

NTIA Technical Memorandum TM-11-475

Variable Frame Delay (VFD) Parameters
for Video Quality Measurements

Stephen Wolf

NTIA Technical Memorandum TM-11-475

Variable Frame Delay (VFD) Parameters
for Video Quality Measurements

Stephen Wolf

U.S. DEPARTMENT OF COMMERCE
April 2011

iii

DISCLAIMER

Certain commercial software is identified in this report to specify adequately the technical

aspects of the reported results. In no case does such identification imply recommendation or

endorsement by the National Telecommunications and Information Administration (NTIA), nor

does it imply that the software identified is necessarily the best available for the particular

application or use.

This document contains software developed by NTIA. NTIA does not make any warranty of

any kind, express, implied or statutory, including, without limitation, the implied warranty

of merchantability, fitness for a particular purpose, non-infringement and data accuracy.
NTIA does not warrant or make any representations regarding the use of the software or the

results thereof, including but not limited to the correctness, accuracy, reliability or usefulness of

the software or the results. You can use, copy, modify, and redistribute the NTIA-developed

software upon your acceptance of these terms and conditions and upon your express agreement

to provide appropriate acknowledgments of NTIA's ownership of and development of the

software by keeping this exact text present in any copied or derivative works.

v

CONTENTS

Page

1. INTRODUCTION .. 1

2. DESCRIPTION OF VFD PARAMETERS .. 4

2.1. Parameter 1 (Par1) Using VFD Information .. 4

2.2. Parameter 2 (Par2) Using VFD and Motion Information ... 5

3. CORRELATION OF VFD PARAMETERS .. 7

4. USING VFD PARAMETERS TO IMPROVE EXISTING VQMS ... 9

5. SUMMARY .. 13

6. REFERENCES .. 14

APPENDIX: MATLAB Code ... 15

VARIABLE FRAME DELAY (VFD) PARAMETERS FOR VIDEO

QUALITY MEASUREMENTS

Stephen Wolf
1

Digital video transmission systems consisting of a video encoder, a digital

transmission method (e.g., Internet Protocol—IP), and a video decoder can

produce pauses in the video presentation, after which the video may continue with

or without skipping video frames. Sometimes sections of the original video stream

may be missing entirely (skipping without pausing). Time varying delays of the

output (or processed) video frames with respect to the input (i.e., the original or

reference) video frames present significant challenges for Full Reference (FR)

video quality measurement systems. Time alignment errors between the output

video sequence and the input video sequence can produce measurement errors

that greatly exceed the perceptual impact of these time varying video delays. This

document proposes several objective video quality parameters that can be

extracted from variable frame delay (VFD) information, demonstrates their

correlation to subjective video quality, and shows how they can be utilized in an

FR video quality measurement (VQM) system.

Key words: alignment; calibration; correlation; dropped; frames; Full Reference (FR);

objective; parameters; pausing; quality; skipping; subjective; time; variable delay;

video; measurement

1. INTRODUCTION

Digital video transmission systems normally consist of a video encoder, a digital transmission

method (e.g., Internet Protocol—IP), and a video decoder. Video frames passing through these

systems can be dropped and/or subject to variable time delays. As a result, the presentation of the

video to the end user may contain unnatural or jerky motion, pauses or frame freezes, and fast

forwards or missing segments. Reasons for this type of behavior include (1) the video encoder

may intelligently decide to reduce the video frame transmission rate in order to save bits, (2) the

video decoder may decide to freeze the last good video frame when the digital transmission is

interrupted or when errors such as IP packet loss are detected, or (3) sections of the video stream

may not be encoded or may be dropped altogether by the transmission channel. Whatever the

reasons, output video frames from modern video compression and transmission systems can

1
 The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information

Administration, U.S. Department of Commerce, 325 Broadway, Boulder, CO 80305.

2

contain significant time varying video delays and a Full Reference (FR) video quality

measurement (VQM) system must properly deal with these idiosyncrasies.

Time varying delays of the output (i.e., processed) video frames with respect to the input (i.e.,

original, or reference) present a challenge for perception-based FR VQMs. This is because the

time alignment errors between the output video sequence and the input video sequence can

produce measurement errors that greatly exceed the perceptual impact of these time varying

video delays. For example, a one-frame video freeze without skipping will result in either the

prior or later output segment being shifted by one video frame with respect to the original

reference segment. While this is barely noticeable to viewers, the commonly used Peak-Signal-

to-Noise-Ratio (PSNR) measurement [1] will detect a large impairment for the output video

segment that is off by one video frame with respect to the original video segment.

Reference [2] describes an FR technique for estimating variable frame delay (VFD) information.

This document describes a technique that uses the one presented in [2] but goes further by

exploring perception-based quality parameters that can be extracted from the VFD information

(Section 2). Also examined is the correlation of these VFD parameters to subjective quality

ratings (Section 3), and how they might be used to improve existing VQMs, such as those found

in [1] and [3] (Section 4).

Figure 1 shows one possible method for using VFD information in an FR VQM system. The

processed video is calibrated to remove gain and level offsets, spatial shifts and spatial scaling (if

present). Next, the VFD information (i.e., the best matching original frame for every processed

frame) is calculated and used to change the original video sequence so it matches the processed

video sequence (i.e., VFD-matched original video). For instance, if the processed video sequence

repeated every other frame, then the original sequence would match this behavior. The VFD

information generated from this step, together with the calibrated processed video, and the VFD-

matched original video would all be sent to the VQM system. The VQM system would compute

VFD quality parameters that quantify the perceptual effects of variable frame delays (pauses,

skips, etc.) and this information would then be combined with the full reference quality

measurement (with variable video delays removed) to produce improved estimates of overall

video quality.

3

Original or
Input Video

Processed or
Output Video

Video Quality Estimate

Encoder Decoder

Digital
Transmission

Channel

Full Reference (FR) Video Quality Measurement (VQM) System

Estimate VFD
and Apply to

Original Video

Calibrate
Processed Video

Calibrated
Processed Video

VFD-Matched
Original Video

VFD
Information

Figure 1. Schematic drawing of an FR VQM System with VFD capability.

4

2. DESCRIPTION OF VFD PARAMETERS

This section describes two objective quality parameters that can be derived from the VFD

information. One parameter uses the VFD information exclusively (Section 2.1) and the other

uses the VFD information in conjunction with the scene motion (Section 2.2). Both parameters

were empirically developed with the goal of maximizing their correlation to the subjective

quality ratings of short (8-15 second long) video test scenes (see Section 3).
2

The technique described in this document uses the VFD algorithm given in [2] for determining

the best matching original video frame
3
 for each processed video frame. In particular, the

technique uses the Final_Fuzzy_Causal_Index array generated by step 12, Section 2.6, of the

VFD estimation algorithm. The Final_Fuzzy_Causal_Index is a 2D matrix, where the number of

columns is equal to the number of frames in the processed clip, and the number of rows is equal

to the number of original frames that were searched to try to match (or align) each processed

frame. Each column of the 2D matrix gives a set of rank sorted original frame alignments, sorted

from most likely to least likely. Thus, the first element of each column vector gives the most

likely matching original frame index for that processed frame. Results for each processed frame

only include likely alignments (i.e., original frame indices that closely match the processed

frame).
4
 For brevity, the 2D array Final_Fuzzy_Causal_Index for one processed video clip will

simply be called Fuzzy in this document since it holds a set of fuzzy time alignments. The 2D

Fuzzy array is denoted as:

    pL

ppppp ooooNppoFuzzy ,...,,;...,,2,1:, 21 . (1)

In (1), p = 1, 2, ..., N (the total number of frames in the processed video clip) and each processed

frame p matches a set op of Lp original frames, where Lp is the number of likely alignments for

processed frame p. When the match is non-ambiguous, Lp = 1. When the match is ambiguous,

Lp > 1. Video frames in processed scenes that contain very little motion, high distortions, and/or

contributions from multiple original frames will create temporal alignment ambiguities.

2.1. Parameter 1 (Par1) Using VFD Information

This section describes an objective video quality parameter that is extracted solely from the VFD

information. The idea is to penalize abnormal frame jumps in the VFD-matching original frame

indices op in (1). An abnormal frame jump would be a jump forward by more than one frame as

2
 The Appendix provides MATLAB code that implements these parameters.

3
 For progressive scan video systems, the VFD algorithm uses frames. For interlaced video systems, the VFD

algorithm uses fields. Some interlaced video systems reframe the output video and this complicates the VFD time

alignment algorithm considerably. For a definition and explanation of reframing, please see Section 3.1.2 of [3]. For

simplicity, this document will generally use the term “frame” or “frames” to describe the algorithm.

4
 In the MATLAB code given in the Appendix, the row entries that do not contain likely alignments are assigned

„NaN‟ (Not-a-Number) so that all columns in the 2D matrix have the same number of rows.

5

the processed frames p advance from 1 to N. One could use  1

po for this calculation (the index

of the most likely matched original frame), but this would ignore the uncertainty of the estimated

temporal alignments. This uncertainty can be accommodated by calculating the minimum

required frame jump that satisfies the fuzzy temporal alignment of (1). For a given processed

frame p, first calculate Fuzzy_Max_Early(p) , the maximum original frame index at time p, as:

      1,...,2,1:,,...,,maxmin__ 1

1

21   NpoooopEarlyMaxFuzzy p

L

ppp
p . (2)

The minimum in (2) is used to limit the maximum original frame index at time p to be less than

or equal to the most likely original frame index at time p+1 (for causality). In other words, the

uncertainty in the original frame alignments for processed frame p is not allowed to exceed the

most likely original frame alignment for processed frame p+1. Next, for a given processed frame

p+1, calculate Fuzzy_Min_Late(p+1), the minimum original frame index at time p+1, as:

     )(__,,...,,minmax1__ 1

1

2

1

1

1 pEarlyMaxFuzzyooopLateMinFuzzy pL

ppp


 . (3)

The maximum in (3) is used to limit the minimum original frame index at time p+1 to be greater

than or equal to the Fuzzy_Max_Early(p). Next, one can calculate the Abnormal Frame Jumps

(AFJ) at time p+1 as a function of the difference between (3) and (2):

    ]1)(__)1(__[,0max1  pEarlyMaxFuzzypLateMinFuzzypAFJ . (4)

In (4), one is subtracted from the difference between (3) and (2) before maxing with zero since

this indicates a normal progression of video frames over time. Note that (4) does not penalize for

frame freezes. Instead, penalties are incurred when the processed frame is updated to a new

frame, which is perceived as an abnormal jump in the scene motion. Longer frame freezes

produce larger values of AFJ when the processed frame is finally updated.

