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Exciting Times for mmW Research

e Akey component of 5G
— Multi-Gigabits/s speeds
— millisecond latency

e Key Gigabit use cases
— Wireless backhaul

— Wireless fiber-to-home (last mile) O e O
4G mmW N
— Small cell access Macro Cell  Backhaul 11

e New FCC mmW allocations (July 2016)
— Licensed (3.85 GHz): 28, 37, 39 GHz
— Unlicensed (7 GHZ): 64-71 GHz

e New NSF Advanced Wireless Initiative

Fiber-to-home =

— mmW Research Coordination

Network e :,f;.
— PAWR (Platforms for Advanced (o
Wireless)
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Questions for the Panel @

MMMMMMM

e What is the state of mmW channel modeling and
measurements? What needs to be done next?

e What the most cost effective way to enable multi-
beamforming?

e Millimeter-wave was actively explored for fixed
wireless in the late 1990s. What is different this time?
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Channel Modeling and Measurements

e NIST 5G Channel Modeling Alliance
e Structure of channel models —in good shape

e Measurements — seriously lagging due to the

current state of channel sounders

e Spatial dimension: current sounders limited to
mechanically pointed antennas, or single-beam

phased array of moderate sizes (8-64)

e Mobility: very limited
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Critical Issues to Be Addressed @
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e Connection between measurements and models:
How to incorporate measurements into models?
What kind of measurements are needed?

e Sounder development: spatial resolutions and
bandwidths comparable to actual systems

e What are models going to be used for? (comparison
versus prediction)

AMS ISART 2017 4




Potential of mmW Wireless v,
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Key Advantages of mmW: large bandwidth & narrow beams

6” x 6” access point (AP) antenna array:
9 elements @3 GHz, 900 @ 30 GHz, 6000 @80 GHz vs.

Potential of beamspace multiplexing

Power & Spec. Eff. Gains over 4G -
15081 @ 36Hz 35081 @30GH | 5
ilJ——-G 1D Arkenna | i IR -Iw-_ [
80| J ==, 820 Aenna | ] : %
) 50 ---o--d :103':; S
a %40 """"" S ‘ %
5 3l w42 <
830 o S
0 10 -20 -30 “dB ; ) o | E A e e ol W3 GHz9 USERS (MAX)]
10l | o 10 x100 4 80 GHz 9 USERS
35 deg @ 3 GHZ ”: h HE H o H oo g - antennag ; H .80 GHZ 50 USEHS
4de 3OGHZ O'D L :::51 I ::::::;2 [ ::::::3 <C ASOGHZBOOUSEHS
& @ 10 10 10 10 © 0 W 80 GHz 1056 USERS
Freauency (GHz) 10

%9 20 10 0_ 1020 30 40
TOTAL TX SNR (dB)

> 100X gains in power and & spectral efficiency

Key Operational Functionality: Multibeam steering & data multiplexing
Key Challenge: Hardware & Computational Complexity (# T/R chains)

Conceptual and Analytical Framework: Beamspace MIMO
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Beamspace Multiplexing O
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Multiplexing data into multiple beams

Di(screte Fourier Transform (DET)

Ant Beamspace
nenna space —< 17 multiplexing
multiplexin — ] 7 )
P ° — / n orthogonal beams
n-element array < — 2 I
(5 spacing) _— ~
2 SPating {4 n spatial channels

n dimensional signal space
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steering/response vector
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mmW propagation X-tics - [ Y
. . . . | | - _
e directional, quasi-optical 7 U. 3 e U I
. . . — —q B
e mainly line-of-sight Jjom g e P
* single-bounce multipath Np
. _ H — 9127 Th
* Beamspace sparsity H(f) =) Bnan(0rn)al (Or,)e 7>
n=1
LoS (P2P) Link Multiuser (P2MP) link
5 R e T
5 0 dho @ i % 4
[ @
@ Lz M
23 5 0 285 T =2
ST 2 0 : 55
TX Beam Dir. TX BEAM DIRECTION (DEG)

Action: p-dim. subspace of the n-dim. spatial signal space; p <<n
How to access the p active beams with O(p) complexity?
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n: # of array elements (100’s-1000’s)

p: # spatial channels/data streams (10-100’s)

nT/R+

DACADC
e\, # dim. Antenna

T ]_ [\ II:.::__ - . i
p data d::: — --,--"-"-:'-_.

