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FOREWORD

This volume contains concise versions of most of the
papers presented at the Conference on Environmental Effects
on Antenna Performance. The papers as printed here were re-
produced from the manuscripts supplied by the authors. Editing
on the submitted material was relatively light, although many of
the manuscripts required at least some revision. As editor, I
should like to thank the members of the advisory board for their
assistance and, in particular, I am grateful to the conference '
secretary, Mrs. Eileen Brackett, for her diligence in assembling
the papers and readying the material for the printer.

Volume II will be issued at a later date and it will contain

papers and other relevant material which were not available when
Volume I went to press.

James R. Wait

Additional copies of this volume will be available at $3.00 from
the Clearinghouse for Federal Scientific and Technical Information,
Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151.
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CONFERENCE ON ENVIRONMENTAL EFFECTS ON
ANTENNA PERFORMANCE

Boulder, Colorado - July 14-18, 1969

PROCEEDINGS - Vol, I

Sponsors: Institute for Telecommunication Sciences (Environ-,
mental Science Services Administration); Cooperative Institute
for Research in Environmental Sciences (ESSA); Air Force -
Cambridge Research Laboratories; Department of Electrical
Engineering {(University of Cplorado); Denver-Boulder Chapter
of the IEEE Group on Antennas and Propagation.

Advisory Board: P, Blacksmith, R. Coken, H., V., Cottony,
W. Flock, R. C. Kirby, M. T. Ma, S. W. Maley, R. J. Papa,
R. V, Row, C. J. Sletten, W,J., Surtees, W. F. Utlaut

Chairman: J. R. Wait - Secretary: Mrs, Eileen Brackett
Registration Facilities: R. D. Hunsucker and D. C. Chang

Auditorium and Projection Facilities: H. V, Cottcny and R.H, Ott
Place: ESSA Radio Building Auditorium

Time allotted for presentation is indicated in minutes after each
title; also indicated is the page number where paper (if available)
appears in this volume,

Monday, July l4th - 8:30 a.m.

Introductory Remarks: Dr. G. S. Benton, Director, ESSA Re-
search Labs., C. J. Sletten, AFCRL, and R.C. Kirby, ITS/ESSA

Sessionl - Electromagnetic Theory - Chairman, Professor J.R.
Wait (ESSA Research Labs., and CIRES)

Complex rays /a.nd the local properties of radiation in lossy media
(20); H. L. Bertoni, L.B. Felsen, and A. Hessel [pg. 5]

Transient dipole over a dielectric half-space (15); D. A. Hill [pg. 10]

The propagation constant of a small-diameter insulated helix (20);
F. P. Ziolkowski[pg. 15]

An alternative method for deriving Fock's principle of the local
field in the penumbra (15); R. H. Ott[pg.19]

Boundary value problems in radially inhomogeneous media (20);
J. G. Fikioris [ pg. 23]

Radiation from a parallel-plate waveguide into an inhomogeneously
filled space(20); R. J. Kostelnicek and R. Mittra [ pg. 28]
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Monday, July 14th - 1:30 p. m.

Session II - Boundary Value Problems - Chairman, Prof. L. B.
Felsen (Brooklyn Polytechnic Institute)

Prolate spheroidal and linear antennas in lossy media (2 0); °
R. J. Lytle '
Metallic and dielectric antennas in conducting media (20); G.
Franceschetti, O. Bucci, E. Corti, and G. Latmiral{ pg. 33]
Radiation from a semi-infinite dielectric-coated spherically
tipped perfectly conducting cone (20); R. Chatterjee [ pg. 38]
Electromagnetic coupling of horizontal loops over a stratified
ground (15); H., Kurss [ pg. 42]
Quasi-static fields of subsurface horizontal electric antennas(20);
P. R. Bannister [ pg. 45]
Magnetic field excited by a long horizontal wire antenna near the
earth's surface (20); D, B. Large and L. Ball [pg. 50]
Numerical analysis of aircraft antennas (15); E." K. Miller,
J.B. Morton, G.M. Pjerrou, and B. J. Maxum [pg. 55]

Tuesday, July 15th - 8:30 a.m.

Session III - Influence of Homogeneous Half Space - Chairman,
Professor M., Kharadly (Univ. of British Columbia)

Finite tubular antenna above a conducting half-space (15);
D. C. Chang [ pg. 59]

EM propagation over a constant impedance plane (10); R. J.
King [ pg. 64]

On the surface impedance concept (10); R. J. King [pg. 66]

The impedance of a2 finite horizontal antenna above ground (15);
W. J. Surtees [pg. 68]

Impedance of a finite-length insulated dipole in dissipative
media (15); C.K.H. Tsao and J. R. deBettencourt[pg. 72]

Distributed shunt admittance of horizontal dipole over lossy
ground (15); C. K. H, Tsao[pg. 77].

The linear antenna in 2 piecewise homogeneous environment(15):
D. V. Ctto[ pg. 81]

Characteristics of the ground wave attenuation function for highly
inductive surfaces (15); D. B. Ross [ pg- 85]

Impedance of a Hertzian dipole over a conducting half-space (15);
J. R. Wait [ pg. 89]
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Tuesday, July 15th - 1:30 p.m.

: Sesfsion IV - Ground Screen Effects - Chairman, Dr. W, F.
Utlaut (ESSA)

Radial wire ground systems for vertical monopole antennas(20);
S. W. Maley [pg. 196]

Effect of the ground screen on the field radiated from a mono-
pole (15); W. J. Surtees [ pg- 95]

Numerical studies of the effects of nonplanar local terrain and
ground screens (15); R. V. Row and D. M. Cunnold

Radiation of a monopole antenna on the base of a conical structure
(15); G. A. Thiele, M, Travieso-Diaz, H,S. Jones [pg. 99]

Current distribution on a finite length dipole in the presence of
ground screens (15); V.R. Arens, U.R. Embry,
D. L. Mette .

Reflection of waves of arbitrary polarization from a rectangular mesh
ground screen (15); G. A, Otteni[ pg. 103]

Some design considerations for HF antenna ground screens (15);
T. Kaliszewski [pg. 201]

Measured patterns of HF antennas and correlation with surrounding
terrain (15); D. R. McCoy, R. D. Wengenroth, and J. J.
Simons

Wednesday, July 16th - 8:30 a.m.

Session V - Antennas in Plasma - A - Chairman, Dr. J. Galejs
(Sylvania)

Radiation by a VHF dipole-type antenna imbedded in its plasma
sheath (20); R. V., DeVore and R, Caldecott

Current distribution and input admittance of a cylindrical antenna
in a gyrotropic medium (15); H. S. Lu and K. K. Mei [ pg. 108]

Numerical solution of dipole radiation in 2 compressible plasma
with a vacuum sheath surrounding tlI;e antenna (20); S. H. Lin
and K. K. Mei [pg. 112]

Plane wave synthesis of plasma coated aperture admittance and
radiation pattern (20); H. Hodara and D. Damlamayan| pg. 117]

Effects of electron acoustic waves on a dipole RF magneto-plasma
probe (20); H. Oya

Radiation characteristics of a slotted ground plane into a two-fluid
compressible plasma (20); K. R. Cook and R. B. Buchanan[ pg.122]

Studies of VLF radiation patterns of a dipole immersed in a lossy
magnetoplasma (20); D. P. GiaRusso and J. E. Bergeson [pg. 127]

Some features of electroacoustic waves excited by linear antennas
in hot plasma(l5); V. L. Talekar [pg. 132]

Linear antenna in anisotropic medium(15); P. Meyer [pg. 136]
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Wednesday, July 16th - 1:30 p. m.
Prof. R.E. Collin,

ATl i e AN

Session VI - Antennas in Plasma-B - Chzirman,
{Case Western Reserve University)

Boundary and transition problems for antennas in warm plasmas(20);
J. P. Lafon

Studies of antenna-induced ionization probiems(20); W. C. Tavylor,
J. B. Chown, and T. Morita [ pg. 139]

Behavior of strong field electromagnetic waves in anisotropic
plasmas (20); M. P. ‘Bachynski and B. W. Gibbs [pg. 145]

The Trailblazer II reentry antenna test program(20); J. L. Poirier,
W. Rotman, D. Hayes, and J. Lennon [ pg. I51°]

Single and multislot antennas in an inhomogeneous reentry plasma
environment (20); K. E. Golden and G. E. Stewart | pg.1567]

Ionospheric antenna impedance probe (15); E. K. Miller, H. F. Schulte,
and J. W. Kuiper [ pg. 161]

How to determine ELF/VLF transmitting antenna performance in
the ionosphere(20); J. P. Leiphart

On the transient response of an antenna and the time decrease of

Aloucite spikes (15); P. Graff[pg. 165]
Thursday, July 17th - 8:30 a.m.

Session VII - Related Environmental Aspects - Chairman,
Dr, C. J. Sletten (AFCRL)

Dipole radiation in the lunar ernvironment (20); R. J. Phillips [pg.169]
VLF transmitting antennas using fast wave dipoles (15);

E. W, Seeley[pg. 174 ]

Ground-wave propagation across strips and islands on a flat earth
(10); R. J. King and W. L Tsukamoto [Pg- 179!

Some considerations on ground-wave propagation across coastlines
and islands (15); R. K. Rosich [Pg-181]

VLF ground-based measurements on stratified antarctic media (20);
G. E, Webber ard I. C. Peden

Effective ground conductivity measurement at radio frequencies
using small loop anternas (15); W. L. Taylor [pg. 186°]

Phase measurements of electromagnetic field components (20);

P. Cornille [pg. 190]
’ Thursday, July 17th - 1:30 p.m.

Session VIIIL - Round Table Discussion on: Design techriques for
pattern control by ground screens - Moderator, Dr, R. V. Row

(Sylvania)
(Sessions IX and X, on Friday, are reserved for late informal papers,




-5-

COMPLEX RAYS AND THE LOCAIL PROPERTIES OF
RADIATION IN LOSSY MEDIA¥*

H. L. Bertoni, L. B. Felsen and A, Hessel

Polytechnic Institute of Brooklyn
Electrophysics Department
Farmingdale, N. Y.11735

Abstract

The ray-optical description of radiation in lossy, inhorno-
geneous media,is, in general, in terms of complex rays. To
clarify the physical significance of such a description, the local
environment responsible for the fields at an observation point is
found for a particular example and related to the complex ray
reaching the observation point,

1. Introduction

At sufficiently high frequencies, propagation and scattering
phewomena in piecewise homogeneous or inhomogeneous, loss-
less media can be described in terms of rays. The rays define
real trajectories along which the fields and energy propagate, in
that the ray fields are influenced primarily bty the enviornment in
the immediated vicinity of the ray. This local property of ray
fields makes ray optics a powerful tool for analysis of high fre~
quency radiation and scattering.

When an inhomogeneous or piecewise homogeneous medium
contains loss, the ray paths for fields traversing regions of vary-
ing loss tangent lie in complex space (Furutsu, 1952; Seekler and
Keller, 1959: Budden and Jull, 1964) (ray paths for fields traver-
sing a homogeneous, lossy medium are real). In the case of
complex rays, the definition of a local envirorment primarily
responsible :Em:g"g1 fields at a given observation point is not evi-

~-dent, To clarify the location and extent of the local environment,
the fields transmitted across a planar interface between a loss-
less and a lossy half-space are considered. The local environment
appropriate to an arbitrary observation point is found and is

related to the parameters of the complex ray reaching this point.
This kmowledge of the local properties of the field should prove use-
ful in the study of radiation and scattering :Ln lossy confzgura.tlons
not amenable to rigorous analysis,

T]:u.s work was supported in part by the University Science
Development Program of the National Science Foundation under
Grant Number GU-1557 to the Polytechnic Institute of Brooklyn.
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2. Determination of the Local Environment

In order to define the local environment that primarily in-
fluence the fields transmitted to a given observation point across
a planar interface between a lossless and a lossy half-space, an
idealized ''window', which transmits the fields essentially over
a Iimited range, is inserted in the lossy medium in a plane parallel
to the interface at a distance h below the observation point (see
fig. 1). The center of the window is placed so that for minimum

2 ) -
‘ (y|-2|)

I I

LOSSY MEDIUM WITH “ZGAUSSIAN WINDOW OF
COMPLEX WAVE NUMBER k TRANSMITTANCE exp [-(y-yc12/w2]
LLL L L LS L L LTS L L LLLL oy

LOSSLESS MEDIUM WITH ,
INCIDENT PLANE WA Figure 1
gexp[i( t-py-v/k3-p22)] -

REAL WAVE NUMBER kg

window size, the field at the observation point approximates the
fields occurring in the absence of the window to within some fixed
accuracy. By the above process, one determines the area in the
plane whose illumination is principally responsible for the field
at the observation point. In the lossless case, this area com-
prises the first few Fresnel zones which are centered zabout the
intersection of the plane and the ray reaching the observation
point. If several distinct field types contribute to the observation

point, the local envirounment associated with each field type could
be found in a similar way.

“

For simplicity, a two-dimensional problem is considered
wherein a plane wave is incident at an angle in the y-z plane from
the lossless medium. Sampling of this canonical incident field with
an appropriate window, which is assumed uniform along x, the
relation between the local environments and the complex rays is
determined. To limit diffraction effects, which in the case of a lossy
half-space can be exponentially stronger than the transmitted fields,
the transmittance of the window should be analytic. The Gaussian
function exp [-(y-y )2 /W=7, centered at Yoo 18 used here.

If Et is the fleld at the observation point (y,, z;) of fig. 1 when
no window is present, then the field E at the o'bservatl.on point when
a "wide! Gaussian window is msertea' is given approximately by
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where p is the wavenumber along y of the incident plane wave,

k is the complex wavenumber of the lossy medium, q=4k°-p® ,
Vem=Y1 -hRe(p/q) and d=-hIm(p/q). In order that, for minimum

width, Eo approximate E_ to within some fixed percentage error,
the window location y_ should minimize the magnitude of the square
bracketed term in (1).” However, taking the window location as
YeVem provides a simple, frequency independent center for the

local environment and can be interpreted in terms of complex
rays. The displacement of the actual minimum of the square
bracketed term in (1) from Yem is less than the minimum half-

width W of the window for which Eg even crudely approximate Et’
For Y=V erm? E  differs from Et by less than some relative
amount 2u? <1 if 02>h|k2/q® |/ W2 and ¢ > d%/W2. Thus,if

W is larger than the greater of (1/a),/h]|k2/q® | and |d| /o, then
|§g-§_t| /|E.| <202. The half-width W so chosen delineates the

region about Yem in the z=z, -k plane whose illumination is princi-
pally responsible for the dields at (y,, z, ).

