA THz Electronics Program)



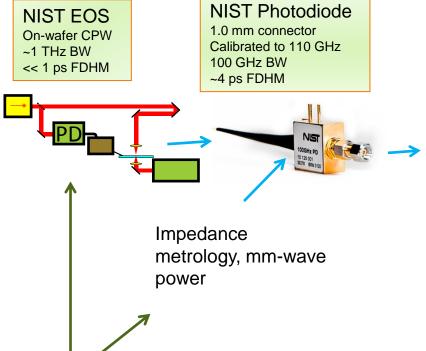

Load-pull and electro-optic sampling circuitry

Modulated-Signal Characterization

Errors increase EVM of generated and received signals

Millimeter-Wave Signal Characterization

- Effects of nonideal frequency converters and signal converters (DACs and ADCs)
- Source and transmitter characterization (with nonlinearities)
- Impedance, power, noise
- Uncertainty and demodulation errors

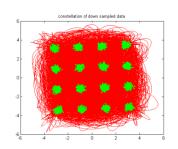


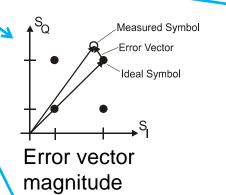
Millimeter-Wave Signal Characterization

The NIST Traceability Path for Modulated Signals

Meter, second

Contract State White Chicago


Calibrated
mmWave Source
Upconvert and predistort
2 GHz modulation BW



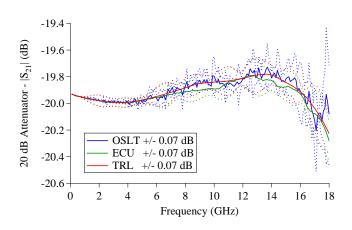
NIST
Oscilloscope
1.0 mm connector
Calibrated to 110 GHz

Uncertainties established to this point

Vector signal analyzers

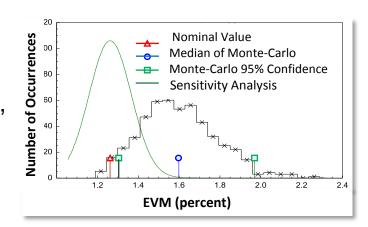
Antennas and channels

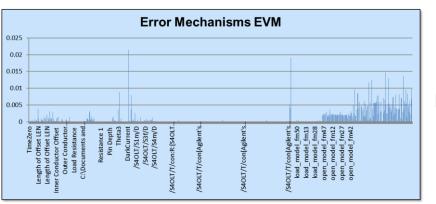
Large-signal network analyzers



Millimeter-Wave Signal Characterization

The NIST Microwave Uncertainty Framework: Tracking uncertainties and their correlations


Last in the State White Black British States


VNA measurements and uncertainties for various calibrations within the Uncertainty Framework

Traceability and Uncertainty in EVM

Distribution of EVM and uncertainty for a 44 GHz, 64 QAM signal (DARPA ELASTx)

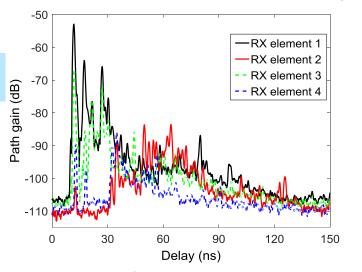
EVM measurement errors from Framework

Estimating Uncertainty in EVM: IEEE Working Group P1765

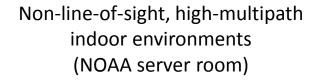
Channel-Measurement Challenges

Errors distort channel response: path loss, timing, and angle

Channel



Channel Measurement and Modeling

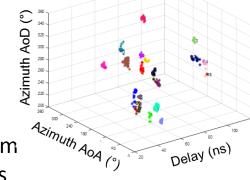

- Need for mmWave data: Indoor and Outdoor
- Need for Channel Modeling and Standards

Contract State White Chicago

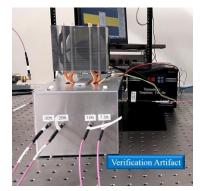
- Measurement Uncertainty on Metrics, Models
- Angle of Departure, Angle of Arrival
- Many bands: 28, 38, 60, 72, 83 GHz, ...

