

Millimeter-Wave Beamforming Architectures, Channel Measurements and Modeling

ISART 2017

Mining Millimeter-Wave Capacity
Channel Measurements and Modeling Perspective Panel
August 17, 2017

Akbar M. Sayeed

Wireless Communications and Sensing Laboratory
Electrical and Computer Engineering
University of Wisconsin-Madison

http://dune.ece.wisc.edu

Supported by the NSF and the Wisconsin Alumni Research Foundation

Exciting Times for mmW Research

- A key component of 5G
 - Multi-Gigabits/s speeds
 - millisecond latency
- Key Gigabit use cases
 - Wireless backhaul
 - Wireless fiber-to-home (last mile)
 - Small cell access
- New FCC mmW allocations (July 2016)
 - Licensed (3.85 GHz): 28, 37, 39 GHz
 - Unlicensed (7 GHZ): 64-71 GHz
- New NSF Advanced Wireless Initiative
 - mmW Research Coordination
 Network
 - PAWR (Platforms for Advanced Wireless)

Questions for the Panel

 What is the state of mmW channel modeling and measurements? What needs to be done next?

 What the most cost effective way to enable multibeamforming?

 Millimeter-wave was actively explored for fixed wireless in the late 1990s. What is different this time?

Channel Modeling and Measurements

- NIST 5G Channel Modeling Alliance
- Structure of channel models in good shape
- Measurements seriously lagging due to the current state of channel sounders
- Spatial dimension: current sounders limited to mechanically pointed antennas, or single-beam phased array of moderate sizes (8-64)
- Mobility: very limited

Critical Issues to Be Addressed

 Connection between measurements and models: How to incorporate measurements into models? What kind of measurements are needed?

 Sounder development: spatial resolutions and bandwidths comparable to actual systems

What are models going to be used for? (comparison versus prediction)

Potential of mmW Wireless

Key Advantages of mmW: large bandwidth & narrow beams

6" x 6" access point (AP) antenna array:

9 elements @3 GHz, 900 @ 30 GHz, 6000 @80 GHz vs.

> 100X gains in power and & spectral efficiency

Key Operational Functionality: Multibeam steering & data multiplexing

Key Challenge: Hardware & Computational Complexity (# T/R chains)

Conceptual and Analytical Framework: Beamspace MIMO

Beamspace Multiplexing

Multiplexing data into multiple beams

Discrete Fourier Transform (DFT)

Antenna space multiplexing

n-element array $(\frac{\lambda}{2} \text{ spacing})$

Beamspace multiplexing

n orthogonal beams

n spatial channels

n dimensional signal space

steering/response vector

$$-\frac{\pi}{2} \le \phi \le \frac{\pi}{2} \quad \stackrel{d = \frac{\lambda}{2}}{\Longleftrightarrow} \quad -\frac{1}{2} \le \theta \le \frac{1}{2}$$

$$-\frac{\pi}{2} \le \phi \le \frac{\pi}{2} \quad \stackrel{d=\frac{\lambda}{2}}{\Longleftrightarrow} \quad -\frac{1}{2} \le \theta \le \frac{1}{2} \quad \begin{array}{l} \text{DFT matrix:} \\ \text{Beamspace modulation} \end{array} \quad \mathbf{U}_n = \frac{1}{\sqrt{n}} \left[\mathbf{a}_n(\theta_0), \mathbf{a}_n(\theta_1), \cdots, \mathbf{a}_n(\theta_{n-1}) \right]$$

Beamspace Channel Sparsity at mmW

mmW propagation X-tics

- directional, quasi-optical
- mainly line-of-sight
- single-bounce multipath
- Beamspace sparsity

\mathbf{U}_n (DFT) \mathbf{U}_n (DFT)

$$\mathbf{H}(f) = \sum_{n=1}^{N_p} \beta_n \mathbf{a}_n(\theta_{R,n}) \mathbf{a}_n^H(\theta_{T,n}) e^{-j2\pi\tau_n f}$$

LoS (P2P) Link

Multiuser (P2MP) link

Action: p-dim. subspace of the n-dim. spatial signal space; p << n

How to access the p active beams with O(p) complexity?