For a lossless medium (k real), Yem is the intersection,with
the plane, of the ray flluminating (y;, z;) and d =0,so that the Fresnel

criterion W> (1/a)yhk2/q® determines W. The principal effect
of loss on W is to impose a condition, linear in h, that must be
satisfied in addition to the Fresnel criterion. For

h< |k®/q®|/[Im/p/q)]?, the half-width is determined by the con-

dition W> (1/a)y h|X2 /q® | while for h greater than this value, W
is determined by W> |d| /o :

3. Relation to Complex Rays

If the medium for z> 0 is lossless, the fields at (y;, 2,) can be
interpreted in terms of real rays. Irn this case, the incident plane
wave is viewed as being composed of a family of rays parallel to the
direction of propagation of the plane wave. These rays are refracted
at the interface and one of them illuminates (y,, z;). The equation
of the path of this ray is (y; ~y)=h{p/q), where y is the intercept of
the ray with any plane z=z,-h> 0.

For the case of a lossy medium (k complex), the foregoing ray
equation still describes the path of the ray illuminating (y;, 2z, ). How-
«wer, since q is now complex, except for normal incidence the ray
intersects the z=z, -h plane at a complex point. In particular, y is
complex at z=0, thus requiring the extension of the family of rays
representing the incident plane wave to include rays lying in complex
space. In fig. 2, the complex ray is plotted for p> 0,

1

sz
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¢ CF REGION OF
- PROPAGATION

(Yc=Yem)

COMPLEX RAY
y=y-hp/q

L/ hike /a9t
a hlk</q¥l

= Re y
Imy/ |

Figure 2

Taking the real part of the ray intercept for h real gives
Re(y)=y, -hRe(p/q), so that the center ¥ em ©f the region whose

illumination is principally responsible for the fields at(y,, z, ) is
the normal projection of the complex ray into real space. Taking
the imaginary part of the ray intercept gives Im(y) =-hIm(p/q), so
that the condition W > |d]/a is seen to require that the half-width
of this region be several times the distance that the complex ray
lies outside of real space. The local environment, which lies in
real space, appropriate to the observation point (y; , z;) is outlined
by the solid curve in fig. 2 for the case of high loss tangent.

By placing the Gaussian window at values of z< 0, it can be
shown that the region of propagation in free space is centered -
about the normal projection, into real space, of the plot (for z
real) of that complex ray, which when refracted at the interface,
passes through (v, z;). Again, the extent of the region of pro-
pagation is the wider of the limits set by the Fresnel criterion
and the criterion based on the distance from the ray, when plotted
for real z, to real space.

SRS O TN
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TRANSIENT DIPOLE OVER A DIELECTRIC HALF-SPACE*
'by-
D. A. Hill
The Ohio State University

ElectroScience Laboratory
Department of Electrical Engineering

Abstract

The transient fields of short electric dipoles located above
a dielectric half-gpace are examined. Closed form solutions are
obtained for the cases where the observation point is directly
above or below the dipole and where both the dipole and the ob-
servation point are located at the dielectric surface.

The problem of radiation from short dipoles with time-harmonic
current excitation in the presence of ground results in the well
known Sommerfeld—-type integral solutions. I1If the current is a delta
function, 6(t), then the time—dependent solution can be obtained by
taking the inverse Fourier transform of the Sommerfeid-type solutions.
In this paper, exact closed—form, time-domain solutions are obtained
for some special cases.

nv,nh

Figure 1. Vertical electric dipole above a uniaxial anisotropic
dielectric half-space.

*The research reported in this paper was sponsored in part by the
Air Force Cambridge Research Laboratories, Office of Aerospace
Research, under Contract F 44620-67-C-0095, and by The Ohio State
University Research Foundation.
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Figure 1 shows a vertical electric dipole located at a height
h above a uniaxial nondispersive, anisotropilc dielectric half-
space with a vertical index of refraction n, and a horizontal index
of refraction ny. The dipole is of length ds and has a current
I §(t). Cylindrical coordinates are used since the problem is sym—
metrical in the ¢ direction. The frequency-domain solution for the
z~component of the Hertz vector in the upper medium has been de-
rived by Wait (1966). When the direct term is removed, the fre-—
quency-dependent scattered field can be written as

e_j 2;‘ ’pz + (z+h)

0z 4meJo B , p2 <+ (z+h)
2 - 2
I () eV W/ed® (=40) 0y
+-2nvnh 1
Dooam 22 - ez +]a2 - awia? | o

If the observation point is directly above or below the dipole (p=0),
the form of (1) is simplified by removal of the Bessel fumction.

The frequency dependence of the integral in (1) can be further
simplified by the substitution A = wa. We are now ready to take

the inverse Fourier transform of Hi (w) to obtain&the time-depend-
ent Hertz vector&ﬁg (t). Since it is known that IS _(t) must be

real and causal,nngt) can be obtained using only gﬁe real part of
ng(w) as shown in Papoulis (1962).

i s _2 (= s
5 (o = 2F [Re I, (w)] = m [ [Re Hoz(w)] cos wt dw, t > 0
- 0Z o
O» 0 (2)

The two integrals on "a" in the expression for g (t) can be eval-
uated by use of the delta function properties an zby use of standard
integral tables. For t < (z+h)/c, Hiz(t) is zero; and for t>(z+h)/c,
sz(t) is given by

Ids nony [et/(z+0)] - flet/(z+#0)12+ 02 - 1

a,
e,© -

breo(z+h) nom, [ct/(z40)] + [t/ (e 12+ nZ -1 )

The magnetic field on the 2z-axis is zero, and the electric field
bas only a z—component which is obtained from the time—degendent
Hertz vector by the operation, ﬁgz(t) = [32/322 - (1/c)22 latz]ﬁﬁz(t).
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The time-dependent Hertz vector can also be obtained when both
the dipole and the observation point are located at the interface.

In this case the frequency-domain expression for the total Hertz
vector is

Ids oy (= Jo(Ap) Adx
t —_
Hoz(w) = » J > 5 = 3 (%)
meg Ju nvnhj AL = (w/e) +,f A% - (%m/c) .

The frequency dependence is again simplified by the substitution,

A =wa, and only the inverse transform of the zero—-order Bessel
function is needed to obtain the following time-dependent Hertz
vector. After performing the integration on "a", the following
closed form is obtained which agrees with the result of Van der Pol
(1956) when the lower medium is isotropic.

¥ (py - Lds (”v"h 1 1 ]
oz 2meqP znh - J'nh - 2 +1 j(nh2+l) &t _ nv2

o9 o(= 2} (22 2] - 22)

(5)

The electrlc and magnetic field components can be obtained by op-
erating on (£): Bt (£) = - (1/p) 3/v0 [d ?ft (t)/3p] and

gt) = —€, 85 3 (t)lgpat. There is also a p—component: of the
electric fleld but it can not be determined from (7) because the
z dependence orf ﬁ’gz(t) is uneeded.

The time-dependent Hertz vector ic the lower medium can be ob—
tained when the observation point is directly telow the dipeale (p=0).
The problem is simplified when the lower medium is ‘sotropic (ny =
oy = n). The frequency-dependent Hertz vector for this special case

is
I ds o e” A2-(n/e)? z - l A2-(w/c)2 h

21're°ju.\

Typ(w) =

Adx . (6)

n>2J A2—(w/c) 2+ ﬁz— (nw/e) 2

If the substitution, A = wa, is made, the frequency dependence of (8)
is simplified. The inverse Fourier transform can then be taken using

the same technique which was employed on (1), and the resulting
time-dependent Hertz vector is

ey b i e

AME & Wb §

. s
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2 + nZ 1 -
2meo [ B2 J1+(n2-1) (h2-22) /(ct)?
[z+n2h+(‘h.l.nzz)ﬁ+(n2_l) L__—_z.—l} U( t - h‘i) . (7) -
(ct)? c

The magnetic field is zero for p 0 and the electric field has
only a z-component given by ﬁlz(t) = [02/522 = (m/c)? 32/3t2] ﬁlz(t).

The problem of a horizontal dipole over an isotropic half-space
has been treated by Banos (1966). The electric and magnetic fields
are given in terms of the usual integrals so that the intermediate
calculaticn of the Hertz vectors is not necessary. If the electric
dipole is

#z

—{——b

h y

o P(x,y,2)

€p x

Figure 2. Horizontal electric dipole above an isotropic
dielectric half-space.

oriented in the positive x direction at a height h above an isotropic
dielectric half-space and the observation point is directly above or
below the dipole (x=y=o0),then the inverse Fourier transform of the
scattered electric field in the upper medium can be taken using the
same methods which were used for the vertical on-axis fields. The
resulting time-dependent electric field is

1 4 t - Z'I'h —- t - z"'h)
g _Ids ) pi 8 . n-1 6(
E (t) 2= +

4reg | THL L2 (z4n) o+l ¢ (z+h)2

- U( ‘ﬂ) 32 2
c? (z+h) | at2p41 + (n2-1) (z+h)2/(ct)?2
(ct)2/(z+0)2 - 1 ]_ c2 ]
2 .

n2 + [1+@Z1) (z+h) 2/ (ct) (z+h) 2

<+

(8)
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Using the same technique, the scattered time-dependent magnetic
field on the vertical axis in the upper medium can also be found.

Details of the material in this paper are included in Hill (1969).
For an arbitrary location of the source dipole and observation point,
application of the techniques used here results in a finite integral
which must be evaluated numerically. In this case one must work
directly with expressions for the field quantities if the time-
dependent field waveforms are desired. The same techniques can be
used for the case of magnetic source dipoles since identical in-
tegrals are involved. If the half-space is dispersive, a Fourier
synthesis technique can be used to secure the waveforms (Hill (1969))
but one is limited to thke usual asymptotic estimates of the frequency-
dependent fields. However, from quasi-static and high frequency
asymptotic approximations and a2 limited number of synthesis results
an estimate of the transient field is feasible. Such an estimate
has the advantage of combining several spectral approximations in
a single real characteristic waveform which, through convolution,
is applicable for arbitrary excitatiomns.

S S
.

The specific on-axis results detailed in this paper basically
yvield exact closed form expressions for the interaction between a
dipole element and a dielectric half-space. Using these, estimates i
of the response of linear or Rayleigh objects in the presence of a
dielectric half-space for dipole or plane wave illumination can be
obtained. Studies of these and related topics are presently in progress.
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The Propagation Constant of a Small-Diameter
Insulated Helix

F. P. Ziolkowski
Raytheon Company
Norwood, Massachusetts

Abstract

The influence of an insulating dielectric on the propagation con-
stant and coupling of energy from a tape helix to the ambient med-
ia is considered.” The solution presented for a pitch angle of 10°
demonstrates the proper behavior for thick and thin insulation.
The coupling decreases markedly with insulation thickness and
slightly with helix size.

The general procedures developed for the solution of the tape
helix in air (Klock, 1963 and Sensiper, 1955)'is applied to the insu-
lated helix. The notation used in this paper is

r, ¢, z Cylindrical coordinate variables. The axis of the helix
is coincident with the z axis and r = a,is the surface on
which the helix lies.

P Pitch distance between turns of the helix, E = 2%
aq Radius of the helix

) Pitch angle of the helix, tan,d = p/a

3} Tape width of the helix

The filamentary helix is defined by the relation pep-z = 0,
which for a tape helix of width -6/2 < { < 6/2 is Pop-z=¢{.
By use of group theory the unique perioditicities of the helix
have been incorporated into the cylindrical coordinate representa-
tion of the solution of Maxwell' s equations. The z components of
these fields are of the form

o
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where L, is the modified Bessel function In or K, as is appropriate.

The insulated helix consists of a core 0 < r < a,;, the insulation
a; £ r < a;, and the ambient media a; < r, whereiniis 1, 2, or
3 respectively. Once the field expressions for each of these re-
gions is obtained and the current is expanded in a similar manner,
the eight boundary conditions

Ei _Ei+1
u Tu )
i=1, 2foru = ¢,z (2)
i i+1 A
I-Iu Hu Jui

together with the requirement that the electric field parallel to
the tape be zero yields the determinantal equation. In (2)

i1
Jur
tion can be simplified to

is -j;. g for u = ¢, z and jfl_LE 0. The determinantal equa-

B2 (Fy + sin 9 S;) = (K ctn ) (Fo/7¢ + Fy tan ¥ + S,) tan

- 3)
%= \[B2+ %

1
Kozl - E I3 Kp,

where

Fl = IZ.'I KZI 1 + ;
E LKz - LKy

Es ' ng
E = —
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I , Kaly - MKyl
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§
and i
) :
S. = E sinan (1 _{.;_e-ln) j=1,2 :
J a.n?. J I
1 b
. - i
€3 K3
1 - — t -= t '% '
£ = —2 £, = ‘iz ;
€3 H3
1 + — 1 +~—' i
€2 K2 P
i
£
! a; d
t = t t = — 3
12 2 & 1
1+ -1) cos 2 i
A= 2(t' -1) ctn P i
_ b6
@ = 3~ ctn ¥.

A shorthand notation has been used so that Iij = I, (‘r; ajlﬁ) and
similarily for Kij- IfA > 3 then the last term is rcegligible for
which case S§; = S; = 1 -fn a.

by e l At E0 Al

This solution is valid for small-diameter helices such that
lﬁl << 1 and requires the core and insulating materials to be
identical. This core insulation material may have aay per-

meability or permittivity, with or without loss.

