

Measurement Best Practices

Jim Linehan, Alion Science and Technology ISART 2018 Measurement Panel

Personal Background

- Electrical engineer (BSEE/MSEE)
- RF and EMC measurement background, emphasis practical versus theoretical
- Supported DoD, Federal Agencies, Commercial Projects for 42 years
- Experience
 - **RF/EMC** measurements (frequency response, gain compression, intermodulation, coupling, etc.)
 - Antenna Characteristics (gain, pattern, off-axis response, etc.)
 - RF surveys (occupancy, unregistered emitters, RFI)
 - Spectrum monitoring system development and deployment
 - Electromagnetic compatibility measurements
 - Measurement automation and data processing
- Current projects
 - Spectrum monitoring system development
 - Ground-to-Ground Clutter Measurements for DSO (consulting)

ALION

Types of Measurements

- Bench measurements, Component and System Level
- RF Surveys
- Real-time monitoring
- Mobile measurements

SLIDE 3

Bench Tests

- Purpose: to measure performance of components under controlled conditions
- Examples
 - Receiver front-end performance (gain, noise figure, I-dB compression, 3rdorder intercept, frequency response)
 - Transmitter power, emission spectrum, harmonic spectrum, intermodulation (front-door and back-door)
 - System sensitivity, dynamic range, frequency response, no interference
 - System performance versus interference (e.g., BER vs S/I vs Δf)
- Considerations
 - Use quality, calibrated equipment and understand the limitations
 - Develop or use established procedures (e.g., MIL-STD-461, 449)
 - Maximize dynamic range by using filters, amplifiers
 - Minimize internally-generated artifacts by using high dynamic range passive components
 - Characterize the measurement setup to determine its frequency response

ALION

- Present the data in a suitable graphical format to maximize intelligibility
- Show intermediate steps in the process

SLIDE 4

RF Surveys

- Purpose of a survey: to determine suitability of a particular site for permanent installation (e.g., Satcom terminal)
- Motivations
 - Visually assess the site, determine if there any show-stoppers in terms of RF emissions, soil quality, obscura, etc.
 - Evaluating alternative locations
 - Identify unexpected emissions
- Possible issue: satellite and point-to-point microwave systems coexist in same allocated bands
 - Point-to-point system frequency use can often be de-conflicted
 - Databases may show P2P networks but not associated frequency plans
- Considerations
 - Determine what bands need to be surveyed and develop system accordingly
 - Use directional antennas stepped in azimuth to capture 360-degree view of environment
 - Set up antenna at expected feed height of Satcom system
 - Use automated process to capture data in a consistent and repeatable manner