streams 4 (p

n T/R chains: prohibitive complexity
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n: # of array elements (100’s-1000’s)
p: # spatial channels/data streams (10-100’s)

p data streams £ e ‘— St
_ | ey
Ed(1 | ' J
; '; -
Tq(p

p T/R chains
High efficiency Low-loss

P h dasSe S h |fte I ( n p) + Powgr'\gomf)lifier phgisseC rseht;ler

Combiner Network P e
. : . . o RF signal _HJ .-::.':.-_-—-—--—HI
Existing prototypes limited to single-beam T N
phased arrays of modest size (<256 elements) > @7

beam direction is steering.
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Hybrid MIMO: Lens Array Beamforming @
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Focal surface feed antennas: ~ MMW Lens.computes
direct access to beamspace ~ 2nalog spatial DFT

p data :z:dl:l
streams

)
ot

[/Z/Ke’

Xh
Computational Hardware
Complexity: Complexity: , Data multiplexing
n>op Do Beam Selection through
matrices RF chains p<<n p active beams

active beams
Scalable performance-complexity optimization
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4” x 3” AP Antenna: Multi-beam CAP-IVIIMO@
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vs Single-beam Phased Arrays WisCONSIN
n =~ 285 (19 x 15) # beams (cover): ny ~ 144 (16 x 9)

12 RF chains; 100 users; 7.85 users/beam
Small-Cell AP Design

Phased Array - CAP-MIMO
4x3 - 107} | ? 4x3
o - xdditional CAP-MIMO |
A.rr_ay . 8 | gains w/ more RF chajns. Beamspace
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O i
/ x | —Opt. Ph. Array-N_ RF 4 x 3
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Sub-array i 107 —CMIMO-N__ RF, K__ SW N
b ~
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bgabms coverage . ‘ ° I [C-MIMO-KRF -
220 210 0 10 20 2 beams/feed
TX POWER (dBm) + Kpp = 6 switch
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28 GHz Multi-beam CAP-MIMO Prototype

P2MP Link P2P Link
|\ B T

3 | CAP-MIMO AP BT

Equivalent to
600-element
conventional array!
Beamwidth=4 deg

1-4 switch for
each T/R chain

-

Use cases
Real-time testing of PHY-MAC protocols
Multi-beam channel measurements

e Scaled-up testbed network
(JB, JH, AS, 2016 Globecom wkshop, 5G Emerg. Tech.)

Features

* Unmatched 4-beam steering & data mux. .
* RFBW: 1 GHz, Symbol rate: 370 MS/s -1 GS/s .
e Fully discrete mmW hardware
* FPGA-based backend DSP

AMS ISART 2017
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CAP-MIMO AP Hardware

THE UNIVERSITY

FPGA + DACs/ADCs for the CAP-MIMO AP i
supporting 4 complex (I/Q) data streams

4 & \ 4

= & o
CAP-MIMO AP RF Hardware and Lens Antenna Array WISCONSIN

a MADISON
_— T

MS Hardware

== MS 2 RF Hardware |
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Directional Focusing by Lens Array
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P2P link (154 feet): MS - CAP-MIMO AP

MS 22 ft left,
MS broadside MS 11 ft left MS 22 ft left feeds moved
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Multiuser Communication
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Two MSs (3 ft apart) to CAP-MIMO AP 29 ft away

unfiltered Beam powers for the MSs
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Channel Sounder with Unmatched
Multi-beam Capabilty

Individual Beam PDPs

A Threshold Aggregate F [V]S1 :lay Profile for User 1
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Aggregate PDP
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What’s different this time? (vs 90’s) 0
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LMDS (Local Multipoint Distribution Services)

e Lack of technology maturity and supporting infrastructure
* Lack of compelling use cases
e MIMO - invented in 1995; I-phone introduced in 2007

News | July 7, 1999 I ——

-

“This LMDS network will deliver wireless access speeds of up to 37.5 Mb/s.”

