

John Shea *Team GatorWings*

SPECTRUM COLLABORATION CHALLENGE

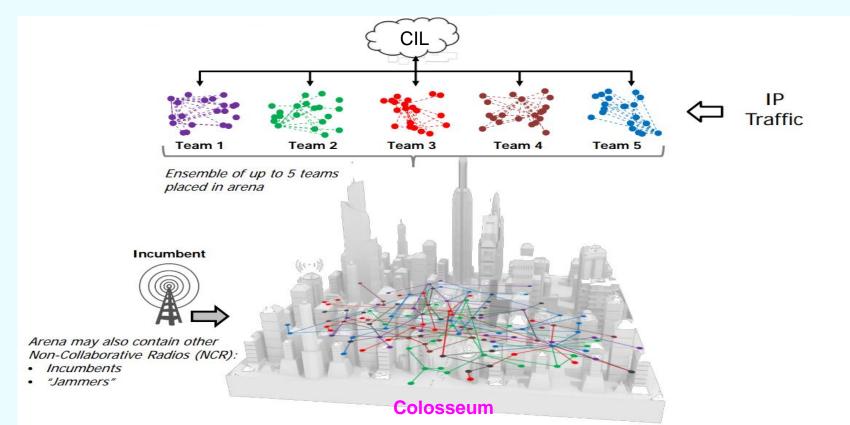
USING AI TO UNLOCK THE TRUE POTENTIAL OF THE RF SPECTRUM

SC2 Design Challenge— Want Spectrum Management to:

- Respond in real time as users and traffic evolve:
 - Requires autonomous intelligent agents (take humans out of the loop)
 - Time scales of seconds (vs. one day in CBRS)
- Support diverse users and applications
 - Frequency channelization not predetermined (vs. 10 MHz channels in CBRS)
 - Need scaffolding to support information interchange: channels and protocols
 - Must incentivize accurate reporting and spectrum sharing
 - Greater intelligence needed => more than traditional resource optimization

SC2 Design Challenge: Want Spectrum Management to

- Require minimal infrastructure and optimize spectrum usage across users' spatial distributions
 - No central infrastructure (i.e., SAS in CBRS)
 - Spectrum management should be distributed and collaborative
- Operate in presence of incumbents and interferers
 - Need distributed sensing and reporting



Conclusions from SC2:

- These goals can be achieved with existing technologies
- Much work to be done:
 - Efficiency?
 - Security / Privacy?
 - Incentivizing and enforcing?

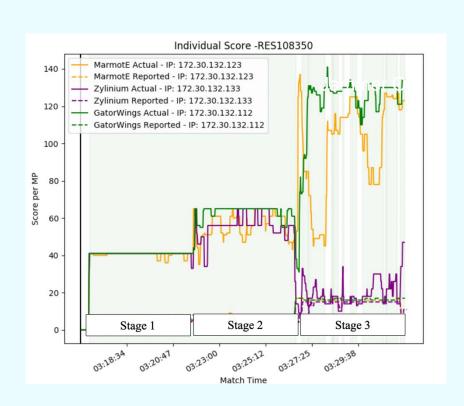
Spectrum Sharing Scenario in SC2

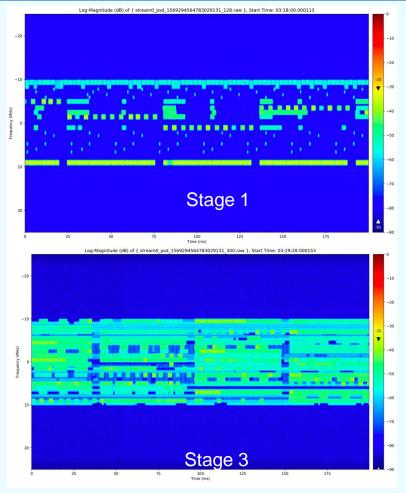
SC2 Scoring Structure

- Each team scores points by delivering IP traffic flows achieving certain QoS mandates (throughput, latency, hold time, etc.)
- Team's match score = $\begin{cases} \min score & \text{if } \min score \leq scoring threshold} \\ \text{achieved } score & \text{if } \min score > scoring threshold} \end{cases}$ where $\min score = \min score = \min score = minimum among all 5 teams' achieved scores$
- A mixed cooperative/competitive game

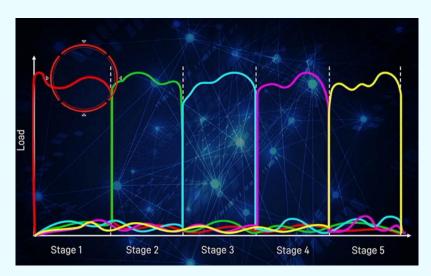
Information for Spectrum Sharing in SC2

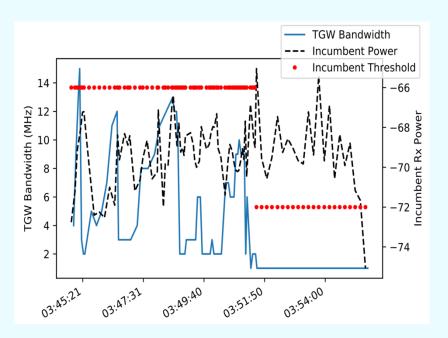
- Adapt strategy in presence of rich but incomplete information:
 - Do not know, but may learn, other teams' waveforms, protocols, strategies
 - No online scoring information, other than teams' estimates
 - Teams use CIL to report frequency use, radio locations, performance (score) estimates
 - Some CIL veracity checks on spectral use, scores
 - Teams do not have to report their true scores when their scores are above the threshold
 - Incumbents report channel usage, interference received and threshold, threshold violations
 - Spectrum sensing to estimate peer channel usage and detect jamming and active incumbents