The figure is the solution of this equation for a dielectric
core-insulation case in rock media. In this case u; = p; =1
and €3/€; = 4, p = 0 and p3 is assumed 0.1 and 1.0. The
helix pitch angle is 10° witht' = 4.0 and 1.03. The solutions
are compared to the asymptotic cases of infinitely thin tapes
with infinitely thick or thin insulation. Because of the finite size
of the tape of the helix, 6/2a; = .1, the expected dispersion
from each of the asymptotes is encountered. The ratio Bi/Pr is
observed to decrease slightly with increased helix size and mark-
edly with increased insulation. Increasing the loss tangent of the
rock median increases this ratio. Computed results indicate

-
I}
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that insulated helices yield values of Bi/B, that are as much as
two orders of magnitude less than comparably dimensioned, in-
sulated solid conductors.

a,/a; = 1.03 =——— : ]
4.00 EZ:ﬁrSianE—.-—:ﬁ
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AN ALTERNATIVE METHOD FOR DERIVING FOCK'S
PRINCIPLE OF THE LOCAL FIELD IN THE PENUMBRA

Dr. R. H. Ott, ESSA/ITS

ABSTRACT

An alternative method for deriving Fock's principle of the local
field in the penumbra is presented. The method is based on
solution of the wave equation in parabolic coordinates, with 2an
impedance boundary condition on the surface and 2 radiation
condition at Infinity. It is shown that Fock's principle yields
surface currents that are extremely accurate provided the ob-
servation point on the cylinder is near the point where the im-
pressed field grazes the cylinder. When the impressed field
travels in a direction tangent to the apex of the cylinder, Fock's
principle is exact for all observation points on the cylinder.

The results presented in this paper are more general than those
given by Rice since his results are limited to the perfectly
conducting case.

' 1.0 Introduction
A number of investigators have studied diffraction of radio
waves by cylindrical (parabolic and circular) surfaces: Rice
(1953), Wait and Conda (1958), Jones (1964), Fock (1965). In
this paper we investigate a plane wave striking the parabolic
cylinder a2t an arbitrary angle of incidence (i.e., the incident
wave ig normal to the axis of the cylinder, but not necessarily
tangent to the apex). The field on the surface of the cylinder
satisfies an impedance boundary cordition. Fock's principle
implies that universal formula exist for the field on the surface;
i,e., when the incident wave is not tangent to the apex we re-
place the original wave direction and cylinder geometry by an
equivalent geometry with the wave tangent to the apex of a re-
placement cylinder with 2 radius of curvature equal to the radius
of curvature of the original cylinder at the point of tangency. It
is shown that for all angles of incidence, Fock's principle yields
extremely accurate results for the penumbral currents, provided
the observation point on the cylinder is near the point where the
impressed field grazes the cylinder. When the impressed field
is tangent to the apex of the cylinder, Fock's principle yields
surface currents that are identical to those derived in this
paper.
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2.0 Analysis
We now consider the field produced by a plane wave, travelmg
in a direction making an angle ¢, with the positive x-axis,

striking the parabolic cylinder in figure 1. It will be assumed
that 0< ¢, <Tr,

Lit . . Grazing Ray
(7, Eo) ¢
‘r = r -
-§,cotd, Shodow
:eflected -y
a
y N = 0 /3
7>0 )
&

Figure 1. Geometry of incident wave and parabolic cylinder,
used in the derivation of the Fock currents. The
origin is at the focus of the parabola.

The solution of the wave equation and an impedance boundary
condition and the radiation zondition at infinity may be shown to
be (Ott, 1969)

1, .

-1 quhp av ta_nagp) { zD,(-bE,) -hD,, 7 (-h8,)
§=— D_(-hE) - ¢ —
2421 “-Loie SV cos 5%, zD_(hg,)+ bD | (kS ,)
p,me)} b em » (a=dZ ). (1)

When k&, becomes large, the following asymptotic representa-
tion for the parabolic cylinder function is valid (Rice, 1953):

1 Ry
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(kS, )~2~/_exp{ (i -2)4niu - m!2+:n/12}u1f6(ﬁ(§a—:>‘

X Ai(em/3u2/3 §1>. i (2)

where =P
2e0¥? =4 jJ Tds , (v=iu-} .

-1
-2

Substituting (2) and an asymptotic expansion for D, ;1 into (1)
yields the following expression for the normal A2
derivative of (1) on the surface:

1 3y _ -zh e /12 -iu[g - 1ntan(p./2) ]
2, .25 98 2 4. 2% 4 z e
(€5 +n°) 2rr(§ +1n°)° (singp, )< -
/ an 1/6 i/ 3 2!3
) H { (zxge ) ( )
i]T/lZ _2k_§2?._

+he2 L6 _1;1 4>§-Af<em/3u213§1>}'1

GG B0 = {EE - E D e

The Laplace approximation (Copson, 1965) states that the major
contribution to the integral in (3) will arise from the neighbor-
hoods of the points at which

£(2,M) = pl€2 <ntan (v, /2)] (4)

attains its supremum. These points will be solutions of

of/ Bu 0, and it is easy to verify that the point N = -§,cot®p, »
=z 1 KkE? satisfies the condition. Since we are interested in the
integral near the point where it assumes its greatest contribu-
tiom, it would appear that a Taylor series expansion of £(T,m)
about this point would be useful., That is, consider

£f(7,m) = -krcos (P @, )+ £(Q, P )+ £ (Q, )T , (R=1/E,), (5)
where
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£ (Q, %)113 = (@ sino,+ cos cpo)[l + © smcpq-; cos©,) cos @y (9
(k83/2)
d .
¢ R0,0,) _ @sing, + cosg,) ™
(xE3) 6 ’
and the variable of integration is changed according to

1/3
k€2> k§§>
=( ==e £30
H ( 2/ " ( 2 T (8)
The corresponding functions given by Fock agree with (6) and
(7), provided Q= -coto, .

3.0 Concluding Remarks
The validity of Fock's principle for the local field in the pen-
umbra was investigated for the case of a plane striking a
finitely -~conducting, parabolic cylinder at an arbitrary angle of
incidence. The results show that Fock's principle is extreme-
1y accurate provided the observation point on the parabolic
cylinder is near the point where the impressed field grazes the
cylinder. When the Inpressed field travels in 2 direction tan-
gent to the apex of the cylinder, Fock's principle agrees
exactly with the results presented in this paper for all obser-
vation points.
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BOUNDARY VALUE PROBLEMS IN RADIALLY INHOMOGENEOUS MEDIA *

John G. Fikioris

Department of Electrical Engineering
The University of Toledo, Toledo, Ohio

Abstract

Analytical and numerical solutions of radially inhomogeneous
problems are examined. Piecewise constant and analytic approxima-
tions to the stratification function are discussed and compared.
The advantages of the latter are pointed out., Finally, for a rather
general ease, the amalytic continuation of the assoclated radial
functions 1is carried out.

1. Introduction

Electromagnetic fields in radially inhomogeneous media, with
an obvious extension to ellipsoidal shapes, are of practical inte-
rest in antenna, scattering and lens problems (Tal, 1958). If allow=
ed by the shape of boundaries, the method of separation of variables
may still be applied to such problems. In a number of situatioms
the precise profile of the stratification fimction f(r) is nof known
and, more importantly, mot very critical in determining the wvalue of
certain quantities. An example is provided by the input impedance of
a biconical antenna in such media (Fikioris, 1965a), in particular
dissipative near the antenna region. In contrast, the far fieldd of
the antenna depends on values of f(r) for all r. For the far field
of an inhomogeneous, lossy scatterer of radius d, on the other hand,
values of £(r) mear r=d are more influential than those mear r=0.

In lossless media knowledge of £(r) for all r is required; even
then, a good approximation to it for all r may suffice for certain
problems.,

2. Discussion of Various Approaches

The preceding comsiderations make obvious the importance, from
the analytical and computational standpoint, of an optimum cheoice in
approximating £(r). Two practical possibilities exist: a piecewise
constant function fM(r) (M layers in the interval of interest

* Most of the work was done at the Gordon McKay Lab., Harvard Uni-
versity, Cambridge. Mass.,, and was supported by NSF Gramt 20225
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I Sr<ry) or an analytic functiomn fa(r) (having continuous derivati- :
ves of all orders in rysr<r,). Some immediate advantages are evident

in both cases. In the férmer, the sblution R, (r) of the radial dif-

ferential equation is given in terms of known functions. For instan- ,
ce, in spherical inhomogeneities, R,=j, or R =h , the spherical Bes- i
sel or Hankel function, where v, n denote the separation constant.
However, matching of solutions has to be effected at r=d and r=r,
(m=0,1,...M), a tedius task indeed. With £, (r) matching is required
only at r=d,r oI+ The cases ry =0, ry== further reduce the number
of matching surfaces. Here 4 denotes the length of a biconical an-
tenna, or the radius of the lens, scatterer, cylinder, or £=d of an -
ellipsoid, in corresponging cases. "

The weight of these considerations becomes clear, when itvis ‘
noticed that matching at m surfaces involves solution of 2m complex
linear equations in 4m real unknown coefficlents. Computer limita=-
tions in matrix inversion are well known and severely restrict M,

For intervals r,sr<ry long compared with A such limitations on M
will produce inaccurate results. For a meaningful approximation to
f(r) the width of the layers should be selected as a small fraction
of A rather than by matrix inversion considerations. For instance,
A4 coating of a dielectric e2/eo by another e}/eg=iE;/€. Eisults
in 0 reflection (at normal incidence), but for any departure from

d =J\/4, say d,=1/2, the reflection coefficient is significant. Besi-
des, each layer is a plece of non~uniform transmission line of the
same length and corresponding characteristic impedance (Walt, 1962).
All this makes evident the advantages, irn many cases the necessity,
of choosing f_(r) over fiy(r).

It is often desired to study the effects of changing d in the
same medium, particularly in the range r, <d<ry. With fy(r) certain
equations must be modified as 4 moves from Im$ASTpy) €O Ty 1$dSThy9.
In the problem of the biconical antemmna Rn (n=integer)
changes to Ry, (v=fractional) and vice versa, in the coreesponding
intervals. The matching equations are also affected. Such complica=.
tions are absent, when f_ (r) is chosen.

At first glance, even the advantage of dealing with known fimc-
tions, like h,, j,, seems minimal. The computer evaluates them, in-
stead of reading their tabulated values, But then, almost as well,
it may be programmed to compute R,(r), by means of a variety of infi-
nite seriles expressions., Programs éwvaluating recurrence formulzs and
summing series are simple. However, dealing with solutions of the
hypergeometric equation, of which h,, j,, are a particular variatiom,
allows use of recursion formulas relating solutions of adjacent order
and greatly facilitates the evaluation of such functions. In additiom, i
connection and asymptotic formulas among the various solutioms of the
equation are known and simple. Unless f_(r)=br¢ (b, c constamts), the
radial equations possess more than the 3 regular singularities of the 3
hypergeometric equation (or its variations) and, in general, recur—
sion formulas capnot be found. Connection and asymptotic formulas can
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be found in certain cases (Fikiorig, 1963, 1965b) after involved
analytical and computational work. This is the only advantage of
fy(r) over f,(r), but it is an important ome,

3. Analytic Continuation of Radial Functions

In the remaining part of the paper the effect of zeros and sin—
gularities of f,(r) on the amalytical complexity of the problem will
be discussed in general terms. While details can be found elsewhere
(Fikioris, 1963, 1965a, b), certain aspects, available only in the-
sis and technical report form, will be elaborated upon. As already
mentioned, the limits ry=0 and/or ry==, when allowed by the confi-
guration, substantially simplify the solution. The corresponding
matching problems disappear; finiteness around r=0 and the radiation
condition at r== single out proper radial fumnctions, reducing the
number of expansion coefficients. However, both £,(0) and fa(=) must
be finite., This rules out simple forms like f3(r)=br¢ and introduces
additional singularities in the well known radial eqautions for TE
and TM spherical waves (Tai, 1958)

R'{£5(x)=-v(v+1) /T2}R=0 (1), R"=(£L/£,)R"+{f,(r)-v(v+1)/r2}R=0 (2),

respectively. Bor certain problems d=r,<r and f,(0), being of no con-
sequence, may be taken 0 or = resulting in considerable simplifica-
tion. Similar remarks apply whem d=ry, f;(r)=comstant for r2ry.

In any case, (1) and (2) should be solved over the interval
r,sr<ry and the appropriate solutions evaluated at r=r,, d, ry. The
singularities, introduced into the equations by f;(r), restrict the
convergence of the infinite series expressions for R, (r). For inter—
vals long compared with XA, amalytic continuation of Ry (r) becomes
inevitable. As an illustratiomn, (2), whose singularities exceed tho-
se of (1) by the number of zeros of f;, will be solved and analyti-
cally continued in case fj(r)=(x+a)/(x+b)=1+c/(x+b), c=a-b, x=kr=
27r/A, in the interval Osr<= (ro=0, ry==). A bilconical antenna in
such a medium has been investigated in detall elsewhere (Fikioris,
1965a, b). With x=kr (1) becomes

R"™(x)+cR" (x) /{(x+2) (x+b) H{l+c/(xtb)—v (vH1) /x2}R(x) = 0 (vz0) (3)

and has 3 regular singular peoints at x=0, x=-a, x==b and an irragu-
lar singularity of the first rank at x=«, i,e., two more regular

singularities than the Bessel equation. For lossless media x varies
along the real axis; for dissipative media along a straight lime in
the fourth quadrant of the x—plane from 0 to »., The method of Frobe-
nius around x=0 yields two independent solutions R;, R, in the form

R(x)=x" § a xn , |x|<min(|a],|b|), where oy=v+l for R,, g ==y for
sz(fm!'gfractional values of 2v+l). The coefficients a, for ao=l,
2,:.24s can be found by the S5=~term recurrence formula

b sy e 4 o
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4
nEO ap.m um(n+o-m) =0 ; a_j-o » 3=1,2,... (a1, a,=~-c/2ab) &)
where u,(z)=aby(z), ul(z)=cz+(a+h)y(z?. u, (z)=a?+y(z), usz(z)=2a,
u, (2)=1, y(2)=z2(z=1)-v(v+l).

When 2w+l equals a positive integer there is no change in R,,
but R, becopges logmwrithmic. It may be defined as follows: Rp(x)=
Inx Ry(x)+ I bax "V, [x|<min(|a],|[b[). The by's obey an imhomogene:
ous recurrence formula for n>2v+l, whose homogeneous part is the sa-
me as (4) for o=-v, For lgng2v, bn'bodn' where with do=1, d-j=0 (3=
1,2,...) the constagts 1, dy,....d,,, satisfy (4) with o==v. Final-
1y, bo--ab(2v+1)/{j=° dpy-giy41 (V-] } and by,,41=0.