The video quality parameter Par1 is then computed as the logarithm of the root mean square of

the AFJ(p+1) time samples (p = 1, 2, ..., N-1), or

   2

10 mean1log1 AFJPar  . (5)

AFJ
 2

 represents an element-by-element square of the time series given by (4). One is added to

the root mean square value to prevent the logarithm of zero, which also has the effect of limiting

the lower bound (or no impairment condition) of the parameter to zero. Large abnormal frame

jumps that result in long periods of video freezes are more heavily penalized than many small

abnormal frame jumps since squaring large values has a proportionally greater effect on the

overall mean.

2.2. Parameter 2 (Par2) Using VFD and Motion Information

The parameter described in section 2.1 only uses the VFD information. Thus, dropped or frozen

frames will yield the same parameter value, or impairment, regardless of the amount of scene

6

motion. For example, 10 frames per second (fps) transmission of a 30 fps original video scene

(e.g., with 1 frame out of every 3 being transmitted) will penalize low and high motion scenes

equally. An improvement to Par1 might incorporate motion-based weighting so that scenes with

more motion produce higher parameter values than scenes with less motion. In the limit, still or

nearly still scenes should be penalized only slightly when frames are dropped since these

dropped frames are not very noticeable. One possible temporal information (TI) weighting

function at time p+1 is computed as:

      SROIjijiYjiYpTI pp
jiover









 ),(,),,(),(mean1log1

2

1
,

10 . (6)

In (6), one is added to the root mean square of the difference between the processed images at

time p+1 and time p (e.g., one could use the Y channel in an ITU-R Recommendation BT.601

sampled video stream [4]), and the logarithm is computed. Calculations are performed using

active pixels (i, j), or pixels that contain actual video information, within the Spatial Region of

Interest (SROI). The advantages of (6) include a zero weighting function for still video frames

(since the logarithm of one is zero) and compression of the large dynamic range that results from

the root mean square operation.

An alternative form of (6) that is not shown is to compute the processed frame-by-frame

differences but to perform the root mean square operation over a 3-dimensional segment of video

that includes some small time extent (e.g., 0.2 seconds) about the processed frame of interest.

Smoothing the motion information will reduce the impact of temporal alignment errors between

the TI motion weighting function and the AFJ function given by (4), which is based on fuzzy

temporal alignments.

A video quality parameter Par2 that uses both VFD and motion information can be computed as:

   




 

2

10 mean1log2 TIAFJPar . (7)

[AFJ·TI]
2
 represents an element-by-element multiply and square of the two time series given by

(4) and (6). As in (5), one is added to the root mean square value to prevent the logarithm of

zero, which also has the effect of limiting the lower bound (or no impairment condition) of the

parameter to zero.

7

3. CORRELATION OF VFD PARAMETERS

This section examines the correlation to subjective quality of Par1 and Par2 given in sections

2.1 and 2.2, respectively. The goal of this section is to assess the proportion of Mean Opinion

Score (MOS) variance that can be explained by Par1 and Par2. Since Par1 and Par2 are pure

temporal distortion parameters and do not measure spatial or color distortions, one would not

expect them to explain a large proportion of the subjective MOS variance. Three datasets were

examined, each containing multimedia video clips sent over Internet Protocol (IP) at one of three

resolutions: Quarter Common Intermediate Format (QCIF), Common Intermediate Format (CIF),

and Video Graphics Array (VGA). These datasets included video clips with variable frame

delays, the subject of this document.

The QCIF, CIF, and VGA datasets included 1964, 2143, and 1766 video clips, respectively. Each

dataset is a collection of 14 to 17 subjective tests that were performed for a variety of purposes

over the past decade. The MOS from the individual subjective tests within each resolution were

mapped to the [0, 1] common scale using the techniques in [5]. For the [0, 1] common scale, “0”

is the no impairment condition (i.e., best quality) and “1” is the maximum impairment condition

(i.e., worst quality).

Scatter plots of the [0, 1] common scale subjective quality versus Par1 and Par2 are shown in

Figure 2. The top, middle, and bottom rows of the figure give the results for QCIF, CIF, and

VGA, respectively. The left and right columns give the results for Par1 and Par2, respectively.

For the Par2 results, 0.2 seconds of smoothing was used for TI as described in section 2.2. The

Pearson correlation coefficients (ρ) are given in the titles of the individual graphs. Since the

square of the Pearson correlation coefficient is the percent of the variance that is explained by the

parameters, Par1 explains 30.8%, 16.3%, and 20.6% of the subjective variance in the QCIF, CIF,

and VGA datasets, respectively. Par2 explains 38.1%, 20.2%, and 23.9% of the subjective

variance in the QCIF, CIF, and VGA datasets, respectively. The high variance for the QCIF

dataset is somewhat surprising considering that these parameters are purely temporal in nature

and do not measure spatial or other distortions. One possible explanation for this observation is a

dependency of spatial distortions on temporal distortions. For instance, lower frame rate video

systems (which are penalized by Par1 and Par2) may also generally exhibit higher spatial

distortions.

Both objective parameters have a fairly linear response to changes in subjective quality. Par1

exhibits some quantization banding that results from fixed frame rate systems (e.g., 15 fps, 10

fps, 5 fps). These quantization banding effects are less pronounced with Par2. The correlation

results for Par2 are slightly better than the correlation results for Par1 in all three datasets.

However, this does not necessarily imply that Par2 would be the better complement to an

existing set of objective metrics that compose a perceptual video quality model. Both parameters

(Par1 and Par2) tend to err on the side of under-detecting perceived impairments rather than

over-detecting perceived impairments (i.e., the scatter plots have an upper triangular shape).

Since these parameters only measure temporal distortions and not spatial distortions, one would

expect this type of behavior.

8

Figure 2. Subjective vs. objective plots for Par1 and Par2.

9

4. USING VFD PARAMETERS TO IMPROVE EXISTING VQMS

This section will examine how VFD processing can be used to improve the performance of FR

VQMs, as summarized by the schematic in Figure 1. In particular, the performance of the PSNR

metric given in [1] will be compared with the performance of a two-parameter VQM comprised

of a linear combination of Par1 and the VFD-matched PSNR (PSNR_VFD). PSNR_VFD is

computed as shown in Figure 1, where the original video clip is VFD-matched to the processed

video clip before calculating PSNR. In essence, the PSNR of [1] includes errors due to both

spatial distortions and temporal mis-alignments while PSNR_VFD does not include errors due to

temporal mis-alignments of the video frames.
5
 Thus, PSNR_VFD will primarily measure spatial

distortions while Par1 will pick up the temporal distortions.

For the analysis in this section, subsets of the data from each of the three image resolutions

(QCIF, CIF, VGA) evaluated by the Video Quality Experts Group (VQEG) Multimedia Test [6],

[7] were selected. Individual subjective tests at each resolution were selected based on open

availability of original scene content (i.e., no proprietary scenes), challenging content (e.g., poor

performance from PSNR and/or the top video quality models), and the range of video quality.

The chosen tests were (Q02, Q08, Q11), (C03, C07, C11), and (V02, V09, V12) for QCIF, CIF,

and VGA, respectively. Including common video clips throughout the QCIF, CIF, and VGA

subjective tests enabled the datasets at each resolution to be combined [7]. Hence, we will only

present three sets of results (for QCIF, CIF, and VGA), rather than 9 sets of results (for Q02,

Q08, Q11, C03, C07, C11, V02, V09, and V12). The subjective MOS for all datasets has been

scaled to the [0, 1] common scale described earlier.

The PSNR reference code available at http://www.its.bldrdoc.gov/vqm/ was used for the

computation of PSNR according to [1]. This reference code performs an exhaustive search over

spatial and temporal shifts to locate the maximum PSNR for each video clip. This reference code

processes all the video clip pairs (original, processed) in a given directory and outputs a PSNR

results file with the maximum PSNR, together with the spatial shift, temporal shift, gain, and

level offset that is required to obtain this maximum PSNR.

The Appendix provides MATLAB® code that implements PSNR_VFD, Par1, and Par2. To

assist the reader, the variable names used in the MATLAB code are the same as those used in the

main document. The PSNR_VFD code takes as its starting point the PSNR results file that is

produced by the PSNR reference code. The spatial shift, gain, and level offset are assumed to be

correct, and the temporal shift is used as a starting point for the VFD search algorithm described

in [2]. After finding the original frame that best matches each processed frame, the original video

clip is modified to VFD-match the processed video clip (see Figure 1). Gain and level offset are

re-optimized to maximize PSNR_VFD. Next, PSNR_VFD, Par1, and Par2 are calculated and

output to a file.

5
 In practice, the VFD matching algorithm is not perfect and this will result in some frames being temporally mis-

aligned.

http://www.its.bldrdoc.gov/vqm/

10

Figure 3 presents the QCIF performance for three video quality models. The first model (top-

left) is a plot of the subjective vs. objective scores for PSNR as computed by the PSNR reference

code. Here PSNR has been limited on the high end to 48 dB, which is a practical upper limit for

video that is quantized to 8 bits.
6
 Also, since PSNR does not normally have a linear response to

changes in subjective quality, a third order monotonic fit has been performed to fit the PSNR

values to the subjective data.
7
 Similarly, the second model (top-right) presents the results for

PSNR_VFD. Notice the improvement in Pearson correlation from 0.59 to 0.71. The third model

(bottom) presents the results for a linear two-parameter model (PSNR_VFD & Par1), followed

by a third order monotonic fit. Here, the correlation increases to 0.84.

Figure 3. QCIF subjective vs. objective plots for PSNR, PSNR_VFD & Par1

6
 Other reasons to limit the upper end of the PSNR calculations include (1) digital video clips that are distortion free

or nearly distortion free produce infinite or very large PSNR values which adversely impact the calculation of

correlation coefficients and curve fits, and (2) impairments in video clips with PSNR values greater than 48 dB are

not perceptible.