Basic Dynamic Spectrum Sharing: Alleys of Austin

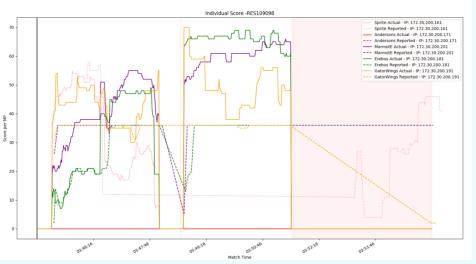

- 3 / 5 squads (networks) of solders sharing 20 MHz spectrum
- 3 stages of increasing IP traffic demands
 - Stage 1: VOIP & C2 streams
 - Stage 2: Stage 1 + video stream & file
 - Stage 3: Stage 2 + more video streams & files

Dynamic Spectrum Sharing – Lessons from SC2

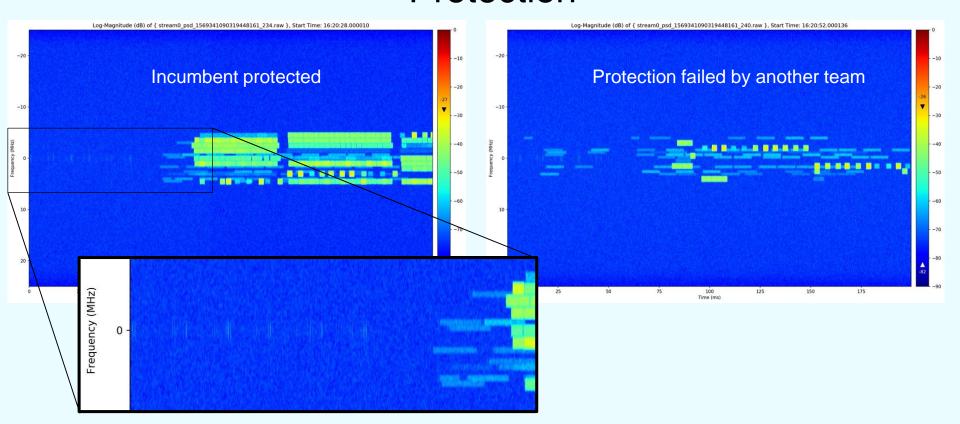


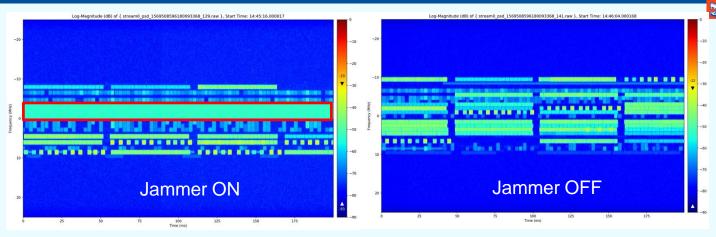


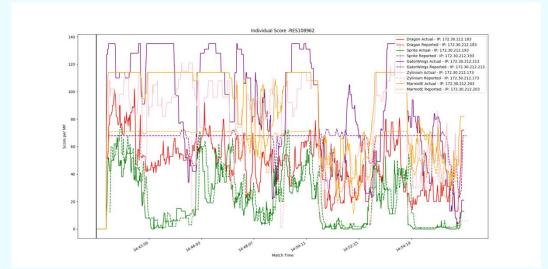

Traffic Surges (Slice of Life)



Passive Incumbent Protection







Active Incumbent (Vehicular Radar) Protection

Dynamic Spectrum Sharing – Lessons from SC2

Our Strategy – Custom Radio Stack

- Flexible/agile: able to exploit opportunities in time, frequency & space (cooperative + competitive)
- Robust: adaptive and capable of operating in presence of strong interference (competitive)
- Everything adaptive:
 - o PHY: Acquisition, Modulation, Coding, TX Power, RX Gain
 - LL: Channels and Time Slots/Channel, Mapping of SRCs to Time Slots
 - NET: Supported flows, admission control granularity down to individual files/bursts
 - Other: Channels to jam

Spectrum Sharing Decision Engine

- Decision engine attempts to maximize our team's match score :
 - which flows are transmitted
 - which channels are used and by which radios
 - which flows are sent in which pockets (time-frequency resource unit)
- Action space is huge!
 - 40 channels x 10 time slots = 400 pockets
 - As many as 100+ flows
 - 100⁴⁰⁰ possible pocket schedules!

