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Abstract—The Advanced Wireless Services (AWS-3) Spectrum
Sharing Test and Demonstration (SSTD) Program has been in-
vestigating refinements to propagation models within the context
of AWS-3 licensee coordination requests. A variety of methods
have been developed to derive enhanced clutter models based
on data from multiple sources, including but not limited to
field measurements, empirical models, and simulations. Building
on previous work, we use machine learning methods to create
computationally tractable clutter loss models for the purpose of
spectrum sharing and improving the methodology for prediction
of interference into Department of Defense (DoD) incumbent
receivers. We introduce three machine learning techniques for
predicting clutter loss, a key ingredient in aggregate interference
modeling. These machine learning methods process available
nation-wide topographical and morphological data as part of
their own input features. We show that they outperform existing
approaches for predicting clutter loss by a non-trivial margin.
Our results indicate machine learning based approaches could
offer a high-fidelity standard for predicting clutter loss in
computationally tractable evaluation of deployment scenarios.

Index Terms—Machine Learning, Statistical Modeling, Ag-
gregate Interference, Advanced Wireless Services 3 (AWS-3),
Spectrum Sharing, Long Term Evolution (LTE), Propagation,
Clutter Loss

I. INTRODUCTION

For policymakers in the United States, solving the spectrum
sharing challenge is pivotal for bolstering national security
and economic competitiveness. Currently, there is need for
innovative spectrum sharing methods so that commercial op-
erators in the United States can access desirable mid-band
frequencies. A key implementation challenge is how to ensure
spectrum sharing activities do not interfere with the continuity
of United States national security operations. Rising to this
challenge, Defense Information Systems Agency (DISA) De-
fense Spectrum Organization (DSO) established the Spectrum
Sharing Test and Demonstration (SSTD) Program to facili-
tate and operationalize spectrum sharing between commercial
deployments and DoD incumbent receivers [5].

The SSTD Program is responsible for recommending im-
provements in several key areas to ensure spectrum sharing
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activities. One high priority area for the SSTD Program is to
develop new computationally tractable models to assess ag-
gregate interference into DoD systems caused by commercial
deployments. In this area, the SSTD Program has introduced
computational advancements to the input parameters used in a
standard link budget equation employed to assess how various
factors influence aggregate interference at DoD incumbent
receivers. Formally, the link budget equation for aggregate
interference is expressed as [5]:

N
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where E (-) is the expectation operator, 7 indexes interference
sources (e.g., User Equipments (UEs)), F; is a function that
groups multiple factors influencing interference, and [ ; is the
clutter loss factor.'

Figure 1 illustrates a sector where aggregate interference
from transmitter handsets (UEs) impact a DoD incumbent
receiver. The clutter loss factor of the link budget equation is
the additional propagation loss due to foliage and buildings.
Generally, the clutter loss distribution (CLD), which is the
distribution of the clutter loss values in a sector, depends on
many factors, including but not limited to operating frequency,
transmitter height, and the structure of the scene. The complex
mechanisms behind clutter loss statistics—such as reflections,
diffractions, refractions, scattering, free space loss—are usually

'To be precise, we simplify the link budget equation to highlight our
emphasis on the clutter loss factor. Dropping the subscript for notational
simplicity, we define

_ nl X gr(0,8) X eirp(Pr)
Tl Xy X Is X fdr(Af)

where nl is the load factor, eirp is the modeled UE transmitter effective
isotropic radiated power in mW, [, is the interference path propagation loss
factor between a modeled UE and DoD incumbent receiver, fdr(Af) is the
frequency dependent rejection factor of the victim DoD incumbent receiver,
gr(0, ¢) is the DoD antenna incumbent receiver gain factor in the direction
of the transmitted, /,,,; is the DoD incumbent receiver antenna polarization
mismatch loss factor, and I is the DoD incumbent receiver system loss factor.
Furthermore, unlike previous work, we separate the clutter loss factor from
the path loss factor.

Copyright 2022 The MITRE Corporation. Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-1502
The view, opinions, and/or findings contained in this report are those of The MITRE Corporation and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation
This technical data deliverable was developed using contract funds under Basic Contract No. W56KGU-18-D-0004



modeled using empirical techniques or electromagnetic simu-
lation.