The analytic continuation of R;, R, beyond the circle |[x|=min
(|a]s|b|) can be obtained using a bilinear transformation t=x/(x+p),
x=pt/(l=-t). The constantpp is chosen to optimize the convergence of
the resulting series in t. The normal at x=-p/2 to the straight seg-
ment from x=0 to x=-p/2, maps onto the unit circle in the t-plane,
The half plane containing x=0 maps onto |t|<1, whereas x=~0, =a, -b,

= map onto t=0, a/(a=p), b/(b=-p), 1, respectively. These points are :~

the only singular ones of the differential equatiom in t,
R"(£)+]- £= ' 2]R'(1:)+1'(‘°""5‘)‘“""a B2
l{(=a)t+al{(psb)t+b} t-1 (p=b)t+b (£=1)%
-v(v—l—l)/{tz(t-l)z}]R(t) =0 . (s)

The first three are regular, the last, t=1, is Iirregular of rank 1l.
The parameter p can be chosen so that x=-a, x=-b are located omn the
half plane that maps onto |t]|>l. Then, a power series solutiom of

(5) around t=0 will converge for |t]<l, providing the amalytic conti=-

nuation of R(x) over the interval of interest OsRe(x)s~. Numerical
computationashave shown that such series can be used for values of
|x| 3 to 4 times larger than those possible in comnection with the
series in x. It is not necessary, in this respect, to map x==-a, -b
outside [t|=1. Sometimes larger values of [x| can be used with se-
ries in t convergent in |x|<min(|a/(a=p)|,|b/(b-p)|)<l. The image of
the straight line over which x varies from 0 to =, connecting t=0 to
t=1, should be as farkher from singularities as possible. This is
the optimum criterion for p, for such restricted values of x.

It remains to comnect R(t) to R(x). This is done here in the
special case p=2a, t=x/(x+2a), x=2at/(l-t), mapping x=-a on t==l, a
convenient choice in certain applications. The series in t are:
R(t)-Acan'g’oentn. |t|<min(l,|n|), b=b/{2a=b), where cy=v+l for R,,
o2=v for 'R, and fractional 2v+l. The ey's satisfy a 7-term recur-
rence formula with eg=l, e.=o+(1/2)-1/(2h). As x>0, t=(x/2a){1-x/(2a)
+ees}e Substituting: R(t)si(x/2a)°(1+x/2&)‘°(1+e x/2a+...)=A(23)~C
icl{l‘(el-a)x/?.a'h..}'=A(23)—°x°(l-dlﬂ3h'D)+...}. &‘ith Aﬂ(Za)d the so—

lutions in x and t are identical: R=x® I  a,x0=(2a)%t® I e,tP.
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For integral values of 2vil, R, becomes logarithmic. In analogy
with the series in x: Rp(t)=In{2at/(l-t)}R;(£)+B z g tP~Y, ft|<min
(1,]h]). For lsng2v the g,'s are evaluateddby a ogogeneous recur-
rence formula, like that for the en's of R,(t), with g=-v, g_~1,
gy==v+(1/2)~1/(2h). For n>2v+l the gn's obey an inhomogeneous re-
currence formula, whereas B and 82\4+1 are chosen so that Ro(E) =

E (8. This means Be™¥ £ gne8 = =V bo ,f 4., where by=bod, for
all m, or B,E, g,(x/2a)%(1+x/2a)V"" = (2a)"Vb_ L dyx0. Use of the
binomial expansion for small |x|, as before, yields: B=b°(23)‘“
and (for integral v) ng_i_l-mfl(-l)“"'m v gm/{(v—m-i-l)!(m-l)!}. For
v=o+l/2, neinteger, slight changes are involved., The result for R,y
is: -

R, (0)=R,(c) = lnx Ry(x) + b,(2at)™V L g t* , |t|<min(l,|n]).

The formulas are easily checked for functions of low order,
va]l , 2; they havebbeen checked numerically for much larger values of
vs It was also found that thercoefficlients increase faster than
the en'a. More details, as well as methods of obtaining asymptotic
expansions of K;, R, as x»=, can be found elsewhere (Fikioris,
1963, 1965b).
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RADIATION FROM A PARALLEL-PLATE WAVEGUIDE INTO AN
INHOMOGENEQOUSLY FILLED SPACE

R.J. Rostelnicek, University of Illinois. Urbana, I1l. 61801, U.S.A.
R. Mittra, University of Illinois. Urbana, I1l. 61801, U.S.A.

A method involving an extension of the function—theoretic
technique is presented for solving the problem of a semi-
infinite parallel-plate waveguide radiating through a dielectric
or plasma slab. Some numerical solutions are presented for
both cases.

Introduction

The object of this paﬁer is to present an analysis for the
PERFECT

problem shown in Fig. 1.
CONDUCTORS C
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Fig. 1. The radiating waveguide with a slab having
a relative dielectric comstant K.

A conventional approach to this problem entails the use of the
variational technique. However, this formulation is necessarily
approximate, since the Green's function for the region external to
the waveguide can not be constructed in a convenient manner. Im
addition, no direct use is made in the above method of the kmown
exact solution of the canonical problem, i.e., a semi-infinjte
waveguide radiating into free space.

In contrast, the present formulation for this problem is based
on an extension of the method followed by Mittra and Bates (1965)
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for the canonical problem. The basic steps involve the writing of the
fields in region B in terms of waveguide modes and in region E in terms
of a continuous spectrum (Fourier integral) representation. Similar
transform representations are also employed in regions A, D, and C.
Typical representations for the magnetic intensity in regions B and E
for a mpo incident mode of unit amplitude are given by

-R z g B z
(Hy)B = cos(-r%)e °© +Z Bs cos(-s%-x—)e s )
s=o
and -
(Hy)E = fE(a)e_E(z-ﬂ_Zt) cos (ax) da (2)

o}

/ 2 2
The longitudinal wave numbers are given by BS = (st/b) -k ° in

region B, § =4\/a2—k§ in E, and n =1/'Yz-kg in C. The mode coefficients

and spectral weight functions are B_, D(a), E(a), C(y), and A(c).

The next step is to solve for the various mode and weight co-
efficients by matching the transverse field components at z = £ and
z = £ + 2t, thereby obtaining D(a) and A(e) in terms of E(z). Field
matching is once more carried out at the z = 0 interface for x > b
and subsequently for x € -b. The resulting four equations are Fourier
transformed and combined to yield the following relationships:

b(1+57)6] = E() r(£7) (3
cpoy—JYD e N [R(2) “ ()
mME()R (y)e Y + foE (u.)[“E -un - %+an] doa, 4)

together with two companion relationships giving the coefficients B

and weight fuimction C(y) in terms of an integral relationship in-
volving E(a). In equations (2) and (3) we have written

E“(a) = a sin (ab) E(a), R7(a) = R(a) exp(£f) and Q" (a¢) = Q(a) exp(-ED).
The quotients 1/R(a) and Q(a)/R{a) are respectively the transmission
and reflection coefficients for a uniform plane wave incident onto

the dielectric or plasma slab at an angle given by © = sin ! (a/ko).
Equations (3) and (4) represent a homogeneous integral equation

for E(a) and a requirement that E(a) take on certain specified values

at a =sw/b (s =0, 1, 2, cc...).

—

P -

(28

A et amel o] FLA ia s W e




-30-

The above formulation is exact, and for the limiting case when
k = 1, an exact solution for E(a) can be constructed using the
function~theoretic technique.

Modified Method of Solution

".. The solution of (3) and (4) for E(a) by the modified function-
tHeoretic technique is accomplished by the ccnstruction of a
meromorphic function F(w) of a complex variable w, which has a certain
pole-zero configuration, and specified branch singularities.
Integrations in the complex plane yield results which, when compared
with (3) and (4) and the companion relations for B_ and C(y), give
the required solutions and the normalization condition. These are:

_ s o
F(-Bs) = =b(-1) Bs(l+SS)BS (5)
F(E) = nER" () el ®PE(o) (6
FTL + Fe-n) = mncn )
and P
= b(- o . 8
F(8,) = b(-1)P8_(1+59) (8

The function F(w) may be factored imto the form F(w) = F;(w) T(w),
where Fj(w) represents that function employed in the solution of the
canonical problem (Mittra and Bates, 1965), and T(w) represents the
departure from the canonical function due to the presence of the slab.
The preceeding integrations and comparisons together with the factored
form of F(w) yield an auxiliary integral relationship

T(w) = 1 + A(z) T(z) dz . (92
w—Bp A w+ z :

Equation (9) is not very convenient for numerical methods of solution
when w is on the path ¢ due to the singular mature of the partial
kernel A(z), which has poles on ¢ due to the surface modes excited
within the dielectric slab. However, the path ¢ may be deformed to
say 6° on which the integrand of (9) is wholly amalytic. Numerical
methods are now employed together with a process of analytic continu-
ation, and the required wvalues T(w) and T(-w) obtained.

The near fields may be obtained from the modal expansion in
region B or from the Fourier transforms in the open regions. The
radiation fields are obtained directly from the spectral weight
coefficients by employing the method of saddle point integration
(Collin, 1960). The surface modes may be obtained from the residues
of the integrand in the transform representation in region A.
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Finally, the function T(w) may be solved for exactly as
|w|+= and shown to satisfy the edge condition (Meixmer, 1954). Such
consistency is usually difficult if not impossible to demomstrate when
other methods are employed.
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(c) (d)

igure 2. Radiation patterms for (a) canonical problem with
«16hg; (B) b = .16A,, k = 2, 2t = Ay/2, £ = 03 (c) b = .16A,,
2, 2t = Ag/4y £ = Ag/b; (@ b = .16A,, « = -2, 2t = A,/2,

0. The free space waveléngth is A,.

Table 1. The distribution of scattered power into the various
regions, normalized to one watt incident in TEM mode.

TEM SURFACE
o | MODE MODES
oo | B P P P, WATTS
% B E C ™ g
[T WATTS WATTS WATTS 2] 7&~
> i
a| .135 .691 .182
.72x10°
(b) | -154 .678 .092
.077
.195
(c) .157 .606 111
0
(@ | .975 | .17x1073] .025
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Metallic and Dielectric Antennas in Conducting Media(+)

Giorgio Franceschetti ('!"(I'.)l. )
O.Bueci, E.Corti, G.Latmiral

Abstract

' The input resistance and the effective height of several an-—-
tennas are camputed in the limiting static case,for a gap-type ex
citation, and for an unbounded surrounding medium; and then for
a semi-infinite, two-layer:. medium. The system equation is also
computed. Experiments on models completely confirmed theoretical
deductions.

l. Statement of the problem.

For the reception of electromagnetic waves by means of bu-
ried or sutmerged antennas it is rather obvious that metallic an
tennas (e.g. two closely spaced metallic plates) can collect the
current induced in the conductive medium by the propegating field;
and that dielectric antennas (e.g., an ellipsoidal cavity) can
be used to detect the internel enhanced electric field. Dual rea-
sonings apply for the case of transmitting antennas.

The antenna's charecteristics, i.e. the input impedance and
the effective heigth, will be obvicusly dependent on the amtenna
itself and on the used frequency, as well as on the externsl con
ductivity, medium inhomogeneneities and stratificetion, ete.

In order to get genersl results, same kind of schematization
is therefore necessary. Since the used frequencies are generally
very low, it seems to be convenient to develop the simple: static
case.

Theoretical results of our computations were confirmed by
means of experiments on models into a tank. The disturbancies,in-
troduced by the boundaries of the tank, were minimized by using
metallic and dielectric, walls alternatively, and then properly
processing the measured.; data. Lack of space does not allow us
to give further details.

As long as the dynemicel case is concerned, it is iobuitive
that in the low frequency case, the input impedance will remain
practically resistive, and equal, as well as the effective heiﬁ,

(¥) This work is sponsored by the Italian Consiglio Nazicnale
deille: Ricerche.

(++) Dept. of Electrical Engineering, University of Naples, and
Istituto Universitario Nevele, Naples, Ttaly.
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to those computed in the static approach.
Tkis part of the problem will be investigated in the near
future.

2. Computations in the static case.
Let £ , n be parsmeters describing radial and elevaticn co-
ordinates respectively, ¢(E,n) the potential, o the conductivity :
of the external medium. b
For the considered metallic antennas, whose surface is des. ,
scribed by £=£, (see the ta.‘nle in the next page), we have: ’ '

_1, (h ) Uy, _1(8) 3 1,

— - @ - M

2 n-1) ¢ WPy () 7 m D f ¢~ P, _,(njan,

(1)
being P(n) the Degendre function of first kind, and 9% the applied
voltage. . The U's are suitable functions, descr:.‘bmg the radial de
pendence of the field.
The current injected into the mediwm is given by:

ur 1
Uy _1(8e) [* B By
I= -7o ;.'.- (4n-1) @2'1 3 __l(E_r,T TP& l("l)d"l > (2)
being the h's scale factors.and 'be:.ng the dash deriveation in £,.
We have, for the input resistance:
®
R = '-% FY (3)
being ¢, the applied voltage to the exciting gap. The effective
he:.ght h can be camputed from the relation:
3z U (E"“) Ih
l:un ¢ = 5 l U Ty = 5— cosb %)
Evo 1+°° hnor
being ¢. related to I via (.-3).
Similar results hold for the case of the dielectric antenmas.
By referring to suitable coordirate systems, we get (for the
meaning of the numbers see the table), irrespective to the exci-
ting gap dimension:

1 y
2: R=357 3 h= ?L s 2<<L 3 (s)
R = .
5: R= 08 3 h= 2L 3 <<, . (6)

For the cther cases, when the exciting gap is assumed to be
infinitesimal, we get fram ( 2 ),bemg K a known constant:

(£)
I= -10 ¢, K Z %—n—-l—yz[P (O)]2 ;hi(E—oT . (N

Since, a.symptot:.cal]w for n>>1, [P (o)]2 behaves as 1/n,
and Uan-:.’“an-l -n, the series (7) diverges.
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On the contrery, assuming the gap finite, even if small,and
letting M the value of n corresponding to s, by means of elabora-
te computations it is possible to transfom (7) as follows:

2 En-l 1 sin 4nn 2n-l
= e — z —
wo¢°KZ—(——)2[P (o) _+1r Y- b T
(8)

By using the asymptotic expressions for Up,_; and Ub,_ l,(6)
tan be summed . (the first one in terms of the _gqpergeometr:.c

function) and we get(for the meaning of the numbers, see the ta-
ble):

R =2 —L .
3wl o, &, & .4 3
1: [1* 37 %= 35+ 3¢ (9)
h:& 1
3 54, 22 _4, o0 &
l_IL*’—:i-(ﬂ_L)an
7 =L 1 .
2wolL, 1 L 3
3: 1+3 83 (10)
h:i 1
2 1 L
l'l'?ln]?g
R = 2 ll.. .
wal 34 L >
4: 1+ (2 e =) (11)
h = 2L l

— 2L -
fa 5 1+ —(1+ En-h—)

Egs. (9 through 11) show- the proper logarfthmic singularity,
as it should be expected.