Inputs to Decision Engine

Our team's QoS Info and Performance

- QoS mandates for our team's flows
- Estimated achieved mandates

Channel Info and Link Quality

- Estimated channel occupancies from our spectrum sensor (PSD measurements)
- Channels used by our network and by peer networks
- Computed SINRs from our interference map (GPS and voxel info from CIL messages)
- Throughput per pocket expected between each SRC-DST pair

Peer IDs and Performance Info

- Inferred peer network IDs (based on CIL message characteristics)
- Estimated achieved and total mandates (from CIL messages)

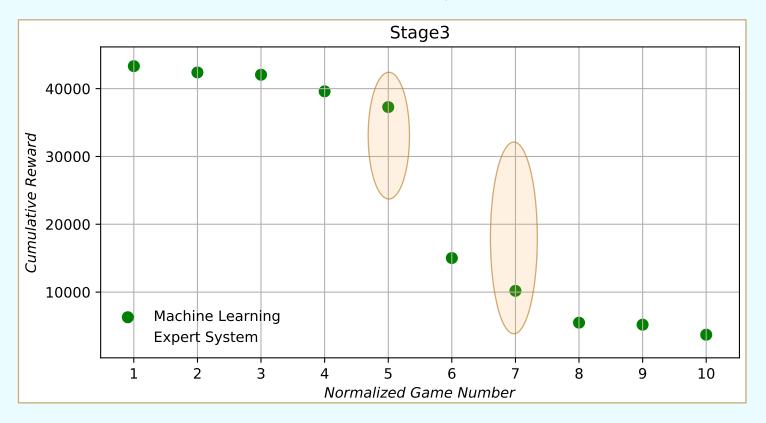
Decision Engine Design

- No ML black box that can solve spectrum sharing problem
- Decompose problem into smaller pieces:

1. Channel selection

- Determines target set of channels C to be used by our network
- ML and expert system/control/optimization approaches

2. Admission control


- |C| determines number of pockets available
- Estimates number of pockets needed to support each flow
- Iterative process to determine set of flows to admit in order to maximize points scored

3. Pocket schedule assignment

- Linear program to allocate number of pockets to satisfy latency requirements of all admitted flows
- Greedy algorithm to assign pockets in each frame to satisfy mandates of all admitted flows
- Maps to channels in C based on worst-case SINR over links of SRC-DST pairs in above assignments

Comparison of Expert System vs ML

Lessons Learned – Dynamic Spectrum Sharing

- A heterogeneous set of autonomous intelligent agents can manage spectrum in a distributed & collaborative fashion in time scales of seconds
- Dynamic sharing, traffic surge accommodation, passive and active incumbent protection can all be achieved with acceptable efficiency at the present time
- Essential to optimize strategy based on reward structure (scoring rules)
 - → Reward structure drives spectrum sharing behaviors

Lessons Learned – Machine Learning and AI for DSS

- No machine-learning black box that can solve spectrum sharing problem
- Domain-specific engineering to decompose problem
- Not enough training and validation data for ML
 - Need a less resource-intensive simulation environment to train ML algorithms
- Peer strategies (and probably radios) rapidly changed during last few weeks of SC2
 - ML algorithm (operation after training) couldn't catch up
 - Switched to ES algorithm
 - Probably need more exploration and switching system to cope with rapid updates

Moving Forward – Technical Eco-system for DSS

- Suitable DSS system architecture (centralized, distributed, hybrid, geography, etc)
- Incentive frameworks to encourage desirable DSS behaviors
- Collaboration/information-sharing DSS protocols
- More efficient intelligent, autonomous agents to implement DSS strategies
- Radio & network design for DSS
- Privacy & security in DSS
- Monitoring and enforcement of DSS rules
- Performance metrics
- Test and experimentation
- Device/network certification

ML/AI Research Problems in DSS

- How to generate/collect suitable data sets for ML?
 - Simulation, RF emulation, or RF measurement?
- How to train multi-agent reinforcement learning agents with large state and action spaces?
- How to ensure ML solutions are robust to new situations?
- How can ML be used to police for noncompliant/abnormal behaviors?
- How to leverage ML in preserving privacy during exchange of collaboration information?
- Can ML adapt incentive structures over time to enhance overall network performance?

Acknowledgements

Tan Wong

Team Leader
Physical Layer
Sensing and
Spectrum
Mapping

David Greene

FPGA Network Layer IDE & Tools

Tyler Ward

Physical Layer Link Layer Control Plane

Marco Menendez

CIL
Development
Workflow
Optimization

Acknowledgements

Caleb Bowyer

Machine Learning

Shiming Deng¹

Analysis & Visualization Tools

Quan Pham²

Channel Emulation

Josh Agarth³

CIL Development

¹Phases 1 & 2: Now with L3Harris

²Phases 1 & 2: Now pursuing Ph.D.

³Phase 1: Now with Lockheed-Martin

- DARPA SC2 Team for running SC2 and developing Colosseum
- DARPA SC2 Prizes and NSF EAGER Grant 1738065 for supporting our team's efforts