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A General Model for Signal Level Variability 

GEORGE HUFFORD 

Abstract-A general model of received signal variability is outlined 
in which the signal level is represented as a simple algebraic combi­
nation of random functions which, in turn, vary with time, location, 
and the "situation." A study of signal variability should then be a 
study of the statistics of these separate random functions. Among other 
things, the model inspires extended definitions of the terms "reliabil­
ity" and "confidence." 

INTRODUCTION 

In this correspondence we want to outline a model that helps 
describe how received signal levels vary randomly with time, lo­
cation, frequency, and miscellaneous other quantities. It is a gen­
eral model that might unify the presently disparate approaches used 
in the different radio services. We hope we are continuing a tradi­
tion [l]-[4], but whereas previous discussions were usually con­
cerned with long, point-to-point communication links, here we shall 
emphasize the broadcast and land-mobile services in the VHF and 
UHF bands. 

The aim of the model will be to represent the received signal 
level was a random variable and as a random (or stochastic) function 
of such variables as time and location. For definiteness we suppose 
that w is the power available at the terminals of the receiving an­
tenna and that it is measured in decibels relative to 1 mW. In the 
notation we shall use, and with which we have already begun, ran­
dom variables are represented in lowercase italic letters while sta­
tistics. of random variables are denoted by uppercase italic letters. 

SMALL-SCALE VARIABILITY 

In developing the model, we take the customary first step of 
separating the signal ievel process into two s�perimposed processes 
representing multipath fading and power fadmg. Normally the two 
are easy to separate, for multipath fading is rapid and corresponds 
to short-term or small-scale variability while power fading is slow 
and corresponds to long-term or large-scale variability. Multipath 
fading is also frequency selective and the source of multiplicative 
noise. How a given radio system reacts to it depends very much on 
the system. Some systems, for example, will use spread-spectrum 
modulation or some diversity scheme to actually take advantage of 
the variations. Other systems will find that multiplicative noise is 
ruinous and so will avoid regions or operating modes where it is 
present. For example, a television receiver w�ll tl')'. to �v�id ghosts 
by putting its antenna on a rooftop and by usmg directivity to null 
out extraneous signal paths. . To represent the superposition of the two processes we wnte

w w0 +r (1) 
where w0 is a smoothed version bf w and the residual r then rep­
resents the small-scale variations. As indicated by the lowercase 
italic letters, both components here are to be considered random 
variables; w0 is measured in dBm and r in simple decibels. Fur-
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thermore, we may suppose that r always has a median value of 0 
dB. 

The variable r can be thought of as a '' random function,'' r "' 
r( t, x,f), ohime t, position x, and frequency f. Its statisti.cal prop­
erties as a function off will provide many of the "channel char­
acteristics" that are important. The behavior with respect to.an_y
two of the variables often displays a similarity relation. This 1s 
probably especially true for the frequency and position va�ables. 
When it comes to the time variable, the common assumption for 
troposcatter links is that time and position variation_s are related by 
similarity; but on short paths such as those found m the land-mo­
bile services, there is usually no short-term (or even long-term) 
variability except for that induced by motion of the mobile unit. 

The form of (1) implies a multiplicative relation for the coi:re­
sponding amplitudes or powers. This is by design. As a function 
of frequency, the received signal level provides a frequency trans­
fer function, and it seems quite proper that it should eq�al a general 
overall level multiplied by a normalized random function. 

When the multipath has many components all of about the saJ}ie 
size then of course we have the case of Rayleigh fading. The' , .. ' 

' . � first-order statistics (those that descnbe how large the vanat10ns
are but not how fast they change) satisfy the Rayleigh Law. For the 
quantity r, the (complementary) cumulative distribution is given 
by the simple formula 

-10•110 q=Pr[r>R]=2 . (2) 
We might call this the Rayleigh decibel distribution s!nc� th: term 
"Rayleigh distribution" is usually reserved for the distnbut1_on of 
the underlying voltage amplitudes. Solving (2) for R we obtam the 
quantile 

R(q) 
ln 1 

10 log ln 2 (3) 

so that R ( q) is the value that r exceeds for the fraction q of the 
trials. Note that, particularly since we have taken care of the me­
dian by the term w0 in (1), the distribution has no parameters. If 
multipath is severe enough to give rise to Rayleigh fading, the first­
order statistics are fixed. The distribution has a mean of 0.92 dB, 
a mode of 1.59 dB, a standard deviation of 5.57 dB, and an inter­
decile range Ar= R( 0.1) R(0.9 ) = 13.�0 �B. Because we 
have not seen it elsewhere, we have plotted m Fig. 1 the corre-
sponding density function-the negative derivative of (2). 