Both empirical and simulation-based approaches for ob-
taining the clutter loss statistics have their advantages and
disadvantages. Empirical models, for example, are easier to
implement and more robust to an environment’s details but
are less accurate than electromagnetic simulation models [2].
In contrast, electromagnetic simulations, such as deterministic
ray-tracing models, are more accurate but require significant
computational resources and detailed environmental data to
execute, both of which may be limited in real-world evaluation
of deployment scenarios. Safe and reliable spectrum sharing
necessitates computationally tractable aggregate interference
assessments, and accurate clutter loss prediction. Given these
limitations, new computationally tractable methods are needed
for accurately estimating clutter loss of aggregate interference
assessments.

The link budget equation sets the stage for using statistical
methods to predict aggregate interference into DoD incum-
bent receivers within computationally tractable evaluation of
deployment scenarios. Departing from the traditional empirical
and simulation-based methods, we developed computationally
tractable machine learning methods to predict the CLD, and
also the equivalent clutter factor E(l;l), in the link budget
equation. The inverse (negative) of the equivalent clutter factor
is the equivalent clutter loss (ECL) when ECL is represented
in linear (dB) units. The ECL represents the expected impact
of the clutter to aggregate interference into DoD systems.
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Fig. 1: Diagram illustrating aggregate interference of a sector
and its impact on a DoD incumbent receiver. The clutter loss
factor is due to the additional propagation loss from foliage
and buildings.

We introduce new machine learning based approaches for
predicting clutter loss statistics, and specifically, we develop
three alternative methodologies for the community to select
from based on their own deployment evaluation criteria. These
three methods use available nation-wide morphological and
topographical features. Our first method uses a combination
of supervised and unsupervised learning techniques to derive
a new category model to predict ECL for new sites. Previous
work in this area has utilized subject matter expertise to
handcraft decision trees for estimating clutter loss for new
site interference assessments [3]. These handcrafted decision

trees group sites according to their morphological details,
where each group is referred to as a category. Each category
represents a different spatial morphology, ranging from dense
urban environments to barren landscapes. The handcrafted
categories are used to construct CLDs which are used to
estimate clutter loss for any sites that belong to the category.

Our category model which is denoted as neural network
Gaussian mixture models (NN-GMM) is inspired by recent
advances in using deep neural networks for learning feature
transformations that are amenable for clustering analysis [8].
Specifically, we train a neural network to learn a feature trans-
formation that projects our inputs into a lower dimensional
space that is highly correlated with our target value—-ECL.
Once we discover this feature transformation, we project our
inputs using the encoder portion of the network [6] and
cluster the projection using Gaussian Mixture Modeling [4] to
discover new categories among our transformed features. We
show our approach outperforms the benchmark, handcrafted
category models.

Our second and third methods both rely on deep neural
networks (DNN) to predict ECL and the CLD.2 Our second
method (NN-ECL) uses the trained DNN from our category
model to predict ECL at the site-level. We demonstrate this
method tends to outperform our other DNN-based methods
for predicting ECL at the site-level. Our third approach (NN-
CL) is designed to estimate the clutter loss distribution at the
site-level. Unlike the other approaches, this method starts by
building a network to predict the clutter loss factor’s distribu-
tion, rather than the mean value directly. Using the estimated
clutter loss distributions, we can compute the ECL value
by transforming the distributions into a linear transmission
gain and taking the mean of the transformed distribution.
Despite being lightly optimized, we find both DNN methods
outperform the benchmark category models, including our
encoder-based clustering algorithm, by a non-trivial margin.

A comparison of performance across the models shows
that the machine learning methods result in meaningful im-
provements over the benchmark category models. Our ma-
chine learning based category model, NN-GMM, reduces the
prediction error by 31% relative to the benchmark category
models. We also demonstrate our DNN regression methods,
NN-ECL and NN-CL, can reduce prediction errors between
51-84% relative to the handcrafted category model. Further,
the machine learning models result in fewer outliers in the
error distribution, implying these models are less likely to
generate non-trivial mistakes in computationally tractable ag-
gregate interference assessments. Our initial results suggest
computationally efficient machine learning methods can offer
high fidelity predictions of aggregate interference assessments.