In the case of strip-type anmtemnas, L>>d, by applying the
Schwartz-Chiistoffel transformation for I, we get:

R = b 3
- . >
6 oL |1+ -1—:-} (1+ < £ ) n z]
Le 1
h = — + a. -
T —h 14 [
1+ Tr—"r(1+ ?I) lna

From & practical point of view, it should be remarked that
the weight of the logarithmic term can be lowered, by inserting,
betweer the exciting gap,a thin insulating layers, silghtly pro-
troding towards the conduct:l.ng medium.

The system equation between two identical matched antennas
can be cast under the following form:

.
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s [2

P 6
h L
']_:.,£ = [—— =(3) 3 (12)
t hnoRr
where, neglecting the logarithmic.term,we heve:
1 | 2 ' 3 N 5 6
>
0.028 0.067(3) 1.26 22 u(£)2 o.or(& b
L'ﬂ —_—
d

Although the comparison . between so different apntemnas is dif
ficult, the spherical anténna seems to be very promising.

In.the more realistic case of a semi-infinite two-layer: me-
dium, (the external of conductivity e'<c) it can be shows that, in
pratical cases, the expressions_for the resistance esre still velid,
those for the effective height mmst be multiplied for o/c¢' and the
system equations for (¢/c')% (therefore obtaining & consistent in—
crease of the field).

The above results are deduced by the analysis of the antenna
immersed into & shell of conductivity o, while the outer medium is
of conductivity o': even for small dimensions of the shell, the in-
put resistance of the antemna remsains equal to that of the same an
tenna immersed into a homogeneous medium of conductivity o; while
the effective height equals that of the same antenna immersed into
the hcmogeneocus medium of conductivity o'. The increase of the ef-
fective height can be computed by applying the image theory.
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RADIATION FROM A SEMI-INFINITE DIELECTRIC-COATED
SPHERICALLY TIPPED PERFECTLY CONDUCTING CONE

(Mrs.) Rajeswari Chatterjee
Department of Electrical Communication Engineering
Indian Institute of Science, Bangalore 12, India

Abstract

The solution to the problem of electromagnetic
radiation from a semni-infinite dielectric-coated
spherically tipped perfectly conducting cone excited
by delta-function sources has been obtained by using
the orthogonal properties of Sommerfeld's spherical
Hankel wave functions of complex order. Tke possi-
bility of radiation of the symmetric as well as un-
symmetric TM, TE and hybrid waves from such a
structure is discussed.

1. Imntroduction

Radiation and scattering of electromagnetic waves by a per-
fectly conducting cone have been studied by many authors (Bailin
and Silver, 1956; Felsen, 1957; Adachi, et al. 1959; Wait, 1969).
The exact solution for the problem of electroragnetic radiation
from a circularly symmetric slot on the conducting surface of a
semi-infinite dielectric-coated spherically tipped conducting cone
has been obtained by Yeh (1964) for the symmetric TM wave.
Closely related problems have also been discussed by Wait (1969).
The possibility of radiation of the symmetric as well as un-
symmetric TM, TE and hybrid waves from such a structure is
discussed here,

2. Formulation

The geometry of the structure is given in Fig. 1. Spherical
coordinates (r, ,9) are used, with the vertex of the cone taken
at the origin. To eliminate the singularity at the vertex, a small
perfectly conducting spherical boss of radius 'a', with its center
at the origin is situated at the tip of the cone.

L P T T
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DIELECTRIC -
COATING (My,€,,07 =0)

CONDUCTOR (o~ =0)
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Dielectric medium (Ms €p o3 =0)

Fig. 1 ~ The geometry of the structure.

The excitation of the structure is by means of a radial electric
field . delta-function source at r = r; for TM waves, a radial
magnetic field delta-function source at r = r, for TE waves, and
a combination of these two sources for hybrid waves.

3. Hybrid Waves

The components E , EB’ E and H, Hg. H_  of the
electric and magnetic fields i_nsige and outside the dielectric coat-
ing are assumed to be a superposition of the field components of
the TM and TE waves, The field components of TM and those of
TE waves consist of an infinite number of terms which are solutions
of the wave equation in spherical polar coordinates,

Applying the boundary conditions that E ¢ and EB must
vanish at r = a it (’1? found that tha)order n ' of the spherical
Hankel functions hn (k, ) and hn (k; r) can assume an infinite
number of discrete complex values n  and n respectively for
TM waves and n"v and n::l respectivéiy for TE waves, where

kk, = willhe, , k = @fle; ,

& being the angular frequency. The numbers n_ and n, are re-
R . v
spectively the roots of the equations

g (1 -
- [r b (k r):lr LT 0 (1
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Ed? [r hf_ll) (k; r)] T 0 (2)
and n:, and n"J are respectively the roots of the equations

al g = o (3)

hfll) (kza) = 0 (4)

The radial electric field delta-function source and the radial mag-

netic field delta-function source at 8 = 90 used for the excitation
are given by

EXFP = E_d(n) e “Fcos (mé)

n
v v

-l? z L;: a (nv +1) h(l) (k, 1) ;'::1 (cos 90} cos (m¢) ej @t
n
v

(3)

(expanding in terms of Sommerfeld's (1964) complex-order wave
functions) where,

(D
E 1 k by (k )

L> = - — (é)
v a (nv +1 Pn (cos %) Nn (k, a)
v v
2
N (i a) = S[hi” (K, r)] d (k, 1) )
v k1 a v
d(r,) = delta-function source (8)
and H?PP = H d(n) exp(jwt) sinm9 9

whick can also be expanded in terms of the complex-order wave
functions.
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Applying the boundary conditions that the tangential components
Er. E¢, Hy, and Hy are continuous at 0 =8, by equating the
applied electric and magnetic fields EiPP and H:PP to E_and
H_ respectively at 0 = 6,, and by making use of the orthogonal
properties of the spherical Hankel functions, result in an infinite
number of equations for the solution of the amplitude coefficients
occurring in the expressions for the field components.

For the symmetric as well as the unsymmetric waves, there
result six sets of independent equations for six sets of unknown
coefficients, and hence it is possible to have 2 unique solution.

4, TE and TM Waves

Proceeding in a2 similar manner to that of hybrid waves, it
can be shown for both unsymmetric TM and TE waves, there re-
sult four sets of independent equations for three sets of unknown
coefficients, while for both symmetric TM and TE waves, there
are three sets of independent equations for three sets of unknown
coefficients. This shows that there is a unique solution for the
field components only for the symmetric TE and TM modes and
none for the vnsymrmnetric modes.

5. .Concliusion

It has been shown that 2 semi-infinite dielectric-coated
spherically tipped perfectly conducting cone can radiate only the
symmetric TE and TM modes, but can radiate both the symmetric
and unsymmetric hybrid modes.
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A

ELECTROMAGNETIC COUPLING OF HORIZONTAL
LOOPS OVER A STRATIFIED GROUND

Herbert Kurss

Institute for Telecommunication Sciences, ESSA
Boulder, Colorado 80302

and

Department of Mathematics, Adelphi U~niversity,
Garden City, N. Y. 11530, USA

Abstract. The primary and secondary fields due to a thin
horizontal circular loop of uniform current over a strat-
ified ground are found as the superposition of cylindrical
modes. The voltage induced in a secornd horizontal cir-
cular loop is then expressed as a single definite integral.
These results are shown to generalize and unify related
results of Slichter, Havelock, Foster, and Wait.

This paper was motivated by a need to measure the electrical
properties of the ground at frequencies in the range of 1 MHz.
With this in mind, it was deemed desirable to develop formulae
for the self and mutual impedance of loops close to the ground.
This goal is achieved here for horizontal circular loops over a
vertically stratified ground. The:'primary loop current is
assumed to have no angular variation (the angle being measured
from the center of the loop). This is quite reasonable at 1 MHz,
since the free space wavelength of 300 m is then large compared
with the size of any physical loop.

In free space the electromagnetic field of a circular loop of
radius a centered at the origin and with a uniform current I can
be expressed in terms of a vector potential which has only a
@-component., If A denotes this component then

A= -“'Zil L J,(ta) T (tp) exp (-1, |z hrat 1)
U’.

where

u = (ta-ka)é,

1
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and
K = wiue.

. Variants of (1) have been given by Slichter (1933), Wait (1954),
and others.

In the absence of a ground the mutual impedance, Z,, between
the above loop and a second horizontal loop of radius b and center-

edat z=-d, p=c, ¢@=7 is then shown to be

@ d
Z1 = jowumab j‘o J1 (ta) J1 (tb) J'O (tc) exp(-uld) %. (2)

The static limit of (2) for co-~axdal loops, i.e., u, = t and
¢ = o, was derived by Havelock (1908). The resistive component
of (2) for coincident loops, i.e., ¢=d=0 and a=b, was derived
by Foster (1944).

The effect of the ground at z=-h, with h>d, is to add to Z1
an additional impedance
= jwumab - R(t) J, (ta) T, (tb) J_(tc)exp(-u (2h-d) )ﬁ (3)
Z, = jwi J; 1 1 ol\tclexpl-u, (&= u
where R(t) is the reflection coefficient of the ground. In partic-
ular, if the ground is homogeneous

R = Y- Y | (4)
5=,
where
w, = Jta - k:

and k, is the propagation constant of the ground.

A particularly important special case of (3) and (4) is when
the loops coincide (so that a=b and c=d=0) and wken k is
small compared with |k,| (so that it is a good approximation to
set u; = t). Separating (3) into its resistive and reactive compo-
nents one then obtains

z,= R, + X,
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with

R, = - wuma® J.o

(-]

L, ( : - “:s) Jf (ta) exp (-2ht) dt
tu,

X~ wura® _[‘ﬂ° R [E-%) 7.2 (ta) exp(-2ht) dt
2 o € \t+y, 1 *
In all of the above formulae the replacement of J, (ta) by
the first term of its small argument expansion, i.e.,

J, (ta) = ta/2,

simply corresponds to the customary dipole approximation of
a loop.
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QUASI-STATIC FIELDS OF SUBSURFACE EORIZONTAL
ELECTRIC ANTENNAS

Peter R. Baunister

U. S. Navy Underwater Sound laboratcry, New London, Conn. 06320
Abstract: The \horizontal electric fiela compo:.ents produced
by a horizontal electric dipole (HED) anteunna, located at or
below the surface of a plane, conducting, nomogeneous eerth
are presented for the quasi-static range. Expressions for
the field comporents produced by & finite length hor<zontal
electric antenna, which have been derived by employing image
theory, are also presented.

1. Introduction

Interest in the determination of the quasi-static fields
of antennas located within or above a plane, conducting,
homogeneous earth has increasea in recent years. (In the
quesi-static range, the measurement distance is much less
than a free-space wavelength but coamparable to an earth skin
depth 3 2(2/0p6)** ) Quasi-static fields are utilized in
the md%{—on methods of geophysical prospecting, which are
discussed in considerable detail by Keller and Frischknecht
(196€) and Vanyan (1967). They are also employed in determining
the coupling between power lines and other nearby circuits, and
for low-frequency, short-range, radic propagetion purvoses.

In section 2, the field-component expressions are presented for
the situation in which both the HED and the receiving antenna
are located below the earth's surface (h and z<€0). When the
HED is buried and the receiving antemna is elevated, .the result-
ing integrals cannot be expressed conveniently in closed form
(Bannister, 1967). However, if the depth of burial is small
compared tod , image theory may be employed. The image theory
results for a finite length, horizontal electric antenna are
presented in section 3.

2. Field-Component Expressions for the Subsurface
to Subsurface Propagation Case

The HED, of infinitesimal length dl, is oriernted in the x
direction and is situated at deptk h (h<€C) with respect to
a cylindrical coordinate system (p.¢.z). The eerth occupies
the lower half-space (2 {0) and the air occupies the upper
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half-space (22> 0). MKS units are employed and a suppressed

time factor of €*' is assumed. '
The complicated field-component expressions for the HED
subsurface to sutsurface propagation case may be derived by
focllowing the procedure outlined by Weit (1961). For '
example, the horizontal electric field-component expressions [
ere given by l

E,~ ’dgm:{k" e [(”‘— 1) (1+yR) — v (z-—h)=]

2nxoR? | 2R& |\R&
__(’*’_4';.‘%:'_"[3+3le+ka’] (1)
YR1[3+ _(zjl_:x)g—_l_ (z+h)T‘]}
'E‘,w’z“";}";‘lj B (1+-YRo-i;Y"'Ro=)— e [a - A } é

. R.2 R 3(z+h) (z+MI, 3E+h?
(3+3¢R R._-} 1B fla— S+ — |
+3yRi+ ¥R, + [ ] E l X (2)

+ ¥t ]s +v(z+h) (T++3" T_ }]

R

fwnere s -;Io‘(l-r Ko , ST .I.oKl—IlKo, T _IlKl+ IOKO..’ 11K1 IgKo,

——— oy w ——

Ro=[p*+ (z— B)?)2 , By = [p* + (2 + k)?7v2 , a0d Yi= (i a po 0) 17,

Computing numerical results for the subsurface to
subsurface field-component expressions is a lengbthy and
complicated process, but some results have been cbtained.
One method of obtaining numerical results has recently
been discussed by Atzinger, Pensa, and Pigost (1966).

¥hen R; < < & , the field-corponent expressions reducc
to results consistert with pot=-tial Lazary. Furthermore
whenpd>)»d andp > 2 + & | , they reduce to previously derived .
results,: ' T T
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, 3. Image Theory Field Component ExXpressions for a Finite
Iepngth Horizontal Electric Antenna

It is well known that the fields produced by a current
carrying wire, when placed at height h over a perfectly
conducting earth, may be represented by the combined fields
of the wire end its image. If the finitely conducting earth
is repleced with a perfectly conducting earth, standard image
theory may be used to locate the antenna image depth. Bell,
Maxwell, and Watt (1966) have shown that when h < <3|, the
(complex) image depth 4 for the low frequency case is equal
to = (2/M=8(1=~i) , vwhere|d}=YZ 6. Haberland (1926) arrived
at an approximate expression for d when he was determining
the mutual inductance between two single-wire lines with
earth return. Heberlend's result (ldle1.18 W& 8. ), is
very similar to Ball, Maxwell, and Watt's result.