7
 This type of fit is often used by VQEG before evaluating the performance of an objective video quality model [6].

11

Figure 4 presents the analogous results for the CIF dataset. These results are similar to the QCIF

results presented in Figure 3.

Figure 4. CIF subjective vs. objective plots for PSNR, PSNR_VFD & Par1

Figure 5 presents the corresponding results for the VGA dataset. Here the improvements in the

PSNR_VFD and PSNR_VFD & Par1 models (vs. the PSNR model) are not nearly as dramatic

as for the QCIF and CIF datasets. Possible reasons for this might be (1) a lower percentage of

video clips with VFDs or reduced frame rates, (2) a reduced coupling of spatial distortions to

temporal distortions, and (3) a greater contribution of spatial distortions to overall video quality

that are not captured by PSNR.

12

Figure 5. VGA subjective to objective plots for PSNR, PSNR_VFD & Par1

13

5. SUMMARY

This document describes two new video quality parameters that can be extracted from VFD

information. One parameter uses pure VFD information (Par1) while the other uses VFD

information weighted by the amount of scene motion (Par2). These VFD parameters explained

from 16% to 38% of the MOS variance from subjective datasets at three different image

resolutions (QCIF, CIF, and VGA). A procedure for designing a robust video quality

measurement system that can properly handle VFD video clips was presented, and this procedure

was applied to the PSNR measurement. Encouraging results were obtained that demonstrate

improved performance (i.e., higher correlation to subjective quality). For one set of video clips

drawn from the VQEG multimedia experiments (QCIF), correlation results improved from 0.59

for conventional PSNR to 0.84 for a two parameter model that used a linear combination of

VFD-matched PSNR (PSNR_VFD) and a pure VFD parameter (Par1). Applying these methods

to other video quality parameters that outperform the traditional PSNR should produce superior

results, and this is an area for further research.

14

6. REFERENCES

[1] ITU-T Recommendation J.340, “Reference algorithm for computing peak signal to noise

ratio of a processed video sequence with compensation for constant spatial shifts, constant

temporal shift, and constant luminance gain and offset,” Recommendations of the ITU,

Telecommunication Standardization Sector.

[2] S. Wolf, “A full reference (FR) method using causality processing for estimating variable

video delays,” NTIA Technical Memorandum TM-10-463, Oct. 2009.

[3] S. Wolf, “Video quality measurement techniques,” NTIA Technical Report 02-392, Jun.

2002.

[4] ITU-R Recommendation BT.601, “Studio encoding parameters of digital television for

standard 4:3 and wide screen 16:9 aspect ratios,” Recommendations of the ITU,

Radiocommunication Sector.

[5] M. Pinson, and S. Wolf, “An objective method for combining multiple subjective data sets,”

SPIE Video Communications and Image Processing Conference, Lugano, Switzerland, Jul.

2003.

[6] “Final Report of VQEG‟s Multimedia Phase I Validation Test”, Video Quality Experts

Group (VQEG), Sept. 2008. This report is available at

http://www.its.bldrdoc.gov/vqeg/projects/multimedia/.

[7] M. Pinson, and S. Wolf, “Techniques for evaluating objective video quality models using

overlapping subjective data sets,” NTIA Technical Report TR-09-457, Nov. 2008.

http://www.its.bldrdoc.gov/vqeg/projects/multimedia/

15

APPENDIX: MATLAB Code

The PSNR_VFD function given below can be compiled (using the MATLAB compiler) and run from a DOS prompt. If compilation is performed, the

routine is called as given in the help examples. For instance, the user would type the following at the DOS prompt:

psnr_vfd 'd:\q01\' 'q01' 'progressive' 'q01_psnr.csv' 'yuv' 144 176 'causal'

However, if psnr_vfd is run from the MATLAB prompt, the user would need to type the following at the MATLAB prompt:

psnr_vfd '''d:\q01\''' '''q01''' '''progressive ''' '''q01_psnr.csv''' '''yuv''' 144 176 '''causal'''

The PSNR_VFD function calls several other sub-functions that read video clips (i.e., read_bigyuv and read_avi). The MATLAB code for these sub-

functions has not been included here since they are not required to understand the implementation of the basic PSNR_VFD algorithm. Code for these

sub-functions are included in the PSNR_VFD source code software package which is available at http://www.its.bldrdoc.gov/vqm/.

function psnr_vfd(clip_dir, test, scan_type, psnr_file, varargin)

% PSNR_VFD 'clip_dir' 'test' 'scan_type' 'psnr_file' options

% Estimate the Variable Frame Delay (VFD) Y-channel PSNR (PSNR) of all

% clips and HRCs (Hypothetical Reference Circuits) in a video test (input

% argument "test") where the video clips are stored in the specified

% directory ("clip_dir"). The video clips must have names that conform to

% the standard naming conventions test_scene_hrc.avi (or optionally,

% test_scene_hrc.yuv) with no extra '_' or '.' in the file names. "test"

% is the name of the test, "scene" is the name of the scene, and "hrc" is

% the name of the HRC. The name of the original reference clip for the

% PSNR calculation must be "test_scene_original.avi".

%

% The user must specify the 'scan_type' of the video files as either

% 'progressive', 'interlaced_uff' (interlaced upper field first), or

% 'interlaced_lff' (interlaced lower field first), since this information

% is not available in the AVI or the Big YUV file formats.

%

% PSNR_VFD uses the results file output by the PSNR_SEARCH program

% ("psnr_file") as a calibration starting point (i.e., Yshift, Xshift,

% Tshift, Gain, Offset), but goes one step further by applying VFD

% matching of the original video stream to the processed video stream

% (i.e., the original video stream is modified so that it matches the

http://www.its.bldrdoc.gov/vqm/

16

% processed video stream frame-by-frame, or field-by-field for interlaced

% video). Output results from the PSNR_VFD program are stored in a file

% with the same root name as "psnr_file" (i.e., name without the file

% extension), appended with "_vfd.csv" (for Comma Separated Value).

%

% SYNTAX

% psnr_vfd 'clip_dir' 'test' 'scan_type' 'psnr_file' options

%

% DESCRIPTION

% This program uses the clip calibration information (i.e., Yshift,

% Xshift, Tshift , Gain, Offset) from PSNR_SEARCH (in "psnr_file"). The

% original clip is shifted by (Yshift, Xshift, Tshift) with respect to

% the processed clip. The Y-image of the processed clip is multiplied

% by Gain and then the Offset is added. For speed, all calibration is

% held constant for the VFD estimation. The VFD estimation algorithm is

% applied to find the best matching original frame (or field) for each

% processed frame (or field). Then, the original is VFD-matched to the

% processed. A final gain and offset correction (called Gain_Adjust and

% Offset_Adjust) is applied to the processed video (i.e.,

% Gain_Adjust*y_proc + Offset_Adjust) before calculation of the final

% VFD-corrected PSNR (PSNR_VFD). Two perception-based VFD parameters are

% also calculated (Par1_VFD and Par2_VFD) that attempt to capture the

% perceptual distortions in the flow of scene motion (since these

% distortions are removed from PSNR_VFD). Par1_VFD is extracted from

% only the VFD information while Par2_VFD uses both the VFD information

% and the motion in the processed video clip. For a description of these

% two parameters, see the 2011 NTIA Technical Memorandum (TM) entitled

% "Variable Frame Delay (VFD) Parameters for Video Quality Measurements."

%

% The above procedure is repeated for each processed clip in the

% "clip_dir" that belongs to the video test specified by "test".

%

% A peak signal of 255 is used for calculation of PSNR. Double precision

% calculations are used everywhere. A 64-bit operating system with at

% least 4 GB of free memory is recommended since the entire double

% precision versions of the original and processed sequences must be held

% in memory.

%

% Any or all of the following optional properties may be requested (the

% first option is required for yuv files, not avi files).

%

% 'yuv' rows cols Specifies the number of rows and cols for the Big

% YUV files (if using Big YUV files). The default is

% to assume AVI files (*.avi). Big YUV format is a

% binary format for storing ITU-R Recommendation

17

% BT.601 video sequences. The format can be used for

% any image size. In the Big YUV format, all the

% frames are stored sequentially in one big binary

% file. The sampling is 4:2:2 and image pixels are

% stored sequentially by video scan line as bytes in

% the following order: Cb1 Y1 Cr1 Y2 Cb3 Y3 Cr3 Y4…,

% where Y is the luminance component, Cb is the blue

% chrominance component, Cr is the red chrominance

% component, and the subscript is the pixel number.

%

% 'sroi' top left bottom right Only use the specified spatial region

% of interest (sroi) of the processed

% video clip for all calculations. The

% sroi is inclusive, where top/left start

% at 1. By default, sroi is the entire

% image reduced by the calibration shift

% (Yshift, Xshift). If the user inputs a

% sroi, allowance must be made for the

% maximum spatial shift encountered in

% the PSNR_SEARCH results ("psnr_file").

% For interlaced video, top must be odd

% while bottom must be even.

%

% 'troi' fstart fstop Only calculate PSNR_VFD for the specified

% temporal region of interest (troi) of the

% processed video clip, where fstart and fstop are

% included and given in frames. By default, the

% troi is the entire file reduced by the temporal

% calibration shift (Tshift). If the user inputs

% an fstart and fstop, allowance must be made for

% the maximum temporal shift encountered in

% "psnr_file".

%

% 't_uncert' t Specifies the temporal uncertainty (plus or minus t

% frames) over which to perform the VFD search. The

% processed remains fixed and the original is shifted.

% The center (zero shift) point for the temporal search

% assumes the temporal alignment given by Tshift in the

% "psnr_file" results from PSNR_SEARCH. By default,

% temporal uncertainty is set to 30 frames. It can have

% a minimum value of 1 frame. When the original cannot

% be shifted by the temporal uncertainty (e.g., perhaps

% near the ends of the sequence), the original will be

% shifted up to the maximum extent possible. To

% accomodate a full temporal search at the beginning and

18

% end of the sequence, increase fstart and decrease fstop

% in the processed troi accordingly.