The organization of the paper is as follows. In Section
I, we review the prior work on data-driven and machine
learning clutter loss modeling techniques. Section III provides
a background on the data used in the analysis. We survey

2In many respects, the DNNs used in both methods are lightly fine-tuned
and can be reasonably considered as “off-the-shelf”.



the data generating process and a subset of features used in
the analysis. Section IV discusses three new machine learning
approaches for clutter loss prediction. The performance results
of these new techniques and the base-line techniques are
presented in Section V. Section VI concludes the paper with
future avenues of research.

II. PRIOR WORK

In this section, we briefly review some of the p rior work
in the area of machine learning and clutter loss prediction.
We start by reviewing various studies that also use machine
learning methods for predicting clutter loss. We close the
section by presenting a detailed review of the CASY-19 and
CASY-21 [3] category models used as benchmarks in our
study. We elect to use these category models as benchmarks
due to their deployment on the same data used within our
study.

We briefly note some of the relevant machine learning
techniques that have been used for path-loss modeling, and
we recommend [10] for an extensive review of work in this
area. One of the earliest results of using machine learning [1],
was an improved path-loss prediction model for urban envi-
ronments based on a radial basis function neural network in
which the height of the receiving antenna and the transmitting
antenna and the distance between are used as inputs.In [15],
a neuro-fuzzy inference system and a generalized regression
neural network were used to predict path-loss of base stations
with significant prediction accuracy relative to the empirical
Hata [2] and Walfisch-lIkegami [12] models. Some of the fea-
tures utilized were results from other base-stations, distance,
frequency, and transmitter height. The authors of [11] proposed
a semi-empirical artificial neural network predictor using the
Walfisch-Ikegami empirical model as an expert input to predict
base-station path-loss. The artificial neural network resulted
in a significant improvement for path-loss predictions for the
800 MHz to 1800 MHz bands. In [13], the authors proposed
a machine learning framework for modeling path-loss using a
combination of three key techniques: artificial neural networks,
Gaussian process, and principle component analysis (PCA).
The artificial neural network, w hich outperformed empirical
models, was optimized to perform both path-loss prediction
and shadowing prediction for the 450, 1450 and 2300 MHz
bands. The authors in [14] presented FadeNet which can
predict large-scale fading from a base station to each location
in its coverage area based on convolutional neural networks.
FadeNet uses height information of buildings, foliage, terrain,
etc., of a target site as input, to generate the large-scale fading
prediction as an output. FadeNet was trained using labeled
data obtained via computationally-expensive deterministic ray-
tracing. These results suggest that combining expert-features,
morphological and geological features can help improve the
estimation of propagation loss factors.

Prior SSTD program work on data-driven clutter loss esti-
mation involves using handcrafted decision trees for creating
category models [3]. These category models, coined CASY-
19 and CASY-21 (jointly referred to as CASY), are designed

to categorize a large number of site locations into one of
seven clutter morphology categories (Dense-Urban, Urban,
Suburban-Forested, Suburban, Barren, Rural, Rural-Forested).
The first step in the CASY-19 clutter category model is
to extract the land cover statistics from the US Geological
Survey’s National Land Cover Database (NLCD) within a
radius of 300 meters of a site location.

Note that the NLCD provides the type of land cover data,
not the clutter height information. The extracted NLCD land
cover statistics for the sector location are then fed into the
CASY decision tree algorithm, which will determine the corre-
sponding CASY clutter morphology. In the CASY algorithm,
the percentage of an NLCD value that exists within a radius
of 300 m of a sector location is used as input feature. The
CASY-19 and CASY-21 algorithms are described in [3].