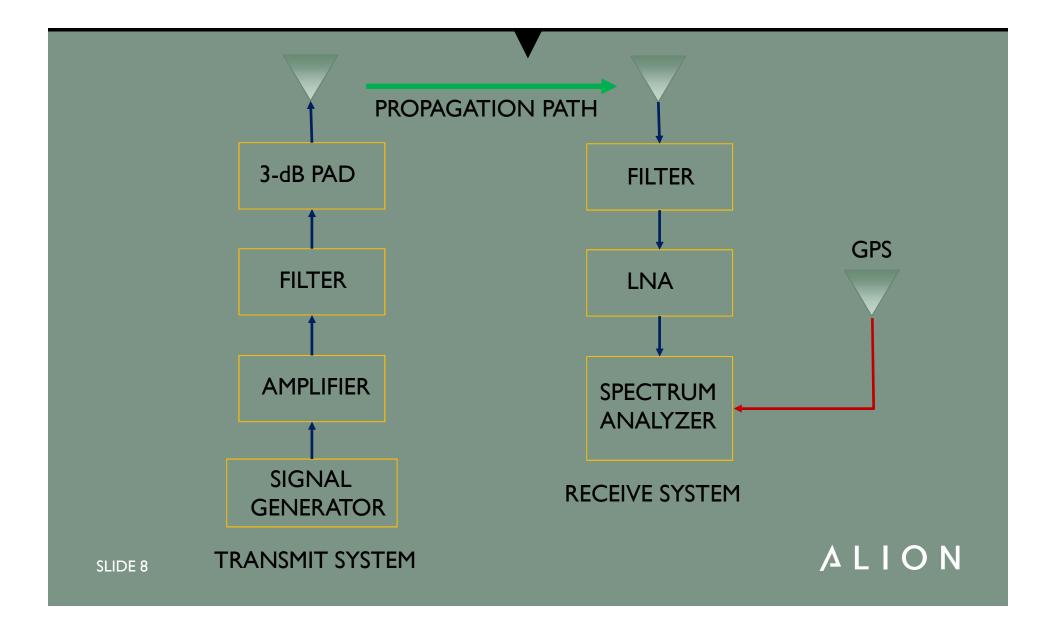
ALION

- Characterize the measurement system to calibrate out gains and losses
- Repeat survey over extended period of time, if possible

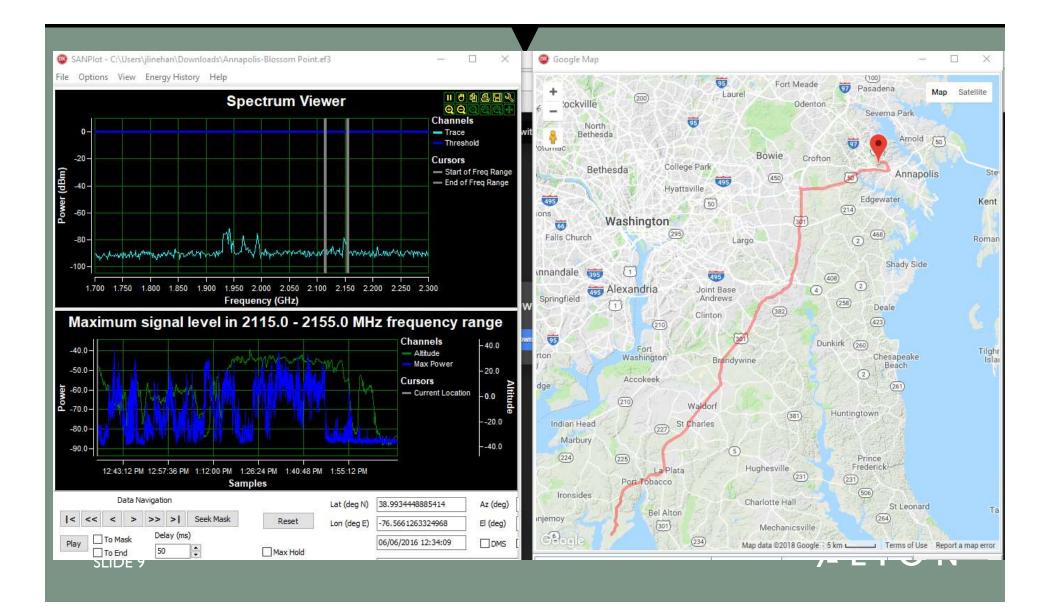
SLIDE 5

Real-Time Monitoring

• Purpose


- Establish usage patterns in a band of interest
- Detect changes in the electromagnetic environment over time
- Detect potential harmful interference to a particular system
- Verify the absence of potentially interfering signals
- Example Alion RAMS (Remote Automated RF Monitoring System)
 - Used at NASA Wallops to detect potential interference from AWS-3/Ligado system in bands adjacent to NOAA downlinks
 - Captures spectrum and I-Q data when a threshold is exceeded
 - Uses moderately-priced sensors from Keysight (adaptable to other sensors)
- Considerations
 - Define bands of interest and the environment in which the system operates
 - Use front-end filtering to prevent adjacent-band affects
 - Limit the amount of data captured to that which meets criteria
 - Make it useful to the end-user
 - Incorporate real-time reporting, archiving, remote access

