Supply Chain Protection & Verification Through EM Side-Channel Signature Analysis

Alenka Zajic

August 2020

The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies – Bloomberg Businessweek 2018

Millions of Android Devices Are Vulnerable Right Out of the Box

Firmware bugs introduced by manufacturers and carriers put Android smartphones at risk - WIRED 2018

The Untold Story of NotPetya, the Most Devastating Cyberattack in History

Crippled ports. Paralyzed corporations. Frozen government agencies. How a single piece of code crashed the world. – WIRED 2018

Side Channels

- A side channel is a means of obtaining information about software execution outside of the program's intended communication
 - > Is X a side channel?
 - > Depends on what we consider "intended"
- ➤ Boils down to "you were not supposed to consider X as a source of information" (YWNS)

Categories of Side Channels

- Timing
 - > YWNS performance
- Cache, BPred, etc.
 - > YWNS microarchitecture
- > Power, EM, acoustics, etc.
 - > YWNS physical (analog) aspects of the implementation

- Bus snooping, DRAM-freezing, etc.
 - > YWNS open the computer!

❖TEMPEST: A Signal Problem

➤ Bell Labs discovered first wireless side-channel in 1943.

➤ Cryptography community is concerned about this problem because private-public key encryption can be broken via side-channels.

> Focus on simple hardware such as microcontrollers

EM Emanations From Computer Systems

- ➤ EM emanations from modern systems (laptops, desktops, cellphones, IoT) exist
 - > Can they leak any "interesting" information? (yes)
 - From how far away can they be received? (several meters)
- [1] A. Zajic and M. Prvulovic, "Experimental demonstration of electromagnetic information leakage from modern processor-memory systems," *IEEE Transactions on Electromagnetic Compatibility*, vol. 56, no. 4, pp. 885-893, August 2014.
- [2] D. Genkin, I. Pipman, and E. Tromer, "Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction Attacks on PCs," in Proc. Crypto. HW and Emb. Sys. (CHES), 2014.
- [3] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, "Stealing Keys from PCs using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation," in Proc. Crypto. HW and Emb. Sys. (CHES), 2015.
- [4] Mordechai Guri, Assaf Kachlon, Ofer Hasson, Gabi Kedma, Yisroel Mirsky, and Yuval Elovici, "GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies," Usenix Security Symposium 2015.
- [6] R. Callan, A. Zajic, and M. Prvulovic, "FASE: Finding Amplitude-modulated side-channel emanations *Proceedings of the 42nd International Symposium on Computer Architecture (ISCA)*, pp. 592-603, June 2015.
- [7] R. Callan, A. Zajic, and M. Prvulovic, "A practical methodology for measuring the side-channel signal available to the attacker for instruction level events," *IEEE MICRO 14*, pp.1-12, Cambridge, UK, December 2014.

Pre-Deployment Verification Continuous Verification RFB-Based IC Verification and EME-Based Firmware EME-Based Software and Verification **RF Anomaly RFIC Verification Firmware Verification Real-Time EME Analysis RFB Analysis RX EME Analysis** Training (Original AES) AES + Dormant T1800 TX XYZ Low-**Positioning Cost RX** Deploy Compact Normal **Functional** Probe **Operation Testing**

❖Impedance Based Side-Channel?

Detecting HW Trojans via Backscattering Signals?

- Synthesized AES-128 crypto-processor on FPGA
 - ➤ 11-cycle AES pipeline, new 128-bit data block begun every cycle
- We implemented the hardware Trojan T1800 from trust-hub (http://trust-hub.org/).
 - > Activated by a specific 128-bit input value
 - > Trojan's payload circuitry dormant (no switching) until activated
 - Once activated, payloads circuitry toggles a lot (to drain battery)
 - > Overall size ~1.7% of AES circuit
 - ➤ Added to layout while preserving place/route of AES circuit

[8] L. N. Nguyen, C.-L. Cheng, M. Prvulovic, and A. Zajic, "Creating a backscattering side channel to enable detection of dormant hardware Trojans," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 2019.

❖Idea for Detection

- > Trojan's "trigger" circuitry is small but active
- Trojan's connection to AES circuit changes impedances in the original circuit, changing its EM behavior
- ➤ Sub-cycle temporal granularity, need BW that is many times the clock rate to capture such rapid changes

Measurement Setup for RFB

*****Comparison with EM and Power Side-Channels

Detection of Counterfeit Designs

Pre-Deployment Verification Continuous Verification RFB-Based IC Verification and EME-Based Firmware EME-Based Software and Verification **RF Anomaly RFIC Verification Firmware Verification Real-Time EME Analysis RFB Analysis RX EME Analysis** Training (Original AES)
AES + Dormant T1800 TX XYZ Low-**Positioning Cost RX** Deploy Compact Normal **Functional** Probe **Operation Testing**

Firmware of SEL-351S Protection System for Power Systems

Different Firmware of SEL-351S Protection System

Pre-Deployment Verification Continuous Verification RFB-Based IC Verification and EME-Based Firmware EME-Based Software and Verification **RF Anomaly RFIC Verification Firmware Verification Real-Time EME Analysis RFB Analysis RX EME Analysis** Training (Original AES)
AES + Dormant T1800 TX XYZ Low-**Positioning Cost RX** Deploy Compact Normal **Functional** Probe **Operation Testing**

Syringe Pump

➤ The buffer overflow overwrites the return address, causing it to jump to the function that is responsible for syringe movement.

[9] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, "EDDIE: EM-Based Detection of Deviations in Program Execution," *Proceedings of the 44th International Symposium on Computer Architecture (ISCA)*, June2017.

[10] N. Sehatbakshsh, R. Callan, M. Alam, M. Prvulovic, and A. Zajic, "Leveraging Electromagnetic Emanations for IoT Security," Hardware Demo at IEEE International Symposium on Hardware Oriented Security and Trust (HOST) May 1-5, 2017.

Syringe Pump

Spectrogram of the Syringe pump application in malware free (left) and malware afflicted (right) runs

Various Devices and Applications

Device	Detection Latency
Arduino	250 μs
Nios-II	250 μs
TS	750 μs
Olimex	1500 μs

Syringe Pump infected with Ransomware

Conclusions

- Analog side-channels are not always bad, understanding physics behind it makes it powerful tool.
- ➤ New side-channel: Impedance-based side channel
- ➤ Leveraging EM side channels for firmware verification and malware intrusion detection
- ➤ Leveraging impedance-based side channel for hardware Trojan detection

THANK YOU

Questions?