PDPs for a single location, different angles of arrival

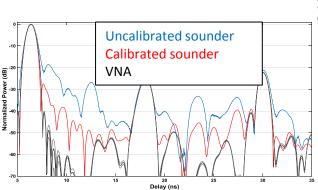
NIST Channel Measurement and Modeling

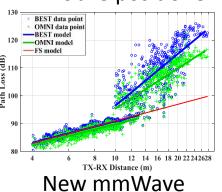

NIST mmWave Channel Sounders: 28 GHz, 60 GHz, 83 GHz

mmWave 5G Channel Model Alliance


Channel Sounder Verification

NIST-led consortium


Over 130 members


Clustered multipath components

NIST channel sounder verification artifact

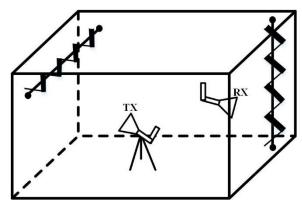
16 RX antennas on mobile positioner

path-loss models

Standards and Technology U.S. Department of Commerce

Over-the-Air Measurements for Integrated Devices

Errors in power, sensitivity, and throughput: exceed limits, reduce comparability



The State of the S

Cellular OTA test of multiple antenna system in anechoic chamber

OTA test at mmWave in reverberation chamber

Machine-to-Machine and Internet of Things: Ubiquitous wireless

OTA Test and DUT Verification

- Integrated antennas: on-wafer-to-OTA test planes
- Calibrated Free-Field modulated signals for verifying e.g., two-stage measurements
- Anechoic-Chamber Methods
- Reverberation-Chamber Methods

Over-the-Air Test for Future Cellular

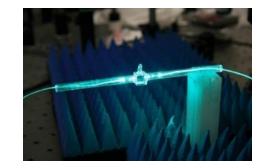
1. Street Still Whitehalen

Traceability for Free-Field Modulated Signals

Reference modulated-signal field in test off-axis EVM, etc.)

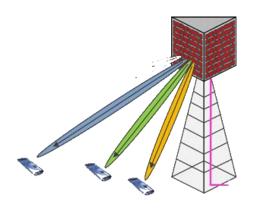
space (resolve OTA test differences,

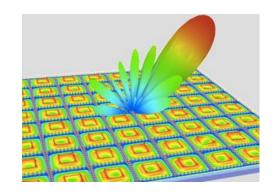
Known Field Rx ref Tx ref Cal Cal Rx Tx


Reverberation Chamber OTA Measurements

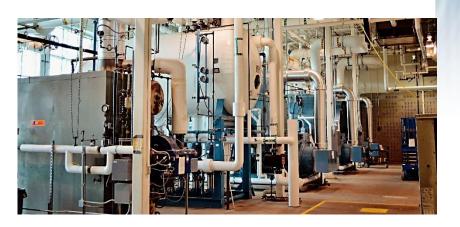
Calibrations for E-field Metrology

LSNA techniques and directional testbed


NIST quantum field probe


Measurement of Beamforming and Multiple Antennas

Errors in directionality: critical for



Last the State Whitehall Committee

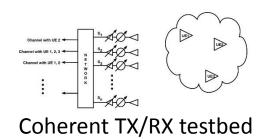
MIMO and Spatial Diversity

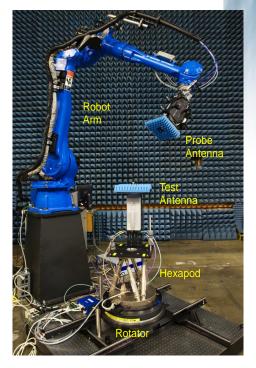
Beam Forming

New Applications in Challenging Environments (e.g., Factories)

Beam Forming and Multiple Antenna Systems

- Testing Beam-Forming Algorithms
- Large Number of Elements/Operating States
- Antenna Element Coupling
- Wideband Antenna Calibrations
- Massive MIMO Antenna Test
- Spatial interference testing (leakage due to non-ideal antennas)




NIST Work in Multiple Antenna and Massive MIMO

Robotic Methods for Antenna Positioning and Traceability

CROMMA facility: 25 μm alignment

Digital Beamforming Hardware Testbed

Antenna Element Coupling using Large-Signal Measurements

MARIE E STILL WHEN SERVED

Some Measurement Questions for Discussion

Devices and Materials:

- What are prospects for large-signal network analysis at mmWave frequencies?
- What are issues tuning mmWave harmonics?
- What is the role of materials measurements in future wireless?

Signal characterization:

- How to handle issues with cascading nonideal, distortion-inducing instruments (similar to Additive EVM)?
- What is the role of traceability in waveform measurements?
- Off-axis EVM: free-field sources with spatial distortion as well as electronic distortion

Channel measurements:

- Why is it more important to decouple the antenna from the channel measurement?
- Will nonideal channel-sounder hardware be more important at mmWave frequencies?

OTA Test, Antennas and Massive MIMO:

- How does one generate and utilize a known test field for multiple-element antenna arrays?
- What is the role of statistics in testing arrays that operate in more states than you can count?
- What are issues with distributed array timing and synchronization?

The Elephant in the Room:

How to merge on-wafer and OTA test to verify performance?

Watch this space for updates to metrology issues

- Transistors and nonlinear device characterization
- Modulated-signal field traceability and off-axis EVM
- Channel measurement and modeling
- Multiple-antenna metrology for wideband signals
- Extending metrology for fundamental parameters to communications applications:
 - Power
 - S parameters
 - Noise