ALION


Mobile Measurements

- Purpose: to determine signal level variation of a single signal or dominant signal(s) in a band of interest
- Examples
 - Drive test to locate AWS emitters
 - Drive/walk test to measure prop loss from cooperative emitter
- Considerations
 - Location tracking is an essential part of mobile testing
 - Portable test equipment capable of field use on vehicle power may have different performance characteristics than more familiar bench equipment
 - GPS system can lose location or report erroneous location due to building shadowing – perform concentrated measurements at known locations as part of the survey
 - Component variation due to vehicle power and temperature must be considered

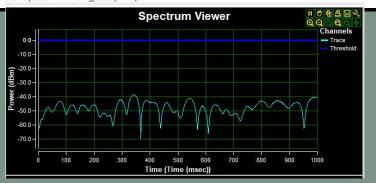
Typical Propagation Measurement System

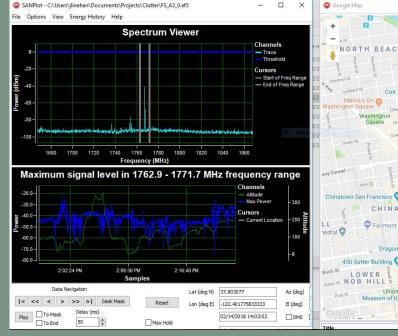
Typical Data Visualization for Mobile Measurements

Sources of Measurement Error

- Test Equipment (sources and analyzers)
 - Amplitude Uncertainty
 - Frequency Uncertainty (drift)
 - Internal noise, limits in sensitivity
 - Non-linearities (gain compression)
- Antennas and Cables
 - Pattern variations
 - Pointing errors (directional antennas)
 - Impedance mismatch
 - Connector interaction
 - Interaction with nearby objects
 - Ground plane limitations
- Propagation related variances
 - No direct path between source and receiver
 - Imperfect modeling of structures

Summary – Measurement Best Practices

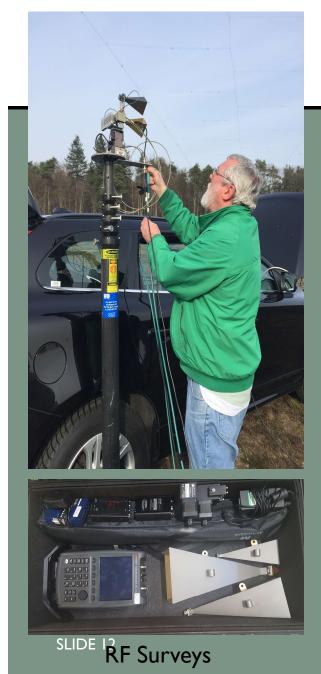

- Define the problem thoroughly, work with the analysts to establish scope
- Use quality equipment and make sure the calibration is current
- Follow established procedures or develop custom procedures
- Value quality versus quantity of data
- Evaluate the data as soon as possible and repeat measurements when data appears questionable
- Don't assume
- Document clearly and succinctly and show your work



ΔΙΟΝ

Map Satellite

SANPlot - C:\Users\jlinehan\Documents\Projects\Clutter\ZS_A3_0.ef3
File Options View EnergyHistory Help



SATCOM

RFI Mitigation

NORTH BEACH Coit To EMBARCADERO JACKSD SQUAR Ferry Building Chinatown San Francisco 🥹 FINANCIAL DISTRICT CHINATOWN Pairmont San Francisco Embarcad ___ Dragon's Gate 🤤 450 Sutter Building 🤤 Local Edition 🕞 Palace Hotel, A Union Square Post St Museum of Ice Cream @ RINCON HILL Yerba Bue Man data @2018 Google _ 200 m Terms of Use Report a map erro

Propagation Measurements

A L I O N Big ideas. Real solutions.

To learn more, visit www.alionscience.com