The CASY-21 clutter category model is based on the CASY-
19 algorithm with further refinement based on the clutter
height profile of a sector. The first step is to run the CASY-
19 algorithm to determine the CASY-19 clutter categories for
a given sector location. The second step is to calculate the
average clutter height for a given sector location coordination
request (CR) using the 5 meter resolution nationwide Digital
Surface Model (DSM) and Digital Terrain Model (DTM) data.
The average clutter height for a sector is computed by taking
the average of the difference between the DSM pixel heights
subtracted by the DTM pixel height for a 300 meter sector
radius. The average clutter height is then used to refine all
CASY-19 categories with the exception of barren into sub-
categories of ”flat” and “non-flat”. For each of the CASY-19
categories (except for barren), there is an associated unique
threshold which was calculated based on the category type.
If the average clutter is above the threshold, the sector is
assigned as a flat subcategory (e.g., Urban-Flat). If it is below
the threshold, the sector is associated with the non-flat sub-
category (e.g., Urban Non-Flat). Consequently, the CASY-21
algorithm has 13 categories and provides further improvement
for ECL prediction relative to the CASY-19 algorithm as
shown below.

III. DATA

The clutter statistics (CLDs and their associated ECL val-
ues) generated for use in this analysis were computed using
the Terrain Integrated Rough Earth Model (TIREM) [16]
plus Light Detection and Ranging (LiDAR) technique. These
statistics were obtained from 4,052 tower locations for differ-
ent morphologies including Dense-Urban, Urban, Suburban,
Suburban-Forested, Rural, Rural-Forested and Barren. The
UEs were placed outdoors for the generation of this set of data.
Clutter loss statistics for these morphologies were calculated
by subtracting the LiDAR layer with clutter path-loss from the
bare earth layer path-loss for each path. The measurements
of the CLDs were generated at a frequency of 1755 MHz,
and at elevation angles of 1.5, 3, 5, 7, 10, 20, 30, 50 and 70
degrees, respectively. In order to obtain the CLDs used in our
data, 200 UEs were generated inside the 300 meter radius at
random locations, and clutter loss was measured for all the



200 UEs at at 16 radials. Figure 2 illustrates an example of
clutter path rays emanating from UEs in a dense urban setting
whose values are measured at 16 radials that are 2km from a
cell center with a radius of 300 meters.
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Fig. 2: An illustrative example of clutter loss statistics mea-
sured at 16 different angles in an urban environment

In order to perform ECL and clutter loss distribution pre-
diction, a rich dataset of 114 obtainable features including
the clutter height distribution, the percent of azimuth paths
blocked at 10 degrees interval, elevation angles, and National
Land Cover Database (NLCD) pixel percentage of a defined
Lat/Long area were provided. Additional features on NLCD
percentage over clutter heights of 1.5, 3 and 5 meters were
also provided. Height information such as the average clutter
height and clutter height standard deviation (std) of the sector,
and the probability of clutter height above 1.5, 3 and 5 meters
are also provided. The ECL and CLD target variables were
calculated using the aforementioned electromagnetic modeling
tools. The goal of the ML techniques is to find useful and
hidden correlations between the training input features in order
to learn new category models, and accurately predict ECL and
CLD.

IV. MACHINE LEARNING METHODS FOR CLUTTER LOSS

In this section, we describe the details behind our three
machine learning based methods for predicting clutter loss.
For model training and evaluation, we utilize 70 percent of
the data for training and fine-tuning and reserve 30 percent of
the data for testing. All results presented herein are based on
performance on the test dataset.

For optimizing the DNNs, we use the adaptive momentum
(Adam) optimizer first introduced by Kingma [7]. Unlike
regular stochastic gradient descent which uses a fixed learning
rate, the Adam optimizer uses adaptive learning rates where
the learning rate of each parameter is adapted in each iteration
by scaling the initial step-size by exponential moving averages
of the first and second moments of the gradient. We use a
step-size of 0.001, a value of 0.9 for the decay rate of the
first moment estimates (3;), and 0.99 for the decay rate of the
second moment estimates ((35). For each DNN, we minimize
the mean-squared error loss function as the optimization

criteria, and we train the network using a batch size of 32
across 500 training cycles (epochs).