By employing Ampere’s lew, the approximate expressions
for the field components produced by & finite length hori-
zontal electric antenna for the surface to air propagation
case (h=0,220) may be expressed as

?E:z-iwp.ol{b’[llu—(x+]./2) [R 2=(x-L/2) +£ (:+L/2)_(x-l./2) }'(3)
; 47 U |R,, -(x+L/2) Rz..-(x—L./Z) 2] K3, R, '

e~ [ 1
N | ———
T 279qR}, R

LI 1 rz+d z 1 fz+d zJ}
R Ux-L/2)?+y2 LRIZ [(x+L/2)2+y2]LR11 Ra )7

g ool { z+d [a+L/2) - L/2)] z [(“uz) (x-L/2)
[y +(z+d)2]|. Ry, Ry> (y +z9 Ry Ry,

(x-L/2) rz+d z 1 (x + L/Z) rz-r-d z ]}
[y +(x - L/Z)Z]Lnlz zyJ Iy? +(x+l_/2)21 LRn R,,

]

1
1
|

()

'|0Fol “—(z+d)] ’ [Rn-—(z+d)-| a4z rl . N
B Pt ] o

(7)
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end

{ [(:I:+L/2) (x-L/Z)] 1 r(x+L/2) (x—L/Z).I}|(8)|
ly? +(Z+d)2] Ry, Ry2 2 +22)L RZI Rj2

——

where Rll—[(x+l./2)2+y + @ +DH Ru—[(x+L/2)2+y + 231

z

R — e e — o —

R12=[(:—L/2)2+y +(z + ) Rzz—[(x—-L/Z) +y +zz]H

d ‘=(2/y) 3(1 - z).

These expressions are aliso valld for the subsurface to
air propagation case when the source is buried at shallow
depths (i.e.,|hl<< 3’ ). In these expressions when z
appe‘a;!'s along (i.e., not as z+d), z must be replaced by
z4 .

When z = 0 and either x or y = 0, the magnetic field- *
component expressions (6) - (8) reduce to Ball, Maxwell, and
Watt's results {(196€). When the measurement distance is
much greater ther the source length 1L, the above equations
"{3) - (8) reduce to the image theory HED expressions.
Furthermore, when L is much greater than the measurement
distance, they reduce to the imsge theory horizontal line
source equations. Moreover, when the measurement distance
or I is much greater or much less than ® , the image
theory results are consistent with the a.na.lytlea.l results.

-r

As a further example of the simplicity of the imsge
theory results, consider the expressions for the electric
fleld compcnent produced by & long horizontal line source
for the surface tc &ir propaga.t:.on case. The anslytical
_expression is

iwpl 2 2
E o {ZB (4,8 - v, 8- 22120, T (g)-¥ us_l} l(9)

2x Ra Zﬁ

where H (ﬁ) 18 the struve function of order one,Y, (B)
is the Bessel function of the secord kind of order one,
and ﬁ:-y(z-uy). -

= The imege theory result for this case is

- T iopl , 2. 2
| El%— [} I y +( +z) (10)
27 y2+z2

J‘J
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A comparison of (9) and (10) reveals that the image
theory result is in very good agreement with the analytical
result throughout the quasi-static range.

Image theory may also be employed when the height h of
the source gbove the earth is not much less than & . For
this case, the image depth is nct d but d4h.

It is the author's opinion that image theory can be
extended to include many other cases of quasi-static range
propagation and thus provide results (of simple form) even
for cases in which the field components cannot be expressed
in closed Jorm analytically.
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a

MAGNETIC FIELD EXCITED BY A LONG
HORIZONTAL WIRE ANTENNA NEAR THE EARTH'S SURFACE

R

David B. Large and Lawrence Ball

Georesearch Laboratory
Westinghouse Electric Corporation I
Boulder, Colorado

ABSTRACT

The problem considered is the calculation of the magnetic
field excited by a horizontal line source of electric current placed
upon or near the earth's surface. The length of the line is arbi-
trary, but emphasis is placed upon observer ranges at which
ionospheric effects may be neglected, and which are of the order
of, or less than, a free-space wavelength. The approach to the
problem is partially analytical and partially numerical, and
represents an assimilation of recent results obtained by Wait
and Bannister for infinitesimal dipoles and infinite lines. Some
numerical results for long lines operating at 10, 300, and 41, 000
Hz are presented, and some of the differences between these
solutions and the corresponding dipole and infinite-line solutions
are illustrated.
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The electromagnetic field excited by a long, horizontal
wire antenna (HW.A) placed upon or near the earth's surface has
application in several problems of geophysics. The frequencies
normally range between ten and a few thousand Hertz. The
research discussed in this paper was instigated to develop the
capability of predicting the total magnetic field excited by a HWA
of arbitrary lengtk placed upon or near a2 homogeneous earth of
arbitrary conductivity, with the observer being unrestricted in
range and azimuth, The frequencies considered fall between 10
and 2, 000 Hz, and an extensive set of calculations for a 30 km
HWA operating at 10, 300, and 1, 000 Hz have been carried out.
The analysis is computer oriented, with the field components
often being obtained by numerical integration of the dipole ex-
pressions developed over the past ten years by Wait (1961) and
Bannister (1966, 1967).

An example calculation of the radial magnetic field com-
ponent excited by a 30 kin HWA is shown in Figure 4, in which p
is the range to the center of the line, and ¢ is the observer's
azimuth measured from the antenna axds, and the amplitude scale
is in decibels relative to 1 amp/m. In addition to the results for
long antennas with the observer being on the ground, calculations
have been carried out for observation points above the ground,
and for elevated anternas. TEkese results have been used to
develon simple criteria for deterrmining when the height of the
antenna above ground may be neglected, as well as for determin-
ing at what ranges a line source will appear effectively infinite
in length. One interesting conclusion relative to the latter cri-
teria is that, under certain circumstances, a long HWA may
never appear effectively infinite, no matter how close the
observer moves to the line.

Figure 2 is an example of a second set of calculations
which compare the magnetic field components excited by finite

length antennas, infinitely long antennas, and infinitesirmal dipoles.

In this figure. the observer is broadside to the source (¢ = 90°),
and the range p is measured relative to an origin at the center
of the 2,000 m antenna. Results of this type have been used to
develop simple criteria for determining at what minimum range
a given HWA may be adequately represented as a point (dipole)
source.
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NUMERICAL ANALYSIS OF AIRCRAFT ANTENNAS by E. K. Miller,

J.B. Morton, G.M. Pjerrou, & B.J. Maxum, MBAssociates, San Ramon,
California 1

ABSTRACT. A numerical method for predicting the performance of an
antenna on an aircraft is discussed. The basic features of the approach,
which is based on a collocation solution to the thin-wire integral equa-
tion, are described. Several numerical examples, including the radia-
tion pattern for the OH-6A helicopter, are presented.

L. INTRODUCTION. Evaluating the performance of antennas on an irreg-
ularly shaped conducting body such as an airdraft is now done almost ex-
clusively by experimentation. Models are used for experimental antenna
measurements, but because discrepancies may arise, final evaluation
often requires use of the actual aircraft.

A reliable analytic method for the parametric study of antenna per-
formance would be an important aid to experimentation, allowing con-
centration of measurements on the most fruitful areas. The numerical
approach used here employs the thin-wire approximation to the electric
field integral equation, since this equation can be used both for thin
wire structures and solid surfaces modeled by thin wire grids (Richmond,
1966). The integral equation is solved by collocation using sinusoidal
interpolation to expand the current on each structure segment (Mei, 1965).
The interpolation requires two extra constaats, which are found by a cur-
rent-matching technique, while the required numerical integration uses
the Romberg variable interval width technique (Miller and Burke, 1969),
and the Gauss-Doolittle method 1s used to solve the linear systemm. For

- large systems, the original structure matrix and its inverse are stored
on tape for later re-use. The technique is restricted to structures a
few square wavelengths in surface area, but continued progress both in

numerical methods and computer development will extend its application
to larger, more complex structurss.

I, NUMERICAL RESULTS. In Figure l is shown the backscatter radar
cross section (RCS) of two coaxial-coplanar rings for axial incidence as
a function of the outer ring circumference-to-wavelength ratio. Exper-
imental data taken on the MBA Rail Line Range is shown, together with
computed results found by the thin-wire approach and by modeling the
rings with 16-sided regular polygons. The calculated RCS values cor-
rectly predict the antiresonance.

In Figure 2 is shown an experimental-numerical comparison of the
backscatter RCS of a 14.57) straight wire as ‘a function of the angle of
the wave incidence measured from a normal to the wire. The wire was
modeled with 100 segments, or about 7 segments per wavelength. (Ex-
tensive experience shows that 6 segments per wavelength provides an
accurate nume-=xical result, although the best segmentation for efficieacy
and accuracy is structure-dependent.) Experiment and theory agree well,
even to RCS values 40 dB below the broadside maximurmn.

Application of the numerical method to radiation problems is shown
in Figure 3, where the element power distribution and radiation patterns
of a 12-element log-periodic dipole antenna array are shown. The suc-
cessive array elements increase in size by 1.07 and are separated by 0.7
of the longer element length, with the longest ele.aent 0. 6456 long. The

MBA numericzl results agree well with the results of Cheong and King
(1968).
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FIGURE 2

‘Using the thin-wire integral equation to study the aircraft-antenna
combination requires modeling a solid, possibly curved, conducting sur-

face by a wire grid.

ried out to determine the modeling criteria.

A parallel experimental-numerical study was car-
The conclusion of this study

was that a flat wire grid with openings less than 1/8) per side adequate-

ly modeled (within 1 dB) the RCS of 2 solid conducting surface.

A simi-

lar study determined that a circular ring 1 A in circumference is mod-
eled to within 1 dB by a regular polygon of equal perimeter with sides of

length less than A/6.
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FAR FIELD PATTERN

A wire-grid model of an OH-6A U.S. Army helicopter was then
developed, using 202 wire segments, to provide the structure input for

the numerical calculatiofs.

the present computer without overlaying.

A maximum of 205 segments is available on
A computer-drawn side view

of the model and a scale drawing of the actual helicopter are shown in

Figure 4.

The primary interest here is antenna pattern prediction for

the frequency range 30 to 70 MHz; the helicopter (actuzl length 23 ft) is
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FiGune 4

about 0.7 to 2 ) long. The average segment length varies from 0. 047 to
0.11 X over this range, while the wire thickness (which conforms to the
windshield cross-brace size) varies from 0, 0011 to 0. 0025 A.

The towel-bar homing aatenna has been considered in the calcula-
tions. This antenna is a dieiectric-sheathed, U-shaped metal rod driven
alternately against the aircraft irame at one end with a matching imped-
ance connected to the frame at the other. This generates two asymmet-
ric patterns about the aircraft axis whose cross-over peints are, ideally,
axially aligned and serve to orient the aircraft relative to a homing radio
transmitter. The horizon:al portion of the towel bar, together with its
image in the aircraft frame (these are self-cancelling), form a transmis-
sion line connecting the two vertical arms which are the effective radia-
tors. The towel bar can be considered as two monopole antennas driven
against the aircraft frame by voltages dx.ffenng in phase by the electrical
separatiorn of the vertical arms plus a 180° phase shift (to account for the
oppositely-directed arm currens:s).

The parallel electric field intensity in the plane perpendlcular to the
midpoint of two half-wave dipoles separated by A/4 and driven 90° out of
phase is shown in Figure 5. Also shown are corresponding results for
a two-wire transmission line model of the towel bar. This model con-
sists of 2 U-shaped two-wire line with 2 center section 0. 25X long driv-
en by a2 matched impedance generator at one end and terminated in a
matched impedance at the other, with gaps cut in one side of the line of
each of the vertical arms. Both of these antennas are reasonable models
of the corresponding monopoles and actual towel bar in the presence of
the helicopter ground plane. Since their patterns are very similar, the
monopole antenna and the towel bar are concluded to be equivalent,

Figure 6 presents a comparison of experunental and numerical re-
sults for the vertically polarized receiving pattern of the OH-6A helicop-
ter for a towel bar antenna symmetrically aligned about the aircraft axis
ard mounted on the top horizontal windshield cross brace. The experimental
pattern was taken by Collins Radio (Griffee and Robichaux, 1967) using a
1/5-scale model at an equivalent full-scale frequency of 32 MHz, while
the numerical results were obtained with two monopole antennas equal in
length to the vertical arms of the towel bar. The numerical pattern is
the vector difference between the two monopole base currents, phase
shifted by their electrical separation. The agreement between the two
patterns is reasonable, although we note that at this frequency the
helicapter is less than 1} long. These numerical results were obtained
by using a total of 205 wire segments, which required omitting the finned

tail section (9 segments) to gain the necessary 12 segments for the mono-
poles.
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FINITE TUBULAR ANTENNA ABOVE
A CONDUCTING HALF-SPACE
by
David C. Chang
Univexrsity of Colorade
ABSTRACT

The characteristics of a finite, tubular, vertical
antenna over an infinite, dissipative half-space is stud-
ied. The magnitude, but not the distribution, of the an-
tenna current is found to be greatly effected by the
presence of the dissipative half-space. At certain dis-
tances above the half-space, a resonance is observed as
the input conductance of the antenna reaches its maximum.