%

% 'reframe' Allow for the possibility that the processed video clip has

% been reframing. This option is only valid for a scan_type

% of 'interlaced_uff' or 'interlaced_lff'. Reframing can vary

% throughout the processed clip, although this should be rare.

% This option will increase the runtime substantially since

% extra spatial shifts must be examined, but it should be used

% if there is any possibility of time varying reframing

% existing in the processed video clip. See Section 3.1.2 of

% NTIA Report TR-02-392 for a definition of reframing. For

% constant reframing that was properly detected by the

% PSNR_SEARCH program, Tshift will have a half frame (0.5)

% Tshift. This condition will be detected/corrected by

% PSNR_VFD (the original video is reframed accordingly).

%

% 'causal' Impose causality constraint so that later frames (fields) in

% the processed clip cannot align to original frames (fields)

% that are earlier in time than found for the proceeding

% processed frames (fields). For interlaced video, a

% one-field jump back in time is allowed since this is

% indicative of a frozen frame. By default, causality is

% turned off (yes, codecs can output non-causal sequences).

% But specifying the causal option is usually recommended.

%

% 'verbose' Display intermediate progress during processing.

%

% EXAMPLES

% These three examples illustrate the Big YUV format for QCIF, CIF, and

% VGA.

%

% psnr_vfd 'd:\q01\' 'q01' 'progressive' 'q01_psnr.csv' 'yuv' 144 176 'causal'

% psnr_vfd 'd:\c01\' 'c01' 'progressive' 'c01_psnr.csv' 'yuv' 288 352 'causal'

% psnr_vfd 'd:\v01\' 'v01' 'progressive' 'v01_psnr.csv' 'yuv' 480 640 'causal'

%

% This example illustrates uncompressed UYVY AVI format for 525-line video.

%

% psnr_vfd 'd:\rr525\' 'rr525' 'interlaced_lff' 'rr525_psnr.csv' 'causal' 'reframe'

%

% This prints out help if the user runs with no command line arguments

if nargin == 0,

 fprintf('PSNR_VFD ''clip_dir'' ''test'' ''scan_type'' ''psnr_file'' options\n');

 fprintf('\n');

19

 fprintf(' Estimate the Variable Frame Delay (VFD) Y-channel PSNR (PSNR) of all\n');

 fprintf(' clips and HRCs (Hypothetical Reference Circuits) in a video test (input\n');

 fprintf(' argument "test") where the video clips are stored in the specified\n');

 fprintf(' directory ("clip_dir"). The video clips must have names that conform to\n');

 fprintf(' the standard naming conventions test_scene_hrc.avi (or optionally,\n');

 fprintf(' test_scene_hrc.yuv) with no extra ''_'' or ''.'' in the file names. "test"\n');

 fprintf(' is the name of the test, "scene" is the name of the scene, and "hrc" is\n');

 fprintf(' the name of the HRC. The name of the original reference clip for the\n');

 fprintf(' PSNR calculation must be "test_scene_original.avi".\n');

 fprintf('\n');

 fprintf(' The user must specify the ''scan_type'' of the video files as either\n');

 fprintf(' ''progressive'', ''interlaced_uff'' (interlaced upper field first), or\n');

 fprintf(' ''interlaced_lff'' (interlaced lower field first), since this information\n');

 fprintf(' is not available in the AVI or the Big YUV file formats.\n');

 fprintf('\n');

 fprintf(' PSNR_VFD uses the results file output by the PSNR_SEARCH program\n');

 fprintf(' ("psnr_file") as a calibration starting point (i.e., Yshift, Xshift,\n');

 fprintf(' Tshift, Gain, Offset), but goes one step further by applying VFD\n');

 fprintf(' matching of the original video stream to the processed video stream\n');

 fprintf(' (i.e., the original video stream is modified so that it matches the\n');

 fprintf(' processed video stream frame-by-frame, or field-by-field for interlaced\n');

 fprintf(' video). Output results from the PSNR_VFD program are stored in a file\n');

 fprintf(' with the same root name as "psnr_file" (i.e., name without the file\n');

 fprintf(' extension), appended with "_vfd.csv" (for Comma Separated Value).\n');

 fprintf('\n');

 fprintf('SYNTAX\n');

 fprintf(' psnr_vfd ''clip_dir'' ''test'' ''scan_type'' ''psnr_file'' options\n');

 fprintf('\n');

 fprintf('DESCRIPTION\n');

 fprintf(' This program uses the clip calibration information (i.e., Yshift,\n');

 fprintf(' Xshift, Tshift , Gain, Offset) from PSNR_SEARCH (in "psnr_file"). The\n');

 fprintf(' original clip is shifted by (Yshift, Xshift, Tshift) with respect to\n');

 fprintf(' the processed clip. The Y-image of the processed clip is multiplied\n');

 fprintf(' by Gain and then the Offset is added. For speed, all calibration is\n');

 fprintf(' held constant for the VFD estimation. The VFD estimation algorithm is\n');

 fprintf(' applied to find the best matching original frame (or field) for each\n');

 fprintf(' processed frame (or field). Then, the original is VFD-matched to the\n');

 fprintf(' processed. A final gain and offset correction (called Gain_Adjust and\n');

 fprintf(' Offset_Adjust) is applied to the processed video (i.e.,\n');

 fprintf(' Gain_Adjust*y_proc + Offset_Adjust) before calculation of the final\n');

 fprintf(' VFD-corrected PSNR (PSNR_VFD). Two perception-based VFD parameters are\n');

 fprintf(' also calculated (Par1_VFD and Par2_VFD) that attempt to capture the\n');

 fprintf(' perceptual distortions in the flow of scene motion (since these\n');

 fprintf(' distortions are removed from PSNR_VFD). Par1_VFD is extracted from\n');

 fprintf(' only the VFD information while Par2_VFD uses both the VFD information\n');

20

 fprintf(' and the motion in the processed video clip. For a description of these\n');

 fprintf(' two parameters, see the 2011 NTIA Technical Memorandum (TM) entitled\n');

 fprintf(' "Variable Frame Delay (VFD) Parameters for Video Quality Measurements."\n');

 fprintf('\n');

 fprintf(' The above procedure is repeated for each processed clip in the\n');

 fprintf(' "clip_dir" that belongs to the video test specified by "test".\n');

 fprintf('\n');

 fprintf(' A peak signal of 255 is used for calculation of PSNR. Double precision\n');

 fprintf(' calculations are used everywhere. A 64-bit operating system with at\n');

 fprintf(' least 4 GB of free memory is recommended since the entire double\n');

 fprintf(' precision versions of the original and processed sequences must be held\n');

 fprintf(' in memory.\n');

 fprintf('\n');

 fprintf(' Any or all of the following optional properties may be requested (the\n');

 fprintf(' first option is required for yuv files, not avi files).\n');

 fprintf('\n');

 fprintf(' ''yuv'' rows cols Specifies the number of rows and cols for the Big\n');

 fprintf(' YUV files (if using Big YUV files). The default is\n');

 fprintf(' to assume AVI files (*.avi). Big YUV format is a\n');

 fprintf(' binary format for storing ITU-R Recommendation\n');

 fprintf(' BT.601 video sequences. The format can be used for\n');

 fprintf(' any image size. In the Big YUV format, all the\n');

 fprintf(' frames are stored sequentially in one big binary\n');

 fprintf(' file. The sampling is 4:2:2 and image pixels are\n');

 fprintf(' stored sequentially by video scan line as bytes in\n');

 fprintf(' the following order: Cb1 Y1 Cr1 Y2 Cb3 Y3 Cr3 Y4…,\n');

 fprintf(' where Y is the luminance component, Cb is the blue\n');

 fprintf(' chrominance component, Cr is the red chrominance\n');

 fprintf(' component, and the subscript is the pixel number.\n');

 fprintf('\n');

 fprintf(' ''sroi'' top left bottom right Only use the specified spatial region\n');

 fprintf(' of interest (sroi) of the processed\n');

 fprintf(' video clip for all calculations. The\n');

 fprintf(' sroi is inclusive, where top/left start\n');

 fprintf(' at 1. By default, sroi is the entire\n');

 fprintf(' image reduced by the calibration shift\n');

 fprintf(' (Yshift, Xshift). If the user inputs a\n');

 fprintf(' sroi, allowance must be made for the\n');

 fprintf(' maximum spatial shift encountered in\n');

 fprintf(' the PSNR_SEARCH results ("psnr_file").\n');

 fprintf(' For interlaced video, top must be odd\n');

 fprintf(' while bottom must be even.\n');

 fprintf('\n');

 fprintf(' ''troi'' fstart fstop Only calculate PSNR_VFD for the specified\n');

 fprintf(' temporal region of interest (troi) of the\n');

21

 fprintf(' processed video clip, where fstart and fstop are\n');

 fprintf(' included and given in frames. By default, the\n');

 fprintf(' troi is the entire file reduced by the temporal\n');

 fprintf(' calibration shift (Tshift). If the user inputs\n');

 fprintf(' an fstart and fstop, allowance must be made for\n');

 fprintf(' the maximum temporal shift encountered in\n');

 fprintf(' "psnr_file".\n');

 fprintf('\n');

 fprintf(' ''t_uncert'' t Specifies the temporal uncertainty (plus or minus t\n');

 fprintf(' frames) over which to perform the VFD search. The\n');

 fprintf(' processed remains fixed and the original is shifted.\n');

 fprintf(' The center (zero shift) point for the temporal search\n');

 fprintf(' assumes the temporal alignment given by Tshift in the\n');

 fprintf(' "psnr_file" results from PSNR_SEARCH. By default,\n');

 fprintf(' temporal uncertainty is set to 30 frames. It can have\n');

 fprintf(' a minimum value of 1 frame. When the original cannot\n');

 fprintf(' be shifted by the temporal uncertainty (e.g., perhaps\n');

 fprintf(' near the ends of the sequence), the original will be\n');

 fprintf(' shifted up to the maximum extent possible. To\n');

 fprintf(' accomodate a full temporal search at the beginning and\n');

 fprintf(' end of the sequence, increase fstart and decrease fstop\n');

 fprintf(' in the processed troi accordingly.\n');

 fprintf('\n');

 fprintf(' ''reframe'' Allow for the possibility that the processed video clip has\n');

 fprintf(' been reframing. This option is only valid for a scan_type\n');

 fprintf(' of ''interlaced_uff'' or ''interlaced_lff''. Reframing can vary\n');

 fprintf(' throughout the processed clip, although this should be rare.\n');

 fprintf(' This option will increase the runtime substantially since\n');

 fprintf(' extra spatial shifts must be examined, but it should be used\n');

 fprintf(' if there is any possibility of time varying reframing\n');

 fprintf(' existing in the processed video clip. See Section 3.1.2 of\n');

 fprintf(' NTIA Report TR-02-392 for a definition of reframing. For\n');

 fprintf(' constant reframing that was properly detected by the\n');

 fprintf(' PSNR_SEARCH program, Tshift will have a half frame (0.5)\n');

 fprintf(' Tshift. This condition will be detected/corrected by\n');

 fprintf(' PSNR_VFD (the original video is reframed accordingly).\n');

 fprintf('\n');

 fprintf(' ''causal'' Impose causality constraint so that later frames (fields) in\n');

 fprintf(' the processed clip cannot align to original frames (fields)\n');

 fprintf(' that are earlier in time than found for the proceeding\n');

 fprintf(' processed frames (fields). For interlaced video, a\n');

 fprintf(' one-field jump back in time is allowed since this is\n');

 fprintf(' indicative of a frozen frame. By default, causality is\n');

 fprintf(' turned off (yes, codecs can output non-causal sequences).\n');

 fprintf(' But specifying the causal option is usually recommended.\n');