A. A DNN for Predicting Equivalent Clutter Loss

Our first DNN architecture (NN-ECL) is designed to predict
site-level ECL values as the primary output of the model. As
discussed below, a secondary use of the NN-ECL architecture
is for discovering non-linear transformations of our feature set
that are more correlated with site-level ECL values. The NN-
ECL architecture is lightly fine-tuned based on performance on
the training dataset, and our architectural choices can likely be
improved on through automated, hyperparameter optimization
algorithms. In addition to the input layer and prediction head,
the NN-ECL architecture consists of 3 hidden layers with
each layer size set to 150, 50, and 10, respectively. We use
the Rectified Linear Unit (ReLU) activation function for each
hidden layer, and a linear activation function for the prediction.
We visualize the NN-ECL architecture in Figure 3. The loss
function for the NN-ECL is given as
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Fig. 3: DNN Architecture for the NN-ECL model. The model
consists of three hidden layers in addition to the input (pass
through) layer and the prediction head. Each hidden layer is
transformed using the ReL.U activation function. The output
of the NN-ECL is site-level ECL predictions.
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where ¢ corresponds to a site-level measurement and Ny, 1S
the number of measurements in the training dataset.

B. A Clustering Algorithm for Learning Representative ECL
Categories

Our second approach is inspired by previous category
modeling approaches, namely CASY-19 and CASY-21, where
learned categories generate distributions of ECL values for
new site interference assessments. The objective of category
modeling is to learn a set of K categories where each category
represents a latent partitioning of the feature space X such that
each partition k£ generates a distribution Fj of ECL values.
Once the latent categories are discovered, the mean of the
distribution F}, is used as a prediction for new sites that fall
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Fig. 4: Algorithm for the NN-GMM model. The algorithm consists of learning the encoder portion of the NN-ECL architecture,
using the learned encoder to project the features into a lower dimensional space that is more correlated with ECL, and clustering

the features using GMM to obtain representative categories.

into the same category. Formally, we express the category loss
function as follows

K Ny

ECLl
KZZ | k—

k=11=1

ECLH
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where the inner term represents the Mean Absolute Error
(MAE) within a category, and the mean is taken across all
categories to obtain a representative MAE for the category
model.

The task of category modeling is to minimize the loss
expressed in (2). However, unsupervised clustering algorithms
are not designed to minimize this function directly, and in
most cases, the clustering algorithm needs to be adapted to
fit the category modeling task. To adapt clustering algorithms
for the category modeling task, we utilize the encoder portion
of the NN-ECL model to transform the inputs into a space
that is more correlated with site-level ECL values. The learned
feature transformation g(X) is then used as an input into stan-
dard clustering algorithms. Here we apply GMM after using a
PCA reduction of the learned feature transform features. This
reduced data feature is denoted by V' where V = PCA(g(X))
and V has a size of N x M where N is the number of observed
data and M is the number of principal components retained
from the PCA algorithm. We denote by V,, as the nth transform
sample of our data from the N observed dataset. The GMM
model is described in more detail in [9], and here we provide
a brief summary. The GMM model can be written as a linear
sum of K Gaussian variables, and has the probability density
form of:

p(V|©) = ZmN Ve, Eie).- 3)

k=1

For unsupervised learning, K is the number of clusters
used to fit the GMM probability density function into the
transformed featured data. It should be noted that GMMs are
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Fig. 5: Architecture for NN-CL model. The NN-CL model
has three hidden layers plus a prediction head (output layer).
The output layer is transformed using the softmax activation
function to ensure the estimates conform with the restrictions
on probability distributions.

considered to be a universal approximator for any continuous
probabilistic distribution [9]. Here O represents the complete
set of mixing parameters which are the mixing coefficients 7y,
means g and covariance matrices >, of the kth component
of K.

Considering the whole matrix data V, assuming that the
data points are drawn independently from the distribution, we
can express the likelihood function of Equation (3) as:

1np(V|7r,,u, ZIHZWkN l’n|ﬂk,2k) (4)
n=1

We use the Expectation Maximization algorithm to maximize
this function [9].
C. A DNN for Predicting Clutter Loss Distributions

Our second DNN architecture (NN-CL) is designed to
predict site-level clutter loss distributions. The architecture is



illustrated in Figure 5. The network is architecturally similar
to the NN-ECL model where we use 3 hidden layers with sizes
of 150, 75, and 110. Each hidden layer is again transformed
using ReLU activation functions. However, the most important
difference is the output of the NN-CL model is an array
of probability estimates, denoted as p;, which correspond to
the estimated site-level clutter loss distribution. Each element
of the array p, = p(ECL;, = ECLy) corresponds to the
discretized, probability density function estimates, where b
represents a discretized bin ranging from -1 to 100 dB in one
dB increments.