A somewhat more general condition arises when there are still 
many multipath components but one of them_ (proba?�Y the direct
wave) is much stronger than the others. This cond1t10n le�ds ·. tofirst-order statistics that satisfy what is called the Nakagam1-R1ce 
distribution (and also the "Rician" or the "constant-plus-�-R�y­
leigh" distribution). If the median is again fixed at O db, this dis­
tribution has but a single parameter that corresponds to the con-
stant-to-scattered power ratio. . . An interesting fact appears when one plots the Nakagam1-Rice 
cumulative distributions on Rayleigh paper. This latter is the kind 
of graph paper that has a nonlinear probability scale �evise� so t�at 
the Rayleigh decibel distribution plots o�t �s a �tra�ght_ lme wit�
slope -1. When it comes to the Nakag�m1-R1�e d1�tnbut1�ns, their 
graphs [4], (5] tum out to look much hke straight J�nes �1th slop�s 
in the O to -I range. They look so much like straight Imes th�t 1t 
seems a good approximation to simply replace them by straight 
lines. It would certainly simplify many calculations. . As it happens, there is a distribution used in �e theory of reli­
ability known as the Weibull distribution [6], which may be most 
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Fig. 1. The density function of the Rayleigh decibel distribution. 

simply defined as one whose cumulative distribution plotted on 
Rayleigh paper is a straight line of arbitrary slope. It appears ap­
propriate, then, to use this distribution as an approximation to the 
Nakagami'C'Rice distributions. Note that statistics such as the quan­
tiles are easily determined for the Weibull (decibel) distribution. If 
the slope of the cumulative distribution is -ex then the quantiles 
are given again by (3) after the right-hand side is 'multiplied by ex. 
These remarks also suggest a new representation for the small-scale 
variability of (1) in which we set 

(4) 

where r0 is a rapidly_yarying random function that satisfies the Ray­
leigh law al).d cx0 is locally a constant, and hence,like Wo, a slowly 
varying random function. This multiplier should in principle lie 
between O and 1 although Shepherd [7] reports measurements that 
exceed I. In many cases, it is probably correct to assume that cx0 
equals either O or 1; in other words, that multipath is either severe 
or absent. 

LARGE-SCALE VARIABILITY 

For the first component of (1) we write 

wo = Wo + Ys(s) + ars(s) YT(t) (5) 

where W0 is the overall median received signal (hence, the upper­
case letter); Ys and YT are two random variables called deviations; 
and the multiplier cxTs is a third random variable. The deviations 
are measured in decibels and their median values are O dB. The 
multiplier is dimensionless, always positive, with median value 

. equal to unity. 
The deviation YT is a random furiction of time. It changes from 

hour to_ hour mostly because of diurnal changes in the atmosphere. 
The other two variables in (5) are introduced in order to account 
for all other randomness. In one sense they seem to be introduced 
mostly to allow for errors; the value of W0 and the statistics of YT 
are probably derived from an inexact computation and these vari­
ables can be thought of as the adjustments needed to fit reality. In 
this sense, then, it should be the aim of research in radio propa­
gation to improve the calculations so that the variances of these 
errors become ever smailer. It seems to us, however, that there will 
always be- some not inconsequential residual variation that is due 
to unavoidable gaps in our knowledge of the propagation path or 
of the deployment ot'the measuring equipment. 

Whatever the cause or source of this extra randomness, and 
whether or not it will someday be possible to remove it entirely, at 
the present time it mu.st be retained. It is then most convenient to 
treat these· variables as straightforward random functions, and to 
do that we need to attach a label to the associated argument. For 
lack of a better terin, we shall here call that argument the situation, 
and by that we mean to imply there is indeed a particular situation 
in which one makes an observation of received signal levels. It may 
consist of the geographic region containing the propagation path, 
the antennas used, or the exact measurement process. Thus, Ys, for 
example, becomes a random function of the situations. In (5) we 
have resolved the large-scale variability into a "time variability" 
and a "situation variability." 

