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LTE 1800 MHz coverage

legend
 LTE: Coverage by Signal Level (DL) 7
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The Finite-Difference Time-Domain (FDTD)
Method

e Numerical solution of Maxwell’s equations in the time
domain

e Usually solved on regular cartesian lattice

e Spatial discretisation usually — wavelength/20

e Time step chosen to ensure stability — typically in ps
e Pulse excitation usually employed

e Simulation is run until transients die out

e Time harmonic response can be straightforwardly
extracted
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FDTD simulated path loss at 1GHz on a horizontal slice
for (a) ‘basic’ and (b) ‘detailed’ internal geometries
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Streamline Visualisation

e Time-averaged Poynting vector
1
S = RExH

e Streamlines defined by

) _ s(pta)

e Can be used to visualise energy flow
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Streamlines of energy flow at 1GHz on a horizontal slice
for (a) ‘basic’ and (b) ‘detailed’ internal geometries
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Our Propagation Modelling Paradigm
e Semi-deterministic approach

e ‘Exhaustive’ electromagnetic analysis of typical range
of building environments

e Use results to derive simpler ‘mechanistic’ models
which capture the key effects which dominate
propagation
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Radic Spectnum Management

Ministry of Busingss, Innovation and Empl syment
PO Box 2847 Wellington G140 New Zealand
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Radic Spectrum is defined as dectomagnetic energy of frequendies lower than 3000
ggahertz It is managed by the Crown, through the Radio Spectrum Management [REM)
team withinthe Minisry of Business, innovation and Employment, onbehall of the
people of New Zealand. The efficient use of the radio Specinum o provide safety-ofife.
ted ecommunications, broadcasting and other services is a2 sential to the functioning of &
MODEr 1 e COnDmmy.

RSM s responsible For providing advice to Government on the aliocation of radio frequencies
o meet the demands of emerging technologies and Senioes, in ofder 15 efaine fdio
SPECTTUm provi des the greate st economic and sodial benefit 1o New Zealand.

Frequency bands are planned for various Ssenvices in accordance with Government policy
directives, intemational practices, and technicsl standands. Persons wishing o utilice
Frequencies inaccordance with these plans apply for alicence for which anannual feeis
aften charged.

Thits char t shows in simplified form the significant primary and secondarny radio spectmum
wsageinNewZealand. Many frequency bands are also utilised for ofher Secondary pUMoSes,
which may mot be Shown. Hence this chart must be regarded & ind cative only and the
(Crown o Kot BECEpT fel pondi bility whether in CONTACE LOML, Bquity of athenuise for any
action taken, of refiance placed on the information in this chart or for ANy &71or of OmisSion
from this chart. For specific details of current al locati ons, please refier to Table of Radio
Spectrum Lisage in New Zeéaland PIB 3.

The Radiocommunications Act allows the Government to provide licences directly upon
‘application but also allows the creation of 8 management fight over particular frequencies
for per ods up o 20 years. These management rights can then be transferred to private
entities, for example & oompany providing csllular sefvices, therely llowing that entity
exCSive powers 10 create Boences Bs requined for their e ces.

WILF = Very Low Frequency
LF = Low Frequency
MF = Medium Frequency
HF = High Freguency

VHF = Very High Frequency
UHF = Ultra High Frequency
SHF = Super High Frequency
EHIF = Extremely High Freguency
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Background: Current Thinking

« System design is going to be easier at mmWave:
« Steerable high-gain antennas to overcome increased pathloss
« Accordingly, mostly LOS propagation
« RXsdon’t need to worry (much) about multipath: simple equalisers

* High attenuation & beam-steering: indoor mmWave systems will
be coverage limited, not interference limited

 Solution: put a mmWave access point in every office!

* Need experimental measurements of the indoor channel:
e How much scatter do we observe?
e Impact of human shadowing?
* Impact of co-channel interference? (from systems in adjacent offices)
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mmWave Measurements of Common Building Materials

* “Insertion loss” for various material samples measured at Q-band
(33-50 GHz) using network analyser
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Impact of Water Content

o Comparison between a dry and “wet” sponge
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60 GHz Indoor Channel Measurements

Transmitter Receiver

-

Frequency sweep over 1 GHz |

Directional horn antennas: bandwidth for 0° — 360°

azimuth/elevation and * Frequency average to
location varied account for multipath
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Environment Investigated

e [ndoor interior office: no exterior windows!
 Internal partitions: drywall/gib-board on timber frame

* Full of “academic clutter”: probably more books than a typical office
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In-Office Deployments
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In-Office Deployment

Reduction in power when moving off boresight (15° 3-dB beamwidth)
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Reflection Paths Within an Office

Block possible reflection 120 0 60
points with absorbers

=10
150 ' 30
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Strong specular reflections can arise
from metal door frames & glass

240 300
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No absorber

= = Absorber over glass/door

Specular reflections are sensitive to
position of RX/TX: easily “disappear”
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Interference from Adjacent Offices

« TXplaced in adjacent office: LOS path between wooden studs
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Potential for v. significant levels of inter-office interference!

27



Interference from Adjacent Offices

 Position of wooden studs matters: can shadow the through-wall signal
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LOS path blocked by a wooden stud: 10 dB power
reduction compared to LOS between studs
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Blocking the LOS Path |

* 60 GHz signals are readily shadowed by the human body
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Desired signal is reaching user via reflected paths - = Absorber Phantom

Through-wall interference signal 3 dB stronger than the reflections!
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What will scatter?
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Strong scattering is possible from curved surfaces
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Conclusions

« Strong specular reflections (single, double and triple bounce) can
exist at 60 GHz: but sensitive to location

o “Soft” internal partitions (gib on timber frame): 12 dB attenuation
o Comparable power levels to in-office specular reflections

« LOS path readily shadowed by the human body
* Interference from adjacent offices can dominate
 Difficult to improve desired signal levels via beam-steering

« Potentially: introduce “engineered scatter” and combine with
beam-steering to eliminate shadow regions

31
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