Since we are estimating a probability distribution, we force
the NN-CL model to ensure the conditions 0 < p;; < 1 and
Zb pip = 1 are met. To force these restrictions on the model,
we use the softmax activation function on the prediction head
such that each binned probability estimate is constructed as

follows
N exp (x;p)

Piv= =
! > opexp (i)

where x; corresponds to raw output of the final layer in the
neural network. The softmax activation is applied to this raw
output to ensure each estimate meets the restrictions described
above. Lastly, we optimize the NN-CL using the follow loss

function
N!rain 100

YN (ow — pin)’?
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V. RESULTS

In this section, we present the results from our machine
learning methods, demonstrating their out-of-sample
prediction performance and comparing them against the
benchmark category modeling algorithms, CASY-19 and
CASY-21.

A. DNN Performance

Figure 6 visualizes the out-of-sample performance of the
trained NN-ECL and NN-CL models. Each model’s ECL
predictions are compared to the actual ECL values at the site-
level within the test dataset. We find the MAE for both models
to be less than 1 dB on average, with the NN-ECL model (0.69
dB) slightly outperforming the NN-CL model (0.83 dB). We
also evaluate performance at lower elevation angles, namely
at the 1.5-degree elevation angle where clutter loss is most
severe, and find the MAE from the NN-ECL model (2.23 dB)
slightly outperforms the NN-CL model (2.55 dB). However,
we also use a weighted MAE (WMAE) that accounts for how
lower ECL values are more detrimental to DoD systems in
deployment.? Using the wMAE, we find the NN-CL model
outperforms NN-ECL at the 1.5-degree elevation angle, where
the wMAEs are given by 1.36 dB and 1.66 dB, respectively.

3We use a weighting formula that penalizes errors that occur in the lower
range of ECL values. Specifically, the weights are given by
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Fig. 6: Out-of-sample ECL Predictions from the DNN models

Lastly, we provide additional visualizations to summarize
the out-of-sample performance of the NN-CL clutter loss
distribution estimates in Figures 7 and 8. In Figure 7, the
y-axis corresponds to the observed probability densities (p;p)
and the x-axis corresponds to the predicted probabilities (p;p)
across all sites in our test dataset. We provide a 45-degree line
for reference. As an example, Figure 8 compares the actual
clutter loss distribution versus the clutter loss distribution
predicted by the NN-CL model for a random site in our data.
We note the NN-CL model’s performance at the spike at 0
dB in the clutter loss distribution.

B. Feature Transformation using NN-ECL

As discussed above, we use the NN-ECL as an encoder
to learn improved representations of our features to align
GMM clustering with the task represented in equation 2. To

and thus, the wMAE is

1 .
wMAE = ¥ ;wﬂECLi — ECL|
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TABLE I: Correlation Comparison

Raw Inputs Encoder
Feature Correlation Feature Correlation
% Azimuth Blocked 0.73 Feature 4 0.90
Elevation Angle 0.58 Feature 8 0.87
Height % >1.5m 0.30 Feature 2 0.78

demonstrate this, we compare the top 3 features correlated
with ECL in Table I. We show both the raw inputs and
compare them to the transformed features using the NN-ECL
encoder. We note the encoder-transformed features are
computed using features in the test dataset. Our results show
the DNN encoder approach greatly improves the correlation
between our feature set and the target value, ECL.

C. Category Model Comparison

The improved correlation introduced by the feature
transformation step suggests clustering algorithms may
improve on existing category models with respect to
the category loss function introduced in equation 2. To
demonstrate this, we compare the benchmark category
algorithms with the performance of the NN-GMM algorithm
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NN-CL
—— NN-ECL
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Fig. 9: Error CDF for Comparing Performance

using the standard deviation of the ECL category distributions.
We retained the first three principle components from PCA
and used ten clusters (categories) for the GMM. In particular,
Figure 10 shows the percent of categories with a standard
deviation below a fixed dB threshold for the training data set
for the CASY-19, CASY-21 and the NN-GMM algorithm. We
can see that all categories of the NN-GMM have a standard
deviation (STD) which is less than 4.75 dB while for the
CASY and CASY-21, all categories have a standard deviation
which is less than 8.75 dB. This shows that the NN-GMM
produces categories that are less dispersed around the mean,
and thus lead to a smaller prediction error when using the
category prediction approach.