The values of W0 and of the statistics of the three random func­
tions depend on.the parameters of the problem -the system param-

eters including radio frequency and antenna heights; the environ­
mental parameters including the terrain, radio climate, and ground 
constants; and the deployment parameters such as how the antennas 
are mounted. One particular set of these para~eters consists of a 
detailed description of the topography lying between the terminals 
and cif the vegetation and buildings that are present. For many 
problems, however, this detail is unavailable or too expensive to 
optain; for the conceptual design of a system it might even be 
meaningless. For such problems, one wants to abstract away from 
this one set of parameters, and the best way to do this is to ran­
domize over the set just as it exists in nature. This introduces fur­
ther variability, and to account for it we would propose to extend 
(5) so that it takes the form · 

Wo = Wo + Ys(s) + cxis(s) YL(x) 

+ cxrs(s) cxn(x) YT(t) (6) 

where x is to be interpreted as a "location" and the random func­
tions with the subscript L provide us with a ''location variability.'' 
The overall median W0 and the random functions here with the 
same names as some of those in (5) are not meant to be the same 
as those in (5). The randomization process will have changed them. 

EXAMPLES 

Tlw representations in (5) and (6) allow for two and three ways 
in which the received signal can vary. Sometimes this seems in­
appropriate. In the land-rriobile services, for example, one might 
want to use (6) because one needs to study base station service 
throughout an area and obtaining (and utilizing) the required terrain 
information for an entire area might be too expensive. But the time 
variability in (6) is, first, small in size and, second, indistinguish­
able from location variability since motion of the mobile unit trans­
forms the one variability into the other. Thus, one wants either to 
ignore _the last terin in (6) or to combine the last two. terms obtain~ 
ing a forinula with only location and situation variability but in 
which location variability has a somewhat larger variance. 

On the other hand, the full assortment of terms is used in the 
case of the design of a broadcast service, and this coines about in 
an interesting hierarchical series of steps. Consider first the indi­
vidual user of the service. If the received signal Wo (we assume no 
small-scale variability) exceeds some threshold Wa, then we can 
say he or she has adequate reception. But the individual is ade­
quately served only if there is adequate reception for a large eriough 
fraction qT of the time. The user will be in a situation s and at a 
location x and so can measure the quantile 

W1(qT, x, s) = Wo + Ys(s) + cxLS(s) YL(x) 

(7) 

where YT( qT) is the qT quantile of YT· Then the individual is ade­
quately served if Wj exceeds Wa. 

Next comes the broadcaster. That one will want to have a suf­
ficiently large audience, and one tool to help determine whether 
that is possible is the fraction qL of locations that receive adequate 
service. With the broadcaster and the broadcasting service area in 
a single situation s, orie computes quantiles W2 ( qT, qL, s) from 
(7). This is a little more complicated than before since the last two 
terms in (7) both depend on x and so their statistics must be corri­
bined. (If the terms are_ statistically _independent, we can use a con­
volution). 1-lowever determfoed, if W2 exceeds the threshold, the 
broadcaster will include another receiver location within the pro-
posed service area. · · 

Finally, the broadcasting industry will want to be assured that a 
sufficiently large fraction of the aspiring broadcasters can meet their 
objectives. If we assume that each broadcast station is in a separate 
situation, then this last fraction is the fraction q5 of situations that 
enters in evaluating the final threefold quantile W3 ( qT, qL> q5). This 
quantile is thus the value of received signal level that will be ex­
ceeded for at least qT of the time in at least qL of the locations with 
probability q5 • 
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There are at least two radio propagation models in present use· 
that try to estimate both W0 and the first-order statistics of the ran­
dom functions in (6). These are the ITS irregular terrian model (the 
ITM) [2], [3] and the TV and FM-radio field-intensity charts of the 
FCC (8]. · 

The ITM uses language closely related to (6). The multiplier cr.n 
is ;tssum"d to have zero variance (and lience, is dropped from the 
formula) while er.rs and er.is have standard deviations of about 0.35 
and 0.20, respectively. The five random variables are assumed to 
j,e statistically independent and to follow a normai or nearly n~rmal 
distribution. Depending on the parameters ·of the problem, Ys has 
a standard deviation of from 5 to 8 dB, Yi from O to I b dB, and Yr 
from Oto perhaps 12 dB. 