22

 fprintf('\n');

 fprintf(' ''verbose'' Display intermediate progress during processing.\n');

 fprintf('\n');

 fprintf('EXAMPLES\n');

 fprintf(' These three examples illustrate the Big YUV format for QCIF, CIF, and VGA\n');

 fprintf('\n');

 fprintf(' psnr_vfd ''d:\\q01\\'' ''q01'' ''progressive'' ''q01_psnr.csv'' ''yuv'' 144 176 ''causal''\n');

 fprintf(' psnr_vfd ''d:\\c01\\'' ''c01'' ''progressive'' ''c01_psnr.csv'' ''yuv'' 288 352 ''causal''\n');

 fprintf(' psnr_vfd ''d:\\v01\\'' ''v01'' ''progressive'' ''v01_psnr.csv'' ''yuv'' 480 640 ''causal''\n');

 fprintf('\n');

 fprintf(' This example illustrates uncompressed UYVY AVI format for 525-line video.\n');

 fprintf('\n');

 fprintf(' psnr_vfd ''d:\\rr525\\'' ''rr525'' ''interlaced_lff'' ''rr525_psnr.csv'' ''causal'' ''reframe''\n');

 fprintf('\n');

 return;

end

% Strip off the extra single quotes '' on the required inputs. This is

% required for command line arguments in standalone execuatables.

clip_dir = eval(clip_dir);

test = eval(test);

scan_type = eval(scan_type);

psnr_file = eval(psnr_file);

% Generate the name of the file to store PSNR_VFD results

dot = strfind(psnr_file,'.');

vfd_file = strcat(psnr_file(1:dot(length(dot))-1), '_vfd.csv');

% Validate the scan_type

if (~strcmpi(scan_type,'progressive') && ~strcmpi(scan_type,'interlaced_lff') && ~strcmpi(scan_type,'interlaced_uff'))

 error('Invalid scan_type');

end

% Define the peak signal level

peak = 255.0;

% Define the sub-sampling factor on the pixels for the final gain and

% offset adjusting fit, which is performed right before calculation of

% PSNR_VFD.

fraction_sampled = 0.1;

% Add extra \ in clip_dir in case user did not

clip_dir = strcat(clip_dir,'\');

% Validate input arguments and set their defaults

23

file_type = 'avi'; % default file type, uncompressed UYVY AVI

is_yuv = 0;

is_whole_image = 1;

is_whole_time = 1;

t_uncert = 30; % Default plus or minus temporal search, in frames

reframe = 0;

causal = 0;

verbose = 0;

cnt=1;

while cnt <= length(varargin),

 if strcmpi(eval(char(varargin(cnt))),'yuv') == 1

 rows = str2double(varargin{cnt+1});

 cols = str2double(varargin{cnt+2});

 is_yuv = 1;

 file_type = 'yuv';

 cnt = cnt + 3;

 elseif strcmpi(eval(char(varargin(cnt))),'sroi') == 1

 top = str2double(varargin{cnt+1});

 left = str2double(varargin{cnt+2});

 bottom = str2double(varargin{cnt+3});

 right = str2double(varargin{cnt+4});

 is_whole_image = 0;

 cnt = cnt + 5;

 elseif strcmpi(eval(char(varargin(cnt))),'troi') == 1

 fstart = str2double(varargin{cnt+1});

 fstop = str2double(varargin{cnt+2});

 is_whole_time = 0;

 cnt = cnt + 3;

 elseif strcmpi(eval(char(varargin(cnt))), 't_uncert') ==1

 t_uncert = str2double(varargin{cnt+1});

 cnt = cnt + 2;

 elseif strcmpi(eval(char(varargin(cnt))),'reframe') == 1

 reframe = 1;

 cnt = cnt + 1;

 % Make sure video is not progressive for this option

 if (strcmpi(scan_type,'progressive'))

 error('Reframe option not allowed for progressive video');

 end

 elseif strcmpi(eval(char(varargin(cnt))),'causal') == 1

 causal = 1;

 cnt = cnt + 1;

 elseif strcmpi(eval(char(varargin(cnt))),'verbose') == 1

 verbose = 1;

 cnt = cnt +1;

24

 else

 error('Property value passed into psnr_vfd not recognized');

 end

end

% If not progressive and user inputs an SROI, they must have an odd top and

% an even bottom. Otherwise the field ordering will reverse.

if (~strcmpi(scan_type,'progressive') && ~is_whole_image && (~mod(top,2) || mod(bottom,2)))

 error('SROI top must be odd and bottom must be even for interlaced video.');

end

% Get a directory listing

files = dir(clip_dir); % first two files are '.' and '..'

num_files = size(files,1);

% Find the HRCs and their scenes for the specified video test

hrc_list = {};

scene_list = {};

for i=3:num_files

 this_file = files(i).name;

 und = strfind(this_file,'_'); % find underscores and period

 dot = strfind(this_file,'.'); % Will only use the last dot

 if(size(und,2)==2) % possible standard naming convention file found

 this_test = this_file(1:und(1)-1); % pick off the test name

 if(~isempty(strmatch(test,this_test,'exact')) && ...

 ~isempty(strmatch(file_type,this_file(dot(length(dot))+1:length(this_file)),'exact'))) % test clip found

 this_scene = this_file(und(1)+1:und(2)-1);

 this_hrc = this_file(und(2)+1:dot(length(dot))-1);

 % See if this HRC already exists and find its list location

 loc = strmatch(this_hrc,hrc_list,'exact');

 if(loc) % HRC already present, add to scene list for that HRC

 if(size(strmatch(this_scene,scene_list{loc},'exact'),1)==0)

 scene_list{loc} = [scene_list{loc} this_scene];

 end

 else % new HRC found

 hrc_list = [hrc_list;{this_hrc}];

 this_loc = size(hrc_list,1);

 scene_list(this_loc) = {{this_scene}};

 end

 end

 end

end

scene_list = scene_list';

num_hrcs = size(hrc_list,1);

25

if (num_hrcs == 0)

 error('No files with standard naming convention found.');

end

% Results struct to store psnr_vfd results

results_vfd = struct('test', {}, 'scene', {}, 'hrc', {}, 'gain_adjust', {}, 'offset_adjust', {}, ...

 'psnr_vfd', {}, 'par1_vfd', {}, 'par2_vfd', {}, 'orig_indices', {}, 'proc_indices', {});

% Read in the psnr results output by the PSNR_SEARCH program. Test clips

% that do not have PSNR_SEARCH results will be skipped.

psnr_import = importdata(psnr_file);

% Check to make sure that the imported structure has the correct

% characteristics for the textdata and data arrays

if (size(psnr_import.textdata,2)~=9 || size(psnr_import.data,2)~=6 || size(psnr_import.textdata,1)-1 ~= size(psnr_import.data,1))

 error('Invalid psnr_file.');

end

nclips = size(psnr_import.data,1); % The number of clips in the file

% Load the structure to hold the PSNR_SEARCH results

results_psnr = struct('test', {}, 'scene', {}, 'hrc', {}, 'yshift', {}, ...

 'xshift', {}, 'tshift', {}, 'gain', {}, 'offset', {}, 'psnr', {});

for i = 1:nclips

 results_psnr(i).test = psnr_import.textdata{i+1,1};

 results_psnr(i).scene = psnr_import.textdata{i+1,2};

 results_psnr(i).hrc = psnr_import.textdata{i+1,3};

 results_psnr(i).yshift = psnr_import.data(i,1);

 results_psnr(i).xshift = psnr_import.data(i,2);

 results_psnr(i).tshift = psnr_import.data(i,3);

 results_psnr(i).gain = psnr_import.data(i,4);

 results_psnr(i).offset = psnr_import.data(i,5);

 results_psnr(i).psnr = psnr_import.data(i,6);

end

% Process one HRC at a time to compute average PSNR_VFD for that HRC

index = 1; % index used to store psnr_vfd results

fid_vfd = fopen(vfd_file,'a'); % open vfd_file for appending and write out the header

if (strcmpi(scan_type,'progressive'))

 fprintf(fid_vfd,'Test,Scene,HRC,Gain_Adjust,Offset_Adjust,PSNR_VFD,Par1_VFD,Par2_VFD,(Proc Orig) Matching Frame Indices\n');

else % interlaced

 fprintf(fid_vfd,'Test,Scene,HRC,Gain_Adjust,Offset_Adjust,PSNR_VFD,Par1_VFD,Par2_VFD,(Proc Orig) Matching Field Indices\n');

end

fclose(fid_vfd);

for i = 1:num_hrcs

 psnr_ave = 0; % psnr_vfd average summer for this HRC

 par1_ave = 0; % par1_vfd average summer for this HRC

26

 par2_ave = 0; % par2_vfd average summer for this HRC

 this_hrc = hrc_list{i};

 if(strcmpi('original',this_hrc)) % Don't process original

 continue;

 end

 num_scenes = size(scene_list{i},2); % Number of scenes in this HRC

 for j = 1:num_scenes

 this_scene = scene_list{i}{j};