Conventional MIMO: Digital Beamforming

n: # of array elements (100's-1000's)

p: # spatial channels/data streams (10-100's)

n T/R chains: prohibitive complexity

Hybrid MIMO: Phased Array Beamforming

n: # of array elements (100's-1000's)

p: # spatial channels/data streams (10-100's)

Phase Shifter (np) + Combiner Network

Existing prototypes limited to **single-beam** phased arrays of modest size (<256 elements)

Hybrid MIMO: Lens Array Beamforming

Computational Complexity:

n → p matrices **Hardware**

Complexity:

n → p RF chains **Beam Selection**

n dim. Lens +

Feed Antenna

Assembly

p << n

active beams

Data multiplexing through p active beams

Scalable performance-complexity optimization

4" x 3" AP Antenna: Multi-beam CAP-MIMO

$$n \approx 285 \ (19 \times 15)$$
 # beams (cover): $n_b \approx 144 \ (16 \times 9)$

12 RF chains; 100 users; 7.85 users/beam

2 beams/feed

 $\rightarrow K_{RF} = 6$ switch

1 GHz bandwidth; includes Friis free-space path loss

28 GHz Multi-beam CAP-MIMO Prototype

6" Lens with 16-feed Array

Equivalent to 600-element conventional array! Beamwidth=4 deg

1-4 switch for each T/R chain

Features

- Unmatched 4-beam steering & data mux.
- RF BW: 1 GHz, Symbol rate: 370 MS/s -1 GS/s
- Fully discrete mmW hardware
- FPGA-based backend DSP

Use cases

- Real-time testing of PHY-MAC protocols
- Multi-beam channel measurements
- Scaled-up testbed network

(JB, JH, AS, 2016 Globecom wkshop, 5G Emerg. Tech.)

CAP-MIMO AP Hardware

MS Hardware

Directional Focusing by Lens Array

P2P link (154 feet): MS - CAP-MIMO AP

AMS ISART 2017

-1

Multiuser Communication

Two MSs (3 ft apart) to CAP-MIMO AP 29 ft away

unfiltered

Beam powers for the MSs

Spatial int. supp. & temp. eq.

Temporal equalization only

Channel Sounder with Unmatched Multi-beam Capabilty

Individual Beam PDPs

Aggregate PDP

8ft

What's different this time? (vs 90's)

LMDS (Local Multipoint Distribution Services)

- Lack of technology maturity and supporting infrastructure
- Lack of compelling use cases
- MIMO invented in 1995; I-phone introduced in 2007

News | July 7, 1999

Ericsson Signs First LMDS Contract

"This LMDS network will deliver wireless access speeds of up to 37.5 Mb/s."

Hope for LMDS Dwindles

By: eWeek Editors | August 06, 2001

"Users of the spectrum have faced a number of hurdles to deployment, including expensive gear, difficulties in securing roof rights for antennas, immature technology and signal interference from elements such as rain."

mmW Wireless RCN http://mmwrcn.ece.wisc.edu

- NSF research coordination network (RCN) on mmW wireless
 - Academia, industry & government agencies
- Cross-disciplinary research and technology challenges
 - CSP: communications & signal processing
 - HW: mmW hardware, including circuits, ADCs/DACs, antennas
 - NET: wireless networking
- Kickoff Workshop: Dec 2016, Washington, DC
- 2nd Workshop: July 19-20, 2017: Madison, WI
- 3rd Workshop: Jan 2017 (3rd week) stay tuned!

Xtras

AMS ISART 2017 19

Conclusion

- Beamspace mmW MIMO: Versatile theoretical & design framework
- CAP-MIMO: practical architecture
 - Scalable perf.-comp. optimization
- Compelling advantages over state-of-the-art
 - Capacity/SNR gains
 - Operational functionality
 - Electronic multi-beam steering & data multiplexing
- Timely applications (Gbps speeds & ms latency)
 - Wireless backhaul: fixed point-to-multipoint links
 - Smart Access Points: dynamic beamspace multiplexing
 - Last-mile connectivity, vehicular comm, M2M, satcom
- Prototyping & technology development
 - Multi-beam CAP-MIMO vs Phased arrays?