Ericsson Signs First LMDS Contract

Hope for LMDS Dwindles

By: | August 06, 2001

“Users of the spectrum have faced a number of hurdles to deployment,
including expensive gear, difficulties in securing roof rights for antennas,
immature technology and signal interference from elements such as rain.”
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mmW Wireless RCN W)
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http://mmwrcn.ece.wisc.edu e

e NSF research coordination network (RCN) on mmW wireless
— Academia, industry & government agencies

e Cross-disciplinary research and technology challenges
— CSP: communications & signal processing
— HW: mmW hardware, including circuits, ADCs/DACs, antennas
— NET: wireless networking

e Kickoff Workshop: Dec 2016, Washington, DC
e 2"d\Workshop: July 19-20, 2017: Madison, WI
e 39 Workshop: Jan 2017 (3" week) — stay tuned!
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Conclusion W
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e Beamspace mmW MIMO: Versatile theoretical &
design framework

e CAP-MIMO: practical architecture
— Scalable perf.-comp. optimization

e Compelling advantages over state-of-the-art £ o
— Capacity/SNR gains ™
— Operational functionality U i o S USERS
— Electronic multi-beam steering & data multiplexing  *«l—. i cs s s

-10 0 10 20 30 40
TOTAL TX SNR (dB)

e Timely applications (Gbps speeds & ms latency)
— Wireless backhaul: fixed point-to-multipoint links

— Smart Access Points: dynamic beamspace multiplexing
— Last-mile connectivity, vehicular comm, M2M, satcom SmallCal AP wih 6" atanne

14-16 Gb
10" Ps

100% BW/user

Prototyping & technology development &15\
— Multi-beam CAP-MIMO vs Phased arrays? k’@j

O e P
46 mmw
9. mall Cel

PER-USER CAPACITY (Gbps)

el
——4 Aperture CAP-MIMO
mmwW =16 Aperture Phased Array AP |
ckhaul ——4 Aperture Phased Arrar |
2
-30 -20 =10 0 10 20 30
TX POWER (dBm)
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Results at 28 GHz, |IEEE Globecom Workshop on Millimeter-Wave Channel Models, Dec. 2016.
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Multi-beam CAP-MIMO
vs Single-beam Phased Arrays

28 GHz small cell design for supporting 100 users

Small-Cell AP with 6"x6" antenna
14-16 Gbps CAP-MIMO

100% BW/user
63 pl/bit

16, Single-beam
Phased Arrays
(16 total beams)
(7 users/beam)

-

o
—
T

PHASED ARRAY

-

o
o
T

1-2 Gbps
1-7% BW/user

476 pl/bit
—1 Aperture CAP-MIMO

N
<

=—4 Aperture CAP-MIMO
=16 Aperture Phased Array AP
——4 Aperture Phased Array

PER-USER CAPACITY (Gbps)

—
<
N

-30 -20 -10 0 10 20 30
TX POWER (dBm)
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4, 25-beam
CAP-MIMO Arrays
(100 total beams)

(1 user/beam)

CAP-MIMO has >8X higher energy and spectral efficiency over phased arrays
(idealized analysis — even bigger gains expected with interference)

Beamspace MIMO framework enables optimization of both architectures

AMS ISART 2017
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Beam Selection Overhead: A Myth? 0
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Countless papers claim that the beam selection overhead is
prohibitive at mmW. Is it?

70 mph (30 m/s) speed = f; = 2800Hz = T,,;, = 0.36ms
Sampling interval T = 1ns for W = 1GHz

= Neon = 252 ~ 400,000 samples (or 100,000 for 250 MHz bandwidth)

Noh
Ncoh

Loss in spectral efficiency due to beam selection overhead:

N, <1000 — 4000 for a 1% loss

Brute force overhead: N, ~ K Npeams

E.g., for Npeams = 50, K = 20 to 80 users can be scanned with < 1% overhead

KNbea'mLs

With p-beam capability: N,p ~ .

AMS ISART 2017
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# Simultaneous Beams !=# RF Chains

Multiple RF chains are necessary but not sufficient for
multi-beam steering and data multiplexing

Existing phased array (single-beam)
Limiting factor: phased shifter network (not RF chains)

Lens arrays: multi-beam steering and data mux (# RF chains)
Limiting factor: beam selection network
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