 % Find this clip's calibration information in results_psnr

 this_clip = find((strcmpi({results_psnr.test},test) & strcmpi({results_psnr.scene},this_scene) & strcmpi({results_psnr.hrc},this_hrc)));

 if (isempty(this_clip) && verbose)

 fprintf('Skipping Clip %s_%s_%s, Calibration information not found in psnr_file.\n', test, this_scene, this_hrc);

 continue;

 end

 % Assign the scene information to the results_vfd structure

 results_vfd(index).test = test;

 results_vfd(index).scene = this_scene;

 results_vfd(index).hrc = this_hrc;

 % Pick off the calibration information for this clip

 this_yshift = results_psnr(this_clip).yshift;

 this_xshift = results_psnr(this_clip).xshift;

 this_tshift = results_psnr(this_clip).tshift;

 this_gain = results_psnr(this_clip).gain;

 this_offset = results_psnr(this_clip).offset;

 this_psnr = results_psnr(this_clip).psnr; % This will be used as a check against psnr_vfd

 % Read original and processed video files

 if (~is_yuv) % YUV file parameters not specified, AVI assummed

 % Re-generate the original and processed avi file names

 orig = strcat(clip_dir, test,'_', this_scene, '_', 'original', '.avi');

 proc = strcat(clip_dir, test,'_', this_scene, '_', this_hrc, '.avi');

 [avi_info] = read_avi('Info',orig);

 [avi_info_proc] = read_avi('Info',proc);

 rows = avi_info_proc.Height;

 cols = avi_info_proc.Width;

 % Check to make sure processed and original sizes match

 rows_orig = avi_info.Height;

 cols_orig = avi_info.Width;

 if (rows ~= rows_orig || cols ~= cols_orig)

 error('Original and processed image sizes do not match.')

27

 end

 % Set/Validate the SROI of the processed video

 if (is_whole_image) % make SROI the whole image less the calibration shift

 if (this_xshift <= 0) % Original is shifted left or 0 wrt processed

 left = 1-this_xshift;

 right = cols;

 else % Original is shifted right wrt processed

 left = 1;

 right = cols-this_xshift;

 end

 if (this_yshift <= 0) % Original is shifted up or 0 wrt processed

 top = 1-this_yshift;

 if(~strcmpi(scan_type,'progressive') && ~mod(top,2)) % Must start on odd line for interlaced video

 top = top + 1;

 end

 bottom = rows;

 else % Original is shifted down wrt processed

 top = 1;

 bottom = rows-this_yshift;

 if(~strcmpi(scan_type,'progressive') && mod(bottom,2)) % Must end on even line for interlaced video

 bottom = bottom - 1;

 end

 end

 end

 if (top<1 || left<1 || bottom>rows || right>cols)

 fprintf('Skipping Clip %s_%s_%s, invalid processed SROI, top=%f, left=%f, bottom=%f, right = %f.\n', ...

 test, this_scene, this_hrc, top, left, bottom, right);

 continue;

 end

 % Set the matching original SROI and validate

 left_orig = left + this_xshift;

 right_orig = right + this_xshift;

 top_orig = top + this_yshift;

 bottom_orig = bottom + this_yshift;

 % Odd y_shift, correct to preserve field ordering for interlaced, new top and bottom create two extra lines that

 % will be eliminated in the reframe.

 if (mod(this_yshift,2) && ~strcmpi(scan_type,'progressive'))

 top_orig = top_orig - 1;

 bottom_orig = bottom_orig + 1;

 end

 if (top_orig<1 || left_orig<1 || bottom_orig>rows || right_orig>cols) % Original SROI wrt processed SROI

 fprintf('Skipping Clip %s_%s_%s, original xshift=%f and yshift=%f\n', ...

 test, this_scene, this_hrc, this_xshift, this_yshift);

28

 fprintf('produces invalid SROI top_orig=%f, left_orig=%f, bottom_orig=%f, right_orig=%f.\n', ...

 top_orig, left_orig, bottom_orig, right_orig);

 continue;

 end

 tframes = avi_info.NumFrames; % total frames in orig file

 tframes_proc = avi_info_proc.NumFrames;

 % Validate that orig and proc have the same number of frames

 if (tframes ~= tframes_proc)

 fprintf('\n%s_%s_%s: orig & proc files have different number of frames; longer file will be truncated.\n', ...

 test, this_scene, this_hrc);

 tframes = min(tframes,tframes_proc);

 end

 % Set/Validate the time segment of the processed video

 if (is_whole_time) % use whole time segment less the calibration shift

 if (this_tshift <= 0) % original is shifted left or 0 wrt processed

 fstart = ceil(1-this_tshift);

 fstop = tframes;

 else % original is shifted right wrt processed

 fstart = 1;

 fstop = floor(tframes-this_tshift);

 end

 end

 if (fstart<1 || fstop>tframes)

 fprintf('Skipping Clip %s_%s_%s, invalid processed TROI, fstart=%f, fstop=%f.\n', ...

 test, this_scene, this_hrc, fstart, fstop);

 continue;

 end

 % Set the matching original fstart and fstop and validate. The original will contain an extra frame

 % when reframing is required.

 fstart_orig = floor(fstart+this_tshift);

 fstop_orig = ceil(fstop+this_tshift);

 if (fstart_orig<1 || fstop_orig>tframes) % Original TROI wrt Processed TROI

 fprintf('Skipping Clip %s_%s_%s, original tshift=%f produces\n', test, this_scene, this_hrc, this_tshift);

 fprintf('invalid original TROI: fstart_orig=%f, fstop_orig=%f.\n', fstart_orig, fstop_orig);

 continue;

 end

 % Calculate to see how many extra original frames there are at

 % the beginning and end of the sequence for VFD calculations.

 % We would like at least t_uncert extra frames.

 beg_extra = min(fstart_orig-1, t_uncert);

 end_extra = min(tframes-fstop_orig, t_uncert);

29

 first_align = 1 + beg_extra; % This original frame best aligns to the first frame in the processed TROI

 % Read in video and clear color planes to free up memory

 [y_orig,cb,cr] = read_avi('YCbCr',orig,'frames',fstart_orig-beg_extra,...

 fstop_orig+end_extra, 'sroi',top_orig,left_orig,...

 bottom_orig,right_orig);

 clear cb cr;

 [y_proc,cb,cr] = read_avi('YCbCr',proc,'frames',fstart,fstop,...

 'sroi',top,left,bottom,right);

 clear cb cr;

 else % YUV file

 % Re-generate the original and processed YUV file name

 orig = strcat(clip_dir, test,'_', this_scene, '_', 'original', '.yuv');

 proc = strcat(clip_dir, test,'_', this_scene, '_', this_hrc, '.yuv');

 % Set/Validate the SROI of the processed video

 if (is_whole_image) % make SROI the whole image less the calibration shift

 if (this_xshift <= 0) % Original is shifted left or 0 wrt processed

 left = 1-this_xshift;

 right = cols;

 else % Original is shifted right wrt processed

 left = 1;

 right = cols-this_xshift;

 end

 if (this_yshift <= 0) % Original is shifted up or 0 wrt processed

 top = 1-this_yshift;

 if(~strcmpi(scan_type,'progressive') && ~mod(top,2)) % Must start on odd line for interlaced video

 top = top + 1;

 end

 bottom = rows;

 else % Original is shifted down wrt processed

 top = 1;

 bottom = rows-this_yshift;

 if(~strcmpi(scan_type,'progressive') && mod(bottom,2)) % Must end on even line for interlaced video

 bottom = bottom - 1;

 end

 end

 end

 if (top<1 || left<1 || bottom>rows || right>cols)

 fprintf('Skipping Clip %s_%s_%s, invalid processed SROI, top=%f, left=%f, bottom=%f, right = %f.\n', ...

 test, this_scene, this_hrc, top, left, bottom, right);

 continue;

 end

30

 % Set the matching original SROI and validate

 left_orig = left + this_xshift;

 right_orig = right + this_xshift;

 top_orig = top + this_yshift;

 bottom_orig = bottom + this_yshift;

 % Odd y_shift, correct to preserve field ordering for interlaced, new top and bottom create two extra lines that

 % will be eliminated in the reframe.

 if (mod(this_yshift,2) && ~strcmpi(scan_type,'progressive'))

 top_orig = top_orig - 1;

 bottom_orig = bottom_orig + 1;

 end

 if (top_orig<1 || left_orig<1 || bottom_orig>rows || right_orig>cols) % Original SROI wrt processed SROI

 fprintf('Skipping Clip %s_%s_%s, original xshift=%f and yshift=%f\n', ...

 test, this_scene, this_hrc, this_xshift, this_yshift);

 fprintf('produces invalid SROI, top_orig=%f, left_orig=%f, bottom_orig=%f, right_orig=%f.\n', ...

 top_orig, left_orig, bottom_orig, right_orig);

 continue;

 end

 % Find the total frames of the input original file

 [fid, message] = fopen(orig, 'r');

 if fid == -1

 fprintf(message);

 error('Cannot open this clip''s bigyuv file, %s', orig);

 end

 % Find last frame.

 fseek(fid,0, 'eof');

 tframes = ftell(fid) / (2 * rows * cols);

 fclose(fid);

 % Find the total frames of the processed file

 [fid, message] = fopen(proc, 'r');

 if fid == -1

 fprintf(message);

 error('Cannot open this clip''s bigyuv file, %s', proc);

 end

 % Find last frame.

 fseek(fid,0, 'eof');

 tframes_proc = ftell(fid) / (2 * rows * cols);

 fclose(fid);

 % Validate that orig and proc have the same number of frames

 if (tframes ~= tframes_proc && verbose)

 fprintf('\n%s_%s_%s: orig & proc files have different number of frames; longer file will be truncated.\n', ...

 test, this_scene, this_hrc);

 tframes = min(tframes,tframes_proc);

 end

31

 % Set/Validate the time segment of the processed video

 if (is_whole_time) % use whole time segment less the calibration shift

 if (this_tshift <= 0) % original is shifted left or 0 wrt processed

 fstart = ceil(1-this_tshift);

 fstop = tframes;

 else % original is shifted right wrt processed

 fstart = 1;

 fstop = floor(tframes-this_tshift);

 end

 end

 if (fstart<1 || fstop>tframes)

 fprintf('Skipping Clip %s_%s_%s, invalid processed TROI, fstart=%f, fstop=%f.\n', ...

 test, this_scene, this_hrc, fstart, fstop);

 continue;

 end

 % Set the matching original fstart and fstop and validate. The original will contain an extra frame

 % when reframing is required.

 fstart_orig = floor(fstart+this_tshift);

 fstop_orig = ceil(fstop+this_tshift);

 if (fstart_orig<1 || fstop_orig>tframes) % Original TROI wrt Processed TROI

 fprintf('Skipping Clip %s_%s_%s, original tshift=%f produces\n', test, this_scene, this_hrc, this_tshift);

 fprintf('invalid original TROI: fstart_orig=%f, fstop_orig=%f.\n', fstart_orig, fstop_orig);

 continue;

 end

 % Calculate to see how many extra original frames there are at

 % the beginning and end of the sequence for VFD calculations.