D. Performance Comparison across Models

The objectives of the algorithms reviewed in this paper
are fundamentally the same. That is, they are all designed
to predict ECL for new site interference assessments. Given
the objectives are the same, we can compare each algorithm
directly using standard loss metrics, such as MAE and wMAE,
to determine what algorithms yield the highest fidelity predic-
tions. In Figure 9, we plot the cumulative distribution function
(CDF) of the (absolute) prediction error on the test dataset
using all models. We note the plot is restricted to include
only predictions for 1.5-degree elevation angle measurements.
In the figure, better model performance is associated with
CDFs shifted leftward, implying a higher fraction of sites have
smaller prediction errors. Overall, the figure shows the extent
to which the DNN-based approaches, including the NN-GMM
category, outperform the benchmark algorithms.

We summarize each algorithm’s performance across a range
of metrics in Table II. In particular, we compare each algo-
rithm’s performance across MAE, wMAE, and two metrics
that provide some additional details about the error distribu-
tion. Within all elevation angles, the DNN models, NN-CL and
NN-ECL outperform the category models across each metric.



TABLE II: Model Comparison

All Elevation Angles

1.5 Degree Elevation Angle

MAE (WMAE) % <3dB % >7dB MAE (WMAE) % <3dB % >7dB
CASY-19 4.36 (4.39) 37.55 12.27 5.24 (6.54) 33.51 29.04
CASY-21 4.28 (4.24) 39.78 12.66 4.84 (5.01) 37.72 24.47
NN-GMM - - - 3.33 (3.33) 54.16 9.99
NN-CL 0.91 (0.55) 94.65 0.87 2.35 (1.54) 71.95 4.56
NN-ECL 0.68 (0.34) 96.01 0.46 2.23 (1.81) 73.53 3.59

Notes: All values are estimated using the test dataset. We note the NN-GMM model is only trained on the 1.5

degree elevation angle.
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Fig. 10: Percentage of Categories with std below a fixed (dB)
threshold

VI. CONCLUSION

Under the AWS-3 SSTD Program, we developed three new
ML methods that improve upon the CASY-19 and CASY-21
algorithms while using the CASY-19 and CASY-21 as a subset
of their feature set. Reducing the errors in the clutter loss
model improves the performance of the aggregate interference
model which enables greater spectrum sharing in the AWS-
3 band. The NN-GMM method category method is based on
a combined supervised-unsupervised learning method and its
categories are more tightly dispersed than the CASY-19 and
CASY-21 algorithm. It also outperforms those algorithms with
respect to MAE and wMAE. The NN-CL and NN-ECL which
are single and multi-output supervised learning regression
methods were also presented. These methods vastly improve
upon category models in terms of their ECL predictive capa-
bility. The NN-CL method is shown to have the best results in
terms of both wMAE while also producing the actual CLD of a
sector. This suggests that it can be possible to predict the CLD
of the majority of sectors with a fair degree of accuracy that
is comparable to the more time-consuming EM software tools
and real-world measurements. This increase in accuracy can
lead to better protection of the DoD incumbent receivers while
allowing more licensees in the AWS-3 band. Further research
and development avenues include optimization of the neural
network, having a weighted cost function, feature reduction
to remove unnecessary features for the deployment scenar-

ios, training on additional topographical features (e.g., two-
dimensional clutter height and NLCD profiles), crossvalidation
on wider simulation and measurement datasets, and improving
the fidelity of electromagnetic modeling used to generate
the training and test data. Additionally, further research of
applying the CLD and channel loss factor estimates to different
applications can be explored. Some of these applications
could include improving wireless communications capacity,
improving radar detection algorithms and adaptive waveform
design.
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