The FCC curves do not provide explicit statistics, but back­
ground papers hint at them. Thus, from [8] we find that at UHF Ys 
has a standard deviation of 14 dB (9 dB if the roughness correction 
factor is used). From [9] we learn that Yi has a standard deviation 
of 12 dB. And by finding how the F(50, 50) curves and the F(50, 
10) curves differ (8), we conclude that Yr has a standard deviation 
of from Oto about 11 dB. 

RELIABILITY AND CONFIDENCE 

As used by many engineers, the term "reliability" quantifies 
how well a system performs, often by citing the fraction of time 
during which the signal is available. It seems to us that it would be 
useful.to extend this notion somewhat. We should like to say that 
reliability is in general a quantitative description of what one means 
by "adequate service." This description will vary depending on 
the type of service contemplated. 

The term "confidence" is used by statisticians to measure with 
what certainty one is to accept the truth of their hypotheses. Again, 

. it seems that the notion can be usefully extended to the design of 
radio systems. In this spirit we say that confidence is the probability 
that a given reliability will be achieved. 

The mechanics of estimating reliability and confidence will vary 
according to the service to be provided. For example, in the 
straightforward case of a point-to-point communications link, the 
required reliability is that a threshold signal level be available for 
some given large fraction of the time. Our model in (5) then pro­
vides exactly what is needed to estimate the confidence. In this case 
reliability is simply time availability while confidence is related to 
situation variability. · 

On the other hand, the broadcaster will say that a station pro­
vides reliable service if it provides an a<lquate signal for a suffi­
ciently large fraction of the time at some large fraction of locations. 
The last qualification is a new one, but if we tum to the model in 
(6) the estimation of confidence proceeds very much as before with 
a study of situation variability.' The threefold quantile W3 plays an 
imme<liate role. · 

In still other circumstances we may need to use combinations of 
the variabilities. The individual who wants to receive a broadcast 
station will say again that reliat>iiity is an adquate signal for some 
fraction of the time. But if there is a lack of data concerning to­
pography one will need to use (6); then reliability is time avail­
ability while confidence is measured by a combined location and 
situation variability. And, in the mobile service, we have already 
observed that time variability is indistinguishable from location 
variability. Thus, reliability will be related to a combined time and 
location variability while confidence will tie measured by situation 
variability. 

One approach to the design of a system might be to consider 
how confidence in an adequate signal varies with some parameter 
of interest. For example, in Fig. 2 we have treated a modest base 
station-to-mobile unit system and have plotted confidence as a func­
tion of range. The system is at 410 MHz, includes an· allowance 
for small-scale Rayleigh fading, and requires a large-scale reli­
ability of 85 percent. Calculations used the ITM. 

Closely allied to the present notion of confidence is that of ser­
vice probability. But whereas "confidt,nce" as used here is con-
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Fig. 2. Confidence versus range for a base station-to-mobiie unit system 
in which 85 percent reliability is required. · 

cerned only with propagation losses, service probability provides 
the probability that a given service will perform adequately well 
and should account not only for variations in propagation loss but 
also for Vljriations in equipment parameters. Hagn [10] has drawn 
figures very similar to our Fig. 2, and we may note that his "prob­
ability of successful communications" includes random variations 
in propagation loss, fo equipment parameters, and also in ambient 
noise. · · 

CONCLUSIONS 

We have outlined a general model for signal variability that can 
be u,sed to resolve many radio engineering proJ::,lems related to 
propagation. In particular, we have seen how the terms ''reliabil­
ity" and ·"confidence" can be extended to many kinds of services 
and how the model can be used in different ways to make estimates 
of these quantities. 

It seems also that the model might be useful to sharpen our no­
tions as to what kinds of experimental data are still needed. Most 
measurements to date have been concerned with time variability_or 
sIT1all~scale location variability. There has been little notice of the 
role that "situation variability'' might play, particularly in judging 
the accuracy and usefulness of a propagation modeL 

Finally, the model might also indicate what higher order statis­
tics would be useful. The problem of correlations on two or more 
propagation paths is an important one in estimating results for both 
interference and network connectedness. To date, measurements 
have been skimpy and probably not well directed. 
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