 % We would like at least t_uncert extra frames.

 beg_extra = min(fstart_orig-1, t_uncert);

 end_extra = min(tframes-fstop_orig, t_uncert);

 first_align = 1 + beg_extra; % This original frame best aligns to the first frame in the processed TROI

 % Read in video and clear color planes to free up memory

 [y_orig,cb,cr] = read_bigyuv(orig,'frames',fstart_orig-beg_extra,...

 fstop_orig+end_extra,'size',rows,cols,'sroi',top_orig,...

 left_orig,bottom_orig,right_orig);

 clear cb cr;

 [y_proc,cb,cr] = read_bigyuv(proc,'frames',fstart,fstop,...

 'size',rows,cols,'sroi',top,left,bottom,right);

 clear cb cr;

 end

32

 % Reframe the original if required

 if (rem(this_tshift,1)) % Non-integer tshift

 y_orig = reframe_video(y_orig, scan_type);

 end

 % Convert everything to double precision before any calculations

 % are performed.

 y_orig = double(y_orig);

 y_proc = double(y_proc);

 % Correct the processed for gain and offset as read in from the

 % psnr_file.

 y_proc = this_gain*y_proc + this_offset;

 % Generate the call to the VFD estimation function

 func_call = 'est_var_frame_delays(y_proc,y_orig,''normalize'','; % use normalize option as it seems to work best

 if (reframe)

 func_call = strcat(func_call,'''reframe'',');

 end

 if (causal)

 func_call = strcat(func_call,'''causal'',');

 end

 if (verbose)

 func_call = strcat(func_call,'''verbose'',');

 end

 if (strcmpi(scan_type,'interlaced_lff'))

 func_call = strcat(func_call,'''interlaced'',1,');

 first_align = 2*first_align-1; % convert to fields for est_var_frame_delays

 end

 if (strcmpi(scan_type,'interlaced_uff'))

 func_call = strcat(func_call,'''interlaced'',2,');

 first_align = 2*first_align-1; % convert to fields for est_var_frame_delays

 end

 func_call = strcat(func_call,'''first_align'',',num2str(first_align),',','''t_uncert'',',num2str(t_uncert),')');

 % Call the est_var_frame_delays function to get VFD results

 [results results_rmse results_fuzzy results_fuzzy_mse] = eval(func_call);

 % If the VFD alignment algorithm failed, then results==0.

 % In that case, use the time alignment given by the psnr_file and

 % generate psuedo results where the alignment just increases by

 % one frame (or field) at a time.

 [nrows, ncols, nframes] = size(y_proc);

 if (results == 0)

 vfd_failed = 1; % Set a logical variable to record that the VFD algorithm failed.

33

 if (~strcmpi(scan_type,'progressive')) % interlaced

 npts = nframes*2;

 else % progressive

 npts = nframes;

 end

 results = first_align:first_align+npts-1;

 fprintf('WARNING: VFD algorithm failed for clip %s_%s_%s, using psnr_file time alignment.\n', ...

 test, this_scene, this_hrc);

 else

 vfd_failed = 0;

 npts = length(results);

 end

 % This code translates the VFD results to use the orig and proc FILE indexing

 if (strcmpi(scan_type,'progressive'))

 proc_indices = (fstart-1) + (1:length(results));

 orig_indices = (fstart_orig-beg_extra-1) + results;

 else % interlaced

 proc_indices = 2*(fstart-1) + (1:length(results));

 orig_indices = 2*(fstart_orig-beg_extra-1) + results;

 end

 results_vfd(index).orig_indices = orig_indices;

 results_vfd(index).proc_indices = proc_indices;

 % Apply the VFD correction to the original clip to make it look

 % like the processed clip.

 y_orig = vfd_match(y_orig, scan_type, results);

 % Reshape for gain/offset fit and PSNR calculation

 y_proc = reshape(y_proc,nrows*ncols*nframes,1);

 y_orig = reshape(y_orig,nrows*ncols*nframes,1);

 % Perform the final gain and offset fit using randomly sub-sampled pixels

 rand_nums = round(randperm((nrows*ncols*nframes))); %Randomizes numbers from 1 to nrows*ncols*nframes

 this_fit = polyfit(y_proc(rand_nums(1:round(nrows*ncols*nframes*fraction_sampled))),...

 y_orig(rand_nums(1:round(nrows*ncols*nframes*fraction_sampled))),1);

 clear rand_nums;

 results_vfd(index).gain_adjust = this_fit(1);

 results_vfd(index).offset_adjust = this_fit(2);

 % Calculate the final PSNR_VFD

 this_psnr_vfd = 10*(log10(peak*peak)-log10(sum(((this_fit(1)*y_proc+this_fit(2))-y_orig).^2)/(nrows*ncols*nframes)));

 results_vfd(index).psnr_vfd = this_psnr_vfd;

 clear y_orig; % Done with y_orig

34

 % Print out a warning if the psnr_vfd is significantly lower than

 % the psnr, which indicates that the VFD alignment might be

 % suspect. Here we are using a threshold of 1.5 db.

 if (this_psnr-this_psnr_vfd > 1.5)

 fprintf('WARNING: VFD alignment results may be unreliable for clip %s_%s_%s, psnr_vfd=%5.4f, psnr=%5.4f.\n', ...

 test, this_scene, this_hrc, this_psnr_vfd, this_psnr);

 end

 % Reshape y_proc to 3D and calculate TI_RMS

 y_proc = reshape(y_proc,nrows,ncols,nframes);

 y_proc = cat(3,y_proc(:,:,1),y_proc); % Add extra frame at the beginning for TI calculation

 y_proc = diff(y_proc,1,3); % first order difference along 3rd dimension

 y_proc = reshape(y_proc,nrows*ncols,nframes);

 y_proc = y_proc.^2;

 y_proc = sqrt(sum(y_proc)./(nrows*ncols));

 if (~strcmpi(scan_type,'progressive')) % Replicate every other sample for interlaced video

 y_proc = reshape(repmat(y_proc,2,1), 1, 2*nframes);

 end

 % Calculate the diff of the VFD information, which forms the basis

 % for both par1_vfd and par2_vfd. The VFD information is

 % converted to a vector that gives Abnormal Frame Jumps (AFJs).

 % Subtracting 1 and maxing with zero produces a parameter that (1)

 % does not penalize for normal field/frame delivery (where the VFD

 % field/frame indices increase by one from one field/frame to the

 % next), (2) does not penalize for frame/field repeats (e.g., where

 % the VFD frame indices stay fixed from one frame to the next), and

 % (3) does not penalize for interlaced frame repeats (where the VFD

 % field indices jump back one in time from one field to the next).

 % A non-impairment value of 0 is used for the first field/frame

 % (which must be padded since it's diff is not available).

 if (vfd_failed)

 % This equation assumes that both the early and late time sides

 % used for the frame jump estimates are absolutely correct

 % (i.e., no fuzzy alignments). The fuzzy alignment information

 % is not available here as the VFD algorithm failed. Abnormal

 % Frame Jumps (AFJ) is then calculated as:

 afj = max([0 abs(diff(results))-1], 0);

 else

 % This code assumes fuzzy uncertainty on both the early and

 % late time sides when calculating frame jumps (the uncertainty

 % is given by results_fuzzy array). Here, frame jumps are only

35

 % penalized when they are absolutely certain to be correct

 % (i.e., no fuzzy overlapping).

 fuzzy_max_early = min(max(results_fuzzy(:,1:npts-1)),results(2:npts));

 fuzzy_min_late = max(min(results_fuzzy(:,2:npts)),fuzzy_max_early);

 afj = max([0 fuzzy_min_late-fuzzy_max_early-1], 0);

 end

 % Calculate the pure VFD parameter (par1_vfd) and the TI weighted

 % variant VFD parameter (par2_vfd).

 par1_vfd = log10(sqrt(mean(afj.^2))+1);

 results_vfd(index).par1_vfd = par1_vfd;

 par2_vfd = log10(sqrt(mean((afj.*log10(1+y_proc)).^2))+1);

 results_vfd(index).par2_vfd = par2_vfd;

 % Output the clip information, current time, and the psnr_vfd

 t = clock;

 if (verbose)

 fprintf('Clip %s_%s_%s at %d:%d, psnr_vfd = %5.4f, par1_vfd = %5.4f, par2_vfd = %5.4f\n', ...

 test, this_scene, this_hrc, t(4), t(5), this_psnr_vfd, par1_vfd, par2_vfd);

 end

 % Write out the psnr_vfd results for this clip into the vfd_file

 fid_vfd = fopen(vfd_file,'a');

 fprintf(fid_vfd,'%s, %s, %s, %5.4f, %5.4f, %5.4f, %5.4f, %5.4f,', results_vfd(index).test, results_vfd(index).scene, ...

 results_vfd(index).hrc, results_vfd(index).gain_adjust, results_vfd(index).offset_adjust, ...