Some Relevant Publications

THE UNIVERSITY
WISCONSIN
MADISON

(http://dune.ece.wisc.edu)

Thank You!

- A. Sayeed and J. Brady, *Beamspace MIMO Channel Modeling and Measurement: Methodology and Results at 28 GHz*, IEEE Globecom Workshop on Millimeter-Wave Channel Models, Dec. 2016.
- J. Brady, John Hogan, and A. Sayeed, Multi-Beam MIMO Prototype for Real-Time Multiuser
 Communication at 28 GHz, IEEE Globecom Workshop on Emerging Technologies for 5G, Dec. 2016.
- J. Hogan and A. Sayeed, <u>Beam Selection for Performance-Complexity Optimization in High-Dimensional MIMO Systems</u>, 2016 Conference on Information Sciences and Systems (CISS), March 2016.
- J. Brady and A. Sayeed, Wideband Communication with High-Dimensional Arrays: New Results and Transceiver Architectures, IEEE ICC, Workshop on 5G and Beyond, June 2015.
- J. Brady and A. Sayeed, Beamspace MU-MIMO for High Density Small Cell Access at Millimeter-Wave Frequencies, IEEE SPAWC, June 2014.
- J. Brady, N. Behdad, and A. Sayeed, Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements, IEEE Trans. Antennas & Propagation, July 2013.
- A. Sayeed and J. Brady, Beamspace MIMO for High-Dimensional Multiuser Communication at Millimeter-Wave Frequencies, IEEE Globecom, Dec. 2013.
- A. Sayeed and N. Behdad, Continuous Aperture Phased MIMO: Basic Theory and Applications, Allerton Conference, Sep. 2010.
- A. Sayeed and T. Sivanadyan, Wireless Communication and Sensing in Multipath Environments Using Multiantenna Transceivers, Handbook on Array Processing and Sensor Networks, S. Haykin & K.J.R. Liu Eds, 2010.
- A. Sayeed, Deconstructing Multi-antenna Fading Channels, IEEE Trans. Signal Proc., Oct 2002.

AMS ISART 2017 22

Multi-beam CAP-MIMO vs Single-beam Phased Arrays

28 GHz small cell design for supporting 100 users

CAP-MIMO has >8X higher energy and spectral efficiency over phased arrays (idealized analysis – even bigger gains expected with interference)

Beamspace MIMO framework enables optimization of both architectures

AMS ISART 2017 23

Beam Selection Overhead: A Myth?

Countless papers claim that the beam selection overhead is prohibitive at mmW. Is it?

70 mph (30 m/s) speed $\Rightarrow f_d = 2800 \text{Hz} \Rightarrow T_{coh} = 0.36 \text{ms}$

Sampling interval $T_s = 1$ ns for W = 1GHz

 $\Rightarrow N_{coh} = \frac{T_{coh}}{T_s} \approx 400,000 \text{ samples (or } 100,000 \text{ for } 250 \text{ MHz bandwidth)}$

Loss in spectral efficiency due to beam selection overhead: $\frac{N_{oh}}{N_{coh}}$

 $N_{oh} \le 1000 - 4000 \text{ for a } 1\% \text{ loss}$

Brute force overhead: $N_{oh} \sim KN_{beams}$

E.g., for $N_{beams} = 50$, K = 20 to 80 users can be scanned with < 1% overhead

With p-beam capability: $N_{oh} \sim \frac{KN_{beams}}{p}$

Simultaneous Beams != # RF Chains

Multiple RF chains are necessary but not sufficient for multi-beam steering and data multiplexing

Existing phased array (single-beam)

Limiting factor: phased shifter network (not RF chains)

Lens arrays: multi-beam steering and data mux (# RF chains)

Limiting factor: beam selection network

AMS ISART 2017 25