I. Introduction

The radiation of a dipole artenna in the presence
of an infinitely-large, imperfectly-conducting half-
space has been widely studied since 1909 (for a complete
listing of references, the reader. 2o smitz -
is referred to a book by Banos 0
[1966] and review papers by
Wait [1964] and Hansen [1963].) e
Effects of finite ground con-
ductivity and inhomogeneity are

known to have great influence /
on wave propagation from and A
the transmitting characteristics /
of infinitesimal Hertzian di-

poles of both electric and mag-
netic type and were studied ex- ‘
tensively. For higher fre-

quency bands, howewver, the ra-

- . " AR (0.4,

dio source is no longer very %MQZ%W%W’Zﬁ%xaaazﬁi
short both physically or elec- IMPERFECTLY CONDUCTING GROUND (e 1.
trically. Consequently, the ' o - “—
treatment of a finite antenna Fig. 1

instead of an infinitesimal one

is inevitable. Here, we shall present a method to in-
vestigate the characteristics of a finite, vertical,
tubular dipole antenna over a homogeneous, dissipative
half-space.
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2. Formulation and Numerical Solution

Consider the geometry of a finite, vertical, tub-
ular, perfectly-conducting antenna of radius a and
half-length h, located in the air at a distance d above
an infinite, dissipative half-space which hzs a conduc-
tivity o and a permittivity e (Fig. 1l). At the center
of the antenna, a constant voltage source V is main-
tained across an infinitesimal gap in order to excite
a current distribution on the antenna surface. From
what appears in the literature, we know that the
Hertzian potential in the air region for an infinites-
imal, vertical, current element of unit amplitude, lo-
cated at a distance z' over the half-space, is

plp;z,z') = pz(p;z,z')iz

4 +o
EF%I {w {exP[in(z<-z>)] + M(l)eXP[in(z>+z<)]}
(1) Adx
"B UM ()

where ﬁ(x)=(y1k§ + ylkf)‘l (ylkg - szi),

= (k 2 _ A2)1/2

71'2 1,2 : 05 arg(Yl!Yz) ST,

kl = m#uoso : k2 = imuo(o—in) : Cl = 120mohm,
_ larger . - . .

z2 = smaller value of (z,z'") and a, is a unit

vector along z-direction, for a time factor exp(-iwt).
By superposition of all current sources which are uni-
formly distributed on the antenna surface, we obtain
the total Hertzian potential as

- 1 +h 27w _
Tpee2)d, =57 [ dz' [ a8 IDB[Ee.0nrz,2), (2
where r(p,9') = (p2 + a2 - 2pa cos 0')1/2 and I_(z') is

the undetermined total current distribution on %he an-
tenna surface. Since the boundary condition on the
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surface requires the tangential electric field to van-
ish except at the excitation gap, we have

4 ’ i 2 1 z ’ !

-h+d < z < h+d.

The solution of (3) is readily known as

m,(a,z) = Cj cos ky2 + C} sin k 2z + V/(2k_)sin kllz-dl;

(4)
-h+d < z < h+d.

Now, comparing (2) with (4) and after some arrange-
ments, we can obtain a normalized integral for the un-
known current distribution Iz(z):

2H

T ] 4 : Vi s
g I,(2)K(2,2')dz" = %Zl{cl cosz+C, sinZ+3sin|z-E|1;
- (5)
0 <2z < 2H,
where
K(z,3') =i [ {exPliv](2,-2.)1+4(})
, 5 L

. 2,0+ AdA

.exp[lYi(2H+2D—Z>—Z$)]} J, (AA) ;I—: - (6)

Y [ = 2 1
M(A) = (nzvl+Y§) ltn Yi~Y3)i n = kz/kl'

122)1/2 , 41 o (n232y1/2

Yl= 172=

r

0 2 arglyj,Yy) = ™,

and 2 = k., (h+d-2), A = kja, H = k.-h. The two unknown
constants C., and C., are some comblnation of C! and Cé
which can b% deterﬁined by the end-condition:
Iz(z=D,H) = 0.

To find the numerical solution of (5), we first
approximate IZ(Z) by a parabolic function over each

riAdpite adeea A s e e vaEa wras iy
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small segment U, . < Z < U where U = (m-1)A and
A = H/(2N), for?R™: 1,2 T .2%*In. By mBtching both
sides of (5) at sample points z = U_, K =1,2,. . .
4N+1, we can obtain 4N+l algebraic équations. But be-
cause the end-condition imposes I(2=U,) and I(2=U4N+l)
to vanish, we have 4N+l unknown, inclﬁding C1 and

C2, in these eguations:

Bx mIz (Un) = —Eﬂ— sin|Upg-H|; K = 1,2,...4N+1 (7)
r - .
L

L4

m=1

where I (Ul) and I (U4N ) have been redefined as C
and C ,zrespectivefy. ﬁ%nce, the value of I_ at sa&ple
point§ are obtained by a matrix inversion. xcept for
m=1 and 4N+1, the matrix elements B are found to be
some combination of the following mgme t functions:

1 +i(m-1)AX

u(l)(m.s) =1ife gs(-ilA)Jgiv'A)dk
0 .
(8)
e ~(m-1) AX
+ [ e g (A8)T2 (a/1+2%)ar; m=0,1,...4N-1
2 +i (2H+2D-mA-4)

1
W m,e) =i]e g (~iAM)E(y]) 32 (vja)ax
0
o = (2H+2D-mA-A) X - (9)
+ ] e g, A0R(INT) 52 @/l ar; n=l,2,...88-1
0

where s = 1,2,3 and g_{(x) is some smooth function which
approaches to 1/A as %+w,. Notice that the second inte-
grand in both (8) and (9) decays exponentially as A+w

for m>1 and is suitable for numerical evaluation. For
m=1l, the second integration should be truncated at A _,
where X_ is the larger value of 20/A and 5/)A. Leadfng
term in the integrand from A_ to = which contribute to the
the integral, can be evaluaté&d analytically from its
asymptotic expression.

3. Discussions

Fig. 2 shows the total current of a center-fed an-
tenna of a = 0.1A, and h = 0.2\ _, over a wet-earth at
100 MHz. Due to The intrinsic Rharacteristic of the non-
physical excitation, the imaginary current becomes in-
creasingly capacitive at the feeding point. Away from
z = 0, both the magnitude and the distribution of the
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total current are effected by the presence of the im-
perfectly-conducting ground; the proximity effect seems
to draw the current to the lower half of the antenna.
This effect rapidly diminishes as soon as it moves away
(compare d = 0.221,5 and d = 3.0A, in Fig. 2). However,
the magnitude of the total current is very sensitive to
the change of the ground distance: a strong resonance
seems to have occurred near 4 ~ 0.51,.

The input conductances, which equal to the values
of the real current at the feeding-point for both wet-
earth and sea-water are plotted in Fig. 3 as functions
of the ground distance. We observe that the coupling
with a highly-conducting sea-water is much greater. In
both cases, distinct resonances occur - a similar fact
was observed earlier by Wait [1953] in his study of an
infinjitesimal horizontal loop antenna. At a distance of
more than three wavelengths away, input conductances in
both cases converge to the value corresponding to the one
without a ground. For detailed derivation and discussion
the reader is referred to a paper by Chang and Wait [1969].
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EM PROPAGATION OVER A CONSTANT IMPEDANCE PLANE

R.J. King
University of Wisconsin, Madison, 53706

Abstract: The possibility of exciting a surface wave over a plane
surface which has an index of refraction comparable to that of
air is discussed. Such a surface wave can exist if the exciting
source is sufficiently close to the surface.

A recent paper by the author [King, 1969] reformulated the Som-
merfeld problem of EM propagation over a flat earth using the Com—
pensation Theorem. The solution confirmed the results of Norton,

‘Hufford, Bremmer, Bados and others, who assumed the earth-air in-

terface was characterized by a large index of refraction, n. One
is (erromeously) led to the conclusion that this large index of
refraction is the mechanism by which surface waves are generated
and sustained along the surface. Actually, this is a consequence
of basic assumptions made at the outset of the formulation and it
is now well recognized that surface waves can propagate over media
with n~1 if the exciting source launches waves near grazing inci-
dence, e.g., ''tree-top'" or lateral waves propagating over demse
vegetation [Tamir, 1967]. This is in agreement with the conclu-
sions of the author. There are two basic restrictions to the solu-
tiomn:

3A
r

Bwr
for parallel polarization (TM wave), where Y, is the specular angle
of reflection from the horizontal and A, (= Zg/ny) is the normalized
surface impedance evaluated at Y. For perpendicular polarization
(TE wave), Ar is replaced by 8, the normalized surface admittance.
Both restrictions are necessary for the solution to satisfy the
wave equation, while only the second is necessary to satisfy the
boundary conditions at the interface. Nowhere in the solution was
it found necessary to assume 1 << n (= y3/y,). Note, however, that
a large index of refraction is a sufficient but not a necessary
condition to satisfy |sin Yp + Ar|2 << 1 (see the previous paper).
An inspection of the solution shows that the surface wave simply
does mot propagate well if the surface impedance is not small,
since the leading term of the asymptotic expansion appears in the
near zone if IAr 1. For a homogeneous earth, the second condi-
tion in (1) is

Yo 4 'Lll 2

Y1 Ho
which is readily satisfied for large n, and can also be satisfied
for small n (= 1 + 9n), for then (2) becomes

sin ¥ << (28012, (3

| sin Y+ Arlz << 1 and << cos YP_. (1

sin y_ << [A ] (2)
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for both TM and TE waves. It is apparent from (3) that surface
waves can propagate uver media with n=l, provided that the angle
Yy is sufficiently small. The question remains whether this re-
striction is a consequence of the formulation used or whether it
is nature's way of saying that this condition must exist in order
to launch a surface wave.

Since the compensation theorem is essentially a perturbation
theorem and a perfectly conducting plane (n=*) was used as the
unperturbed case, there was a possibility that a better solution
might be obtained using a free-space plane for the unperturbed
situation. An attenuation function, G, was defined which multi-
plied the free space field to account for the presence of the im-
pedance plane, and the second formulation was carried through in
the same way as before to obtaim

P P
. 1 2
- —'———~
G(d,h,z)= 1+1De {—lk IO [51nw2-A(wl)]G(pl’h »0) lk(coswl coswz)dp
' coswd /plpz 1

(%)
The angles Yy and P, are angles of incidence for waves from sources
1 and 2 at heights h and z, D is -the direct distance between the di-
poles, d is the horizontal projection of D, cos Yq = 4/D, and pg and
p2 are circular cylindrical radii to a general point on tkbe surface.
The main difference between (4) and the expression for the attenua-
tion function used in the earlier formulation is the presence of
the sin Y term. This is essentially the same integrai formula-
ted by Hu%ford [1952], but he was umable to reduce the result to
correspond to that obtained by Norton [1937]. Although the manipu-
lations are somewhat more tédious than the previous case, they are
essentially the same and one can cbtain precisely the same result
by assuming sin 4@ ~ z/py and A(w ) = A.(Yp) in (4). This is re-
assuring since one obtains the same solution of a perturbation
problem by starting from two extremes—-a perfect conductor and a

free space plane.
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ON THE SURFACE IMPEDANCE CONCEPT

. King .
University of Wisconsin, Madison, 53706

Abstract: The genersi application of the surface impedance (ad~-
mittance) is discussed, and two extreme cases are considered;
when the scattering medium is a perfect conductor and free
space. The surface impedance can represent nearly exact boum=-
dary conditions and need not be reciprocal.

The utility of the surface impedance concept is often ques—
tioned because of the doubt as to 1ts exactness and applicability
to certain problems. To define surface impedance, Zj, let there
be a uniform plane wave incident upon a homogenecus plane surface
such that the propagation vector k, makes an angle Y with the sur-
face. Then, Etang/Htang='Zs for parallel polarized (TM) waves,
while for perpendicular polarized (TE) waves we define a surface
adeittance Y, through Htang/Eteng=Ys' For a TM wave I1n free space
(with Yo=ik°) obliquely incident upon the plane which is entirely
uomogeneous Inside with complex propagation constant Yy,

'|,| 2

1 1 2

z, =gty - 0D cosurV &b
Y1 ¥ 151
Sipce the TE case is the dual, one gets
1Y, 8 12

= - 2
Y = Yl [1 - (y /Yl) cos w] (2)

The surface 1mpedance (admittance) given by (1) or (2) should
not be confused with the "Legntoyich bouadary condition" which
would be obtained if (y /Y ) cos§w<<l. This has been discussed in
detail by Godzinski [1961], who goes on to show that the surface im—
pedance is applicable to much more gemeral problems if the change in
the field along the surface over a distamce of the order of a wave-
length, A;, in medium 1 is small. In other words, the field inside
medium 1 should be locally plane, but the field outside the medium
need not be locally plane with respect to A .

Two extreme cases are when medium 1 is a perfect conductor or
free space. The perfectly conducting case is obviously an exact boum-
dary conditlon regardless of shape of the conductor. If medlum 1 is
free space, the field along the interface must mot change appreciably
over a distance A, . Other situations lie somewhere between these two
extremes.

To illustrate, consider a Hertzian dipole above an impedance
plane as shown. Using well known field expressions, it is a simple
exercise to show that if the plane is free space, then over the shad-
ed regions, E /H¢——n051n¢forthe VED and Hp/Ee=31n for the HED. Now,
from (1) and (2) letting Y;>Y, and pl—u , one gets Zg=n,siny
and Y =siny/ng. Therefore, Zg(¥s) given by (1) and (2) would seem to
apply at least to distances where r>A, in the free space (worst)

M L F hea & e i M R - ia e =
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case and there is little reason to believe that it could not also be
applied at even closer ranges when the lower medium becomes a dielec-
tric or conducting medium, being exact everywhere for the perfectly
conducting case. The same remarks apply to vertical or horizontal
magnetic dipoles since they are duals of the electric dipoles. Fi-
nally, if h>Ao the concept can be applied everywhere over a free
space plane. When seeking solutions to problems outside of the near
zone where r>>A, the questionable region immediately beneath the di-
pole often becomes an insignificant part of the total surface and

the error incurred in using Zg (Yg) becomes negligibly small.

The impedance (admittance) may be variable over the surface if
it changes slowly in a distance A; along the surface. If the region
where this requirement is violated is a negligible portion of the
total surface, small error is incurred. When the surface is curved,
the local radius of surface curvature must be much less them }3.
Godzinski [1961] discusses these situations in more detail, and gives
an extensive list of references.

One should not leave this topic without some comment as to reci-
procity, and the corresponding demands upon the surface impedance
(admittance). Since waves originating from two different sources (a
and b) arrive at different angles (Y, and ¥p) from different direc-
tions and possibly undergoe different internal reflections in the case
of nonparallel stratified media, the surface impedances (admittances)
will differ at every point. If the sources are both outside of the
scattering medium defined by surface s, the application of the reci-
procity theorem and (1) gives

of 2aW Ry By, ds = f 7, (W)By, By, ds 3

where the H_'s are the tangential magnetic fields of the two sources.
A similar dual equation results if (2) is used instead of (1). Thus,
(3) shows that it is not necessary that Zy(Yy)=Z,(dy). It is there-
fore apparent that the two surface impedances need not be equal, and
therefore ''reciprocal", but rather, we require (3) be satisfied
which is a distinctively different situation.

