Screening Experiments in Mobile Channel Measurements

Mark McFarland, P.E.
Chriss Hammerschmidt Bob Johnk, PhD
John Ewan Ron Carey

Institute for Telecommunication Sciences, Boulder, CO
www.its.bldrdoc.gov

July 26, 2018

ISART
What You’ll Learn:

- What the main sources of variability in mobile channel measurements are.
- How we learn this.
Outline

1. Overview
2. The Experiment
3. Results
 - Central Tendency Variability
 - Dispersion Variability
4. Conclusions

What You’ll Learn:
- What the main sources of variability in mobile channel measurements are.
- How we learn this.
Outline

1 Overview

2 The Experiment

3 Results
 - Central Tendency Variability
 - Dispersion Variability

4 Conclusions
Overview
What do we want to learn?

What are the main sources of *variability* in mobile channel measurements?

- List all potential sources of variability:
 - _______ _______ _______ _______ _______
 - _______ _______ _______ _______ ...

- Which are the largest and most important?
- Separate the vital few from the trivial many.
Overview
What do we want to learn?

What are the main sources of *variability* in mobile channel measurements?

- List all potential sources of variability:
 - _______ _______ _______ _______ _______
 - _______ _______ _______ _______ ______

- Which are the largest and most important?
- Separate the vital few from the trivial many.

How do we learn this?
- Experimental design
- Proper research methods

We studied 15 potential sources of variation:
- Five main effects
- Ten two-way interactions
Overview
What did we do?

We manipulated 5 variables:

- **Transmitter Height**
 - low
 - high

- **Transmitter Power**
 - 37dBm
 - 47dBm

- **Route**
 - LOS
 - non-LOS

- **Rx Vehicle Speed**
 - 20mph
 - 30mph

- **Traffic Conditions**
 - off peak
 - peak

We measured RF power on the highlighted roads. We computed **clutter loss**.
Here’s how we did it.
Transmitter and Receiver

Also varied: \textbf{Tx Power} 37dBm 47dBm

Tx Height high

Receiver Van

Route

LOS nonLOS

Speed

20mph 30mph

Traffic

peak offPeak

Mark McFarland – Institute for Telecommunication Sciences
Screening Experiments in Mobile Channel Measurements
Here’s how we did it.
View from LOS route looking at transmit sites (both unobstructed, but for leaves)
Here’s how we did it.

View from non-LOS route in direction of transmit sites (both obstructed)
Outline

1. Overview
2. The Experiment
3. Results
 - Central Tendency Variability
 - Dispersion Variability
4. Conclusions
One Run: **47dBm** high offPeak 20mph
One Run: **47dBm** | **high** | **offPeak** | **20mph**

Data shown as time series, boxplots, and histograms.
Experimental Design
The Split-Plot

The design tells us how to set each variable and collect the data.

- Split-plot design was developed for agriculture in 1930s.
- Used when some variables are hard to change.
 - Transmitter height
 - Traffic

1930s ⇔ 2018
Agriculture ⇔ Radio Science
Outline

1 Overview

2 The Experiment

3 Results
 - Central Tendency Variability
 - Dispersion Variability

4 Conclusions
1 Overview

2 The Experiment

3 Results
 • Central Tendency Variability
 • Dispersion Variability

4 Conclusions
Results

Sources of Variation - Central Tendency

Three statistically significant sources of variation in clutter loss central tendency:

- Two main effects:
 - Route (LOS/non-LOS condition)
 - Transmitter height (low/high)

- One interaction effect:
 - Between route and transmitter height
Results

Clutter Loss Main Effects Plot - Central Tendency

Two main effects: transmitter height and route

Factors
- txHeight
- traffic
- Route
- txPwr
- speed

Mean Clutter Loss (dB)
- low
- high

nonLOS
- offPeak
- peak

20mph
- 30mph

37dBm
- 47dBm
Results

Clutter Loss Interaction Plot - Central Tendency

One interaction: between route and transmitter height

Mean Clutter Loss (dB)

Transmitter Height

Route

-2 - nonLOS
-1 - LOS

Mark McFarland – Institute for Telecommunication Sciences

Screening Experiments in Mobile Channel Measurements
Results

Clutter Loss Pareto Chart - Central Tendency

99% of variability in clutter loss due to only two variables!

A significant finding!
Outline

1. **Overview**
2. **The Experiment**
3. **Results**
 - Central Tendency Variability
 - Dispersion Variability
4. **Conclusions**
Results
Sources of Variation - Dispersion

No statically significant effect

Another significant finding!
Outline

1 Overview

2 The Experiment

3 Results
 - Central Tendency Variability
 - Dispersion Variability

4 Conclusions
Conclusions

We learned:

- Which factors in our study influence central tendency.
- No factors in our study influenced dispersion.
- We separated the vital few from the trivial many.

We found similar results for *K*-Factor and Coefficient of Variation as criterion measure. (not presented)

Impact

- Best practices
- Understanding the mobile radio channel
- Modeling

Mark McFarland – Institute for Telecommunication Sciences Screening Experiments in Mobile Channel Measurements
Conclusions
Clutter Loss Regression Tree Model

A very simple model...

If condition is true, Route: LOS. Else, txHeight: high.

Going the other way: great candidate data for classification.
References I

Outline

5 Appendix
You should know about this!

Irreproducibility Crisis

50–95% of all published research cannot be reproduced!

- Improper use of statistics
- Arbitrary research methods
- Lack of accountability
- Political correctness
- Groupthink
- Culture

Read the *National Association of Scholars’ shocking report, “The Irreproducibility Crisis of Modern Science.”*
No statistical test is robust to a violation of the assumption of independence of observations! I had to take every fourth observation to remove dependence, as shown with the autocorrelation function plots.
Modeling

A Clutter Loss Linear Model

<table>
<thead>
<tr>
<th></th>
<th>Clutter Loss Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>5.01 (0.31)***</td>
</tr>
<tr>
<td>Route.nonLOS</td>
<td>12.98 (0.45)***</td>
</tr>
<tr>
<td>txHeight.low</td>
<td>4.72 (0.43)***</td>
</tr>
<tr>
<td>Route.nonLOS:txHeight.low</td>
<td>13.45 (0.64)***</td>
</tr>
<tr>
<td>R²</td>
<td>0.90</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.90</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>604</td>
</tr>
<tr>
<td>RMSE</td>
<td>3.94</td>
</tr>
</tbody>
</table>

***p < 0.001, **p < 0.01, *p < 0.05
Modeling Impact
Clutter Loss Linear Model Residuals

Residuals vs Fitted

lm(clutter ~ route + txHeight + route*txHeight)

Mark McFarland – Institute for Telecommunication Sciences
Screening Experiments in Mobile Channel Measurements