 results_vfd(index).psnr_vfd, results_vfd(index).par1_vfd, results_vfd(index).par2_vfd);

 for k = 1:npts-1

 fprintf(fid_vfd,'%d %d,',proc_indices(k), orig_indices(k));

 end

 fprintf(fid_vfd,'%d %d\n',proc_indices(k+1), orig_indices(k+1));

 fclose(fid_vfd);

 % Add to the HRC summer

 psnr_ave = psnr_ave + this_psnr_vfd;

 par1_ave = par1_ave + par1_vfd;

 par2_ave = par2_ave + par2_vfd;

 % Increment the results_vfd counter

 index = index+1;

 end

 % Compute average psnr_vfd for this HRC

 psnr_ave = psnr_ave/(num_scenes);

36

 par1_ave = par1_ave/(num_scenes);

 par2_ave = par2_ave/(num_scenes);

 if(verbose)

 fprintf('\nHRC = %s, psnr_vfd_ave = %5.4f, par1_vfd_ave = %5.4f, par2_vfd_ave = %5.4f\n\n', ...

 this_hrc, psnr_ave, par1_ave, par2_ave);

 end

 pause(1);

 close all; % closes open figures

 fclose('all'); % closes open files

end

%%%

function [yout] = reframe_video(yin, scan_type)

% function [yout] = reframe_video(yin, scan_type)

% This function reframes a 3D input video array yin, with a scan_type of

% either 'interlaced_uff' or 'interlaced_lff', and produces a 3D output

% video array yout. yout will have one less frame than yin and have its

% number of rows reduced by two lines. The number of rows in yin must be

% even and yin must contain at least 2 video frames.

%

[nrows, ncols, nframes] = size(yin);

if (mod(nrows,2) || nframes<2)

 error ('reframe_video function requires an even number of rows and at least 2 video frames');

end

% Split_into_fields

yin = reshape(yin, 2, nrows/2, ncols, nframes);

if (strcmpi(scan_type,'interlaced_lff'))

 late_field = squeeze(yin(1,2:nrows/2,:,1:nframes-1));

 early_field = squeeze(yin(2,1:nrows/2-1,:,2:nframes));

elseif (strcmpi(scan_type,'interlaced_uff'))

 early_field = squeeze(yin(1,2:nrows/2,:,2:nframes));

 late_field = squeeze(yin(2,1:nrows/2-1,:,1:nframes-1));

else

 error('Unsupported scan_type in function reframe_video');

end

clear yin;

% Reframe video and return:

% For interlaced_lff the lower_field is now the late_field and the

% upper_field is now the early_field.

% For interlaced_uff the lower_field is now the early_field and the

37

% upper_field is now the late_field.

if (strcmpi(scan_type,'interlaced_lff')) % Reframe code for interlaced_lff

 yout(1,:,:,:) = early_field;

 yout(2,:,:,:) = late_field;

else % Reframe code for interlaced_uff

 yout(1,:,:,:) = late_field;

 yout(2,:,:,:) = early_field;

end

clear late_field early_field;

yout = reshape(yout, nrows-2, ncols, nframes-1);

return

%%%

function [yout] = vfd_match(yin, scan_type, results)

% function [yout] = vfd_match(yin, scan_type, results)

% This function converts 3D input video array 'yin' into another 3D video

% array 'yout' with frames and/or fields ordered according to the Variable

% Frame Delay (VFD) 'results'. The scan_type must be either

% 'progressive', 'interlaced_lff', or 'interlaced_uff'.

%

[nrows, ncols, nframes_orig] = size(yin);

if (strcmpi(scan_type,'progressive'))

 nframes = length(results);

 is_interlaced = 0;

elseif (strcmpi(scan_type, 'interlaced_lff'))

 nframes = length(results)/2; % These are field results, so must half to get nframes

 is_interlaced = 1;

 field_first = 1; % Use same field_first definition as est_var_frame_delays

elseif (strcmpi(scan_type, 'interlaced_uff'))

 nframes = length(results)/2;

 is_interlaced = 1;

 field_first = 2;

else

 error('Unsupported scan_type in function vfd_match.');

end

% yout will be the VFD-corrected original and will have the same number of

% frames as the processed clip. Use the same 'single' or 'double' rule as

% read_tslice for the image precision of yout.

if (nrows > 650)

 yout = zeros(nrows,ncols,nframes,'single');

else

38

 yout = zeros(nrows,ncols,nframes,'double');

end

if(is_interlaced)

 for j = 1:nframes

 % Get matching original field for the early processed field

 orig_frame_num = ceil(results(2*j-1)/2); % The frame number that contains the original field

 early_field = mod(results(2*j-1),2); % =1 if early field, =0 if late field

 [yo1 yo2] = split_into_fields(squeeze(yin(:,:,orig_frame_num)));

 if (early_field)

 switch field_first

 case(1)

 this_orig1 = yo1;

 case(2)

 this_orig1 = yo2;

 end

 else % late field

 switch field_first

 case(1)

 this_orig1 = yo2;

 case(2)

 this_orig1 = yo1;

 end

 end

 % Get matching original field for the late processed field

 orig_frame_num = ceil(results(2*j)/2); % The frame number that contains the original field

 early_field = mod(results(2*j),2); % =1 if early field, =0 if late field

 [yo1 yo2] = split_into_fields(squeeze(yin(:,:,orig_frame_num)));

 if (early_field)

 switch field_first

 case(1)

 this_orig2 = yo1;

 case(2)

 this_orig2 = yo2;

 end

 else % late field

 switch field_first

 case(1)

 this_orig2 = yo2;

 case(2)

 this_orig2 = yo1;

 end

 end

 % Joint the two original fields into a frame

39

 switch field_first

 case(1)

 this_orig = join_into_frames(this_orig1,this_orig2);

 case(2)

 this_orig = join_into_frames(this_orig2,this_orig1);

 end

 yout(:,:,j) = this_orig;

 end

 clear this_orig this_orig1 this_orig2 yo1 yo2;

else % progressive

 for j = 1:nframes

 yout(:,:,j) = yin(:,:,results(j));

 end

end

return

FORM NTIA-29 U.S. DEPARTMENT OF COMMERCE

(4-80) NAT‟L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO.

TM-11-475

2. Government Accession No.

3. Recipient‟s Accession No.

4. TITLE AND SUBTITLE

Variable Frame Delay (VFD) Parameters for Video Quality

Measurements

5. Publication Date

April 2011

6. Performing Organization

NTIA/ITS.T

7. AUTHOR(S)

Stephen Wolf

9. Project/Task/Work Unit No.

3141011

8. PERFORMING ORGANIZATION NAME AND ADDRESS

Institute for Telecommunication Sciences

National Telecommunications & Information Administration

U.S. Department of Commerce

325 Broadway

Boulder, CO 80305

10. Contract/Grant No.

11. Sponsoring Organization Name and Address

National Telecommunications & Information Administration

Herbert C. Hoover Building

14
th

 & Constitution Ave., NW

Washington, DC 20230

12. Type of Report and Period

Covered

14. SUPPLEMENTARY NOTES

15. ABSTRACT

Digital video transmission systems consisting of a video encoder, a digital transmission method (e.g., Internet

Protocol—IP), and a video decoder can produce pauses in the video presentation, after which the video may

continue with or without skipping video frames. Sometimes sections of the original video stream may be missing

entirely (skipping without pausing). Time varying delays of the output (or processed) video frames with respect to

the input (i.e., the original or reference) video frames present significant challenges for Full Reference (FR) video

quality measurement systems. Time alignment errors between the output video sequence and the input video

sequence can produce measurement errors that greatly exceed the perceptual impact of these time varying video

delays. This document proposes several objective video quality parameters that can be extracted from variable frame

delay (VFD) information, demonstrates their correlation to subjective video quality, and shows how they can be

utilized in an FR video quality measurement (VQM) system.

16. Key Words

alignment; calibration; correlation; dropped; frames; Full Reference (FR); objective; parameters; pausing; quality;

skipping; subjective; time; variable delay; video; measurement

17. AVAILABILITY STATEMENT

  UNLIMITED.

18. Security Class. (This report)

Unclassified

20. Number of pages

47

19. Security Class. (This page)

Unclassified

21. Price:

NTIA FORMAL PUBLICATION SERIES

NTIA MONOGRAPH (MG)
A scholarly, professionally oriented publication dealing with state-of-the-art research or
an authoritative treatment of a broad area. Expected to have long-lasting value.

NTIA SPECIAL PUBLICATION (SP)
Conference proceedings, bibliographies, selected speeches, course and instructional
materials, directories, and major studies mandated by Congress.

NTIA REPORT (TR)
Important contributions to existing knowledge of less breadth than a monograph, such as
results of completed projects and major activities. Subsets of this series include:

 NTIA RESTRICTED REPORT (RR)
Contributions that are limited in distribution because of national security
classification or Departmental constraints.

 NTIA CONTRACTOR REPORT (CR)

Information generated under an NTIA contract or grant, written by the contractor,
and considered an important contribution to existing knowledge.

 JOINT NTIA/OTHER-AGENCY REPORT (JR)
This report receives both local NTIA and other agency review. Both agencies’
logos and report series numbering appear on the cover.

NTIA SOFTWARE & DATA PRODUCTS (SD)
Software such as programs, test data, and sound/video files. This series can be used to
transfer technology to U.S. industry.

NTIA HANDBOOK (HB)

Information pertaining to technical procedures, reference and data guides, and formal
user's manuals that are expected to be pertinent for a long time.

NTIA TECHNICAL MEMORANDUM (TM)

Technical information typically of less breadth than an NTIA Report. The series includes
data, preliminary project results, and information for a specific, limited audience.

For information about NTIA publications, contact the NTIA/ITS Technical Publications Office at
325 Broadway, Boulder, CO, 80305 Tel. (303) 497-3572 or e-mail info@its.bldrdoc.gov.

	1. INTRODUCTION
	2. DESCRIPTION OF VFD PARAMETERS
	2.1. Parameter 1 (Par1) Using VFD Information
	2.2. Parameter 2 (Par2) Using VFD and Motion Information

	3. CORRELATION OF VFD PARAMETERS
	4. USING VFD PARAMETERS TO IMPROVE EXISTING VQMS
	5. SUMMARY
	6. REFERENCES