Godzinski, Z., (1961), The Surface Impedance Concept amd the Structure
o% Radio Waves over Real Earth, Proc. IEE, C., 108(14), 362-373.
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THE IMPEDANCE OF A FINITE HORIZONTAL ANTENNA ABOVE GROUND
W.J. Surtees, Defence Research Board, Ottawa.

Using equations for the radiated field of a thin linear antenna
with sinusoidal current distribution in an expression derived from
the compensation theorem, the change in self-impedance of a
horizontal antenna of any length placed over 2 homogeneous ground
of finite conductivity is obtained. Calculations for a half wave-
length dipole are compared with some experimental values.

1. Introduction

Sometime ago I developed expressions (Surtees, 1952) for the
change in self-impedance as a thin, linear antenna is brought into
proximity of a homogeneous ground of arbitrary electrical constants.
The explicit results were never published nor have I seen similar
results available in the literature. Although FitzGerrel (1967)
has used these results to check his work on the gain of linear
antennas over imperfect ground, the work remained essentially un-

published. The purpose of this digest is to rectify this situation
and make the results more generally available.

2. Formulation

Monteath (1951) has shown that the self-impedance Zp of an
antenna placed over a perfectly-conducting ground would change to
Zp' when placed in the same location over a ground of surface
impedance n' By applying the compensation theorem he has shown
that the change in self impedance is approximated by:

L ]
AZp = Zp' - Zp = ’I‘—Oz- J[ Ha? ds (1
when I,, the current applied to the antenna produces a radiated
tangential magnetic field, Hyt+ along the surface of the perfectly-
conducting ground with the integration extended over the whole
surface.

When a thin, linear center-fed horizontal antenna of length 22
is placed at a height h above a perfectly-conducting ground the
tangential magnetic field is given by:

_-3lo h -jkry -jkry
He 27 sin k& (x¢ + hZ2) (e te

x2 * h2+(z_£)2’

- 2 cos k& e_jkro] (2)

where: T, 2

2

T x2 + h2 +(Z+4)2,
to? = x2 + h2 +Z2.

k = 2a/Xx, A is wavelength of the radiation.
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The origin of rectangular coordinates is placed at the terminals
of the antenna and the Z-axis directed along the antenna with the
y-axis into the ground. After placing {2) in (1) and carrying out
the integrations the final result is

_ -n' -j2kh 1 . - . 2
AZA = Am sinZ ki [{e [1 + ———jZRh) + j2kh Ei (—JZkh)} (2 + 4 cos~ k&)

j2ke [_-j2khwy (1 . 1
ve [¢ G * =

} + j2kh Ei (- j2khw1)] + o J2k2 [e-jZkh/w-‘

. _ o ke [ -§2khep (1 . 1
(o + 35 + 32 Ei (R - 4 cos la {IF [e7IHR2 (20 2

+ j2kh Ei (-j2khwp)] + e ¥ [e L’% (w2 * 30

+ j2kh Ei (-jZkhmz)]}] (3)
2

where: w; = (:'?-+ 1)% + % ,
2

[3 Y [
Gz 07 v &

3

and wp
and Ei (-jy) =Ci (y) - j Si (y) + jn/2

J e v d_$ is the exponential integral of imaginary

b4
argument.

The change in self-impedance for the center-fed, half-wave horizon-
tal antenna is obtained from (3), by putting 2 = A/4 and is:

szp = - B [2e 3PP (3 4 jékh) + jakh Ei (-j2kh)
- ¢ ~IZ%Kho (-:;-» J;Rh) 52kh Ei {-j2khw)
- e TIFh/e *E%E] - j2kh Ei (;-iﬂ]] (4)
1 ped®

The function H and © are tabulated in Table 1.
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Antenna height Change in self-impedance x 47n/n'
h/A H 6 (degrees)
0 @ 360
0.01 50.2 359.65
0.025 20.3 357.86
0.04 12.9 354.71
0.06 8.86 348.72
0.08 6.82 341.13
0.10 5.58 ‘ 332.29

1/8 4,57 319.91
1/4 2.43 245,87
3/8 1.67 162.70
1/2 1.26 '76.88
5/8 1.01 349.50
3/4 0.84 261.20
7/8 0.72 172.43
1 0.63 83.36

Table 1. Horizontal half-wave antenna at a2 height h above imperfect
ground.

3. Results

Some experimental results relating to the resistance of a horizon-
tal antenna over an imperfect ground of dielectric constant e' = 25
and conductivity ¢ = 0.013 mhos/m have been reported by Friis et al.
(1934) and are compared in Table 2 with corresponding values calcu-
lated from (4).

Antenna Wavelength Resistance over Change in
height A Perfect ground Resistance
h/x (metres) (ohms) (ohms)
Experiment  Theory
0.01 8 1 89.0 295
0.07 8 13.3 31.7 45.2
0.18 8 55.5 6.7 10.4
0.345 27 98.0 -6.0 -8.8
0.36 17 97.7 -6.9 -9.8
0.625 17 57.8 4.0 5.7
0.83 17 83.5 -4.1 -3.4

Table 2. Input resistance of a horizontal half-wave antenna over
1207

Tound of surface impedance n' = .
g o (25 - § 0.780)%

R
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It is seen that the input resistance as predicted by (4) is
within 5 percent of the experimental results, when the antenna is
placed at heights greater than 0.2 wavelengths above the ground.

At low heights, where the change in resistance is largest, the
theoretical results have the greatest error. This is to be expected
as the approximations are not true at low antenna heights. Also

1
at the frequencies employed, I%Fl is approximately 6, which is

considerably larger than the value for a highly conducting ground.
It is therefore expected that the predicted values from (4) would
be more nearly true if the ground had a larger conductivity, or if
the frequency were decreased.
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Impedance of a Finite-Length Insulated Dipole
in Dissipative Media

Carson K. H. Tsao and J. T, deBettencourt
Raytheon Company, Norwood, Massachusetts

1. 'Introduction N

Theory of cylindrical insulated wire antenna in a dissipative
media has been treated in the past as an infinitely long coaxial
transmission line (for example, [izukaand King 1962). The prop-
agation constant and characteristic impedance are obtained in
terms of cylindrical waves. In this paper, the cylindrical wave
solution is modified for application to finite length dipoles.

The present consideration relates to the notion that within
the antenna region, there must be electric flux lines connecting

the opposite halves of the dipole as depicted by the spherical
TEM wave.

2. Transmission Line Parameters

An insulated wire has an inner conductor of radius a, and is
covered by a layer of insulation having outer radius a, and dielec-
tric constant €,. Extermal to the insulation is the propagation
medium with dielectric constant €3. Corresponding to €; and €3
are the plane wave propagation constants k,; and k; respectively.

In the cylindrical wave solution, and axial propagation con-
stant k is determined from the boundary conditions at p = a,, a;.
For a finite-length dipole, if relatively thin, the feed-point and
the ends can be expected to have little effect on the current dis-
tribution so that the same propagation constant k satisfies the
local boundary conditions, although the distribution of fields may
be different in the case of the dipole than for an infinitely long wire.
Thus, the propagation constant k is given by

a, az €2
kz=k% (_ln-é_l + A) /(ﬂn:; +€_3 4) (1)
where
A = 4&_,1_8.2 H§Z) (13 a,) / H](.Z) ('233'2)]
k2=k§_-£%=k:§z"e§'
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Although the propagation constant k for a dipole is regarded
as the same as that for an infinite wire, it is not expected that
the impedances will be the same for the two cases because of the
need to account for the principal TEM wave. In the cylindrical
wave solution, for relatively thin insulation, i.e. |222,] < .ézazl
<< 1 the tangential magnetic and the radial electric fields in the
insulation are

E, = 22EE ang H, = oi—. (2)
z2 27 pk3 2 TP
These are equivalent to the Eg, and , components of the spheri-

cal TEM wave by substituting p= n sin 6

Although higher order spherical waves are expected to exist,
these waves do not contribute to the evaluation of potential drop
V between the opposite halves of the dipole because of the sym-
metry; V is necessary in determining the characteristic imped-
ance Z,. The evaluation of V is simplified if the cylindrical
dipole is replaced by a biconical antenna. With this substitution,
it is readily shown that the average characteristic iripedance for
the corresponding cylindrical dipole is

.k 2.2
Zy = T o (“Zn ot - =) (3)
where
b = 2(,2:1% - 1)

is the thickness parameter. The corresponding distributed im-
mittances of an equivalent transmission line are

€2

€5 2 )

joem/iln — + = 2y .
Y-J‘*'-‘Q“T(n;;'!'?;i).

- az
- i il
z = Toe, (fn 2 +

(4)

It is noted that the results in (3 and 4) are valid for bare antennas,
i.e. 2, = a;.

2

TN

i

4 Gl L R S i el

RN

P
E50

o e A AR

4

)
LE

[ U




—74-

Of the four transmission line parameters, only two are in-
dependent. In the case of the dipole, the two forming the inde-
pendent set are k and y. The behavior of the propagation con-
stant is well understood and has been experimentally observed
(Iizuka and King, 1962) and will not be considered further here.
The distributed shunt admittance y obtained here differs from
the one obtained in the cylindrical wave solution due to the term
involving ¥ and experiments have been conducted to verify this.

3. Experimental Results

The experiments involved measuring the input resistance of
an electrically short, open-circuited, insulated monopole in a
water tank (5.5 meters in diameter and 1 m in depth). If the
water has large loss tangent, the input resistance of the mono-
pole of length h is

_ ik ~ 1 @
Rin = Re Zytanbm ~ Re 235~ Tro,n (5)

where 03 is the conductivity of the water.

In the experimental setup, a ground plane (1m?) is placed
just below the water surface. The monopole is attached to the
underside of the ground plane. From considerations of electri-
cal length of monopole, loss tangent of water, tank dimensions,
and input reactance, the set of test parameters are chosen:
f=1MHz, a, = .0814 cmm (No. 14 wire), a,/a; = 1.5 (teflon
tubing), h = 10 to 40 cm, and 63 = .03 to 1 mhos/m.

Input resistance of the insulated monopoles are made in
water at two values of salinity (S = 0 and 20 1lbs of salt in tank
capacity of 3700 gallons). The measured resistances and the
deduced water conductivities are shown in Figure 1. The con-
stancy of the deduced conductivity as a function of antenna length
is a verirication of equation (5).

Input resistances of an 25 cm insulated and a 20 cm bare
monopole are measured. Conductivities deduced from the input
resistances are shown in Figure 2 as function of water salinity.
There is good agreement between the data on the two types of
monopoles and the correct functional dependancy between con-
ductivity and salinity of the water.
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Figure 1. Input Resistive and Solution Conductivity
as Function of Monopole Length
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In studying subsurface radio transmissions, antennas are
immersed in the rock strata through deep drill holes. There are
impedance data on a number of insulated antennas in the drill
holes (Tsao, 1964). It has been possible to deduce with reason-
able success the conductivities of the rock media around the
antennas from their resonance frequencies. Difficulties have been
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encountered, however, in interpreting the low frequency input re-
sistances, being much higher than predicted by the cylindrical
wave solution. With the modified solution obtained from the in-
sulated biconical antenna approach given above, these earlier data
have been reinterpreted to deduce the local conductivity values.

The results are summarized in Table 1 (Tsao, and deBettencourt
1966).

Table 1. Conductivities in Drill Holes

Rin RESONANCE | CONOUCTIMITY MiLL! MHOS/0
M
wocamion | o QBones | onms | FREGUENCT Ioeoucen | oepuces
{10 kHZ)| fo W KH FROMR,n | FROM fo
WO, 18 PVC | 46 28 138 26
HOLENOI |gelgry - 2 46 53 122 .38
HOLENGE |wo.18PVC ! | T2.8 » .089 s
NO. IBPVC 1 2 » 104 14
HOLENO.S | g gru 2 a6 609 ‘087 093
e lng-esu 2 121 63 048 n

The previous impedance solution for the insulated antenna
is modified by viewing it as an insulated biconical antenna, This
results in 2 unified solution which can readily be shown to be
applicable for a number of special cases: (a) the insulation is
vanishingly thin, i.e. the insulated antenna degenerates into a
bare antenna; (b) the medium has low loss tangent, i.e. for very
high frequency applications of antennas in ground; (c) the med-
ium is highly conducting; and (d) the antenna is electrically
short.
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Distributed Shunt Admittance of Horizontal
Dipole over Lossy Ground

Carson K. H. Tsao
Raytheon Company
Norwood, Massachusetts

1. Introduction

A cylindrical dipole antenna, located near a lossy ground and
parallel to the surface, can be studied as a lossy transmission
line. The distributed series impedance of a horizontal long wire
over ground has been reported by Wait (1961). In the discussion
here, only the distributed shunt admittance is considered.

2. Distributed Shunt Admittance

A horizontal cylindrical dipole is above the surface of the
ground. The two sections of the dipole cylinders have radius
a and length 1I.. The axis of the dipole is at a height h + a above
the ground. The dipole is considered thin, i.e. a << L.

The air and the ground are two dielectric media with die-
lectric constants €; and €; = €5 € (1 - jp) respectively, where
P =0/wep €. The distributed shunt admittance y of the dipole
can be obtained from the distributed capacitance c between the
opposite halves of the dipole; vy = jwc.

In an electrostatic case, it is assumed that dipole cylinders
are oppositely charged and can be represented by line charges
with densities +q and -q coulombs per meter on the two cylinders.
The presence of the ground is accounted for by allowing an image
dipole. The charge densities are

€1 - € €1 -~ €o
- €1+€oqand+ €+ ¢

Given these line charges, the potential drop between the dipole
cylinders is readily determined. Because of the assumption of
uniform charge density on each dipole section, the resultant
potential drop between corresponding points on the two dipole
cylinders is a function of distance from the center of the dipole.
In a dipole with perfectly conducting cylinders, a voltage gradient
along the dipole does not exist. For a thin dipole, this gradient
will be small and the average value potential d»op can be used.
This results in a distributed shunt admittance of

q on the two halves of the image dipole.

j2rw e, .
y = joc = . b= 2(n g ).
€1 - €
Ib-K €1+€0
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In the 