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PREFACE

The following report is the first of a series of studies whose
general aims are threefold:

(1) To provide quantitative, statistical descriptions of
primarily man-made electromagnetic noise or interference;

(2) To suggest and to guide experiments, which gain the
needed data of the actual, physical environment; and

(3) To apply these quantitative and experimentally established
results to the evolution of the performance of communication
systems which operate, or will be expected to operate, in such
noise environments (i.e., local and extended urban and regional
areas.)

With the help of (1) and (2) one can then predict and determine
interference characteristics of various selected regions of the radio
spectrum, With the results of (3) one can establish rational per-
formance criteria for successful, or unsuccessful, operation of
communication links in various classes of interference. In com-
bination, one has a quantitative procedure for spectral management.

Thus, in somewhat more detail, our overall aim is to
achieve the capability of handling such typical problems as
determining when a given communication link may be interfered
with by other such links operating in both geographical and
spectral proximity to it. Related questions concern the perfor-
mance of such systems and how it may be affected by trade-offs
in system parameters, such as signal level, source and receiver

spacing, directionality, etc. Still other problems arise because
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of the EM interference produced by man-made devices, in par-
ticular, automobile ignition noise, which can exert adverse effects
upon ground-to-air and air-collision avoidance systems, for
example, especially with respect to planned broadband digital
systems for such applications.

We distinguish two principal classes of interference generally:

Type A Noise: where the interference is spectrally comparable

to or less than the desired signal; and

Type B Noise: where the interference is spectrally very broad

vis-a-vis the desired signal.

Ignition noise, for example, belongs to Type B, as does the
natural atmospheric noise (which is of concern only below about
30 MHz). On the other hand, the 'intelligent'' noise, represented
by someone else's desired signal, belongs usually to Type A,

Although Type B noise has had a long history of investigation
at various levels of detail, Type A interference has only recently
been described by analytical models appropriate to the tasks
required by (1)-(3) above. The present report is an initial step
in this direction. The material following is primarily concerned
with Type A interference (cf. p. 24) and first-order statistics
of the instantaneous amplitude, In addition to providing noise models
for this class of interference [cf. (1), (2)], these, in turn, are
needed for the calculation of the performance of coherent systems,
which is a task of major interest to the Institute for Telecommumni-
cation Science spectral management program. A second report in
the series will deal with the corresponding envelope and phase

statistics of both type A and B noise, while a third report will
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consider in detail the statistics of the instantaneous amplitude for
Type B interference, Envelope statistics are required for (a),
measurements, and (b) the analysis of systems which employ
incoherent reception. A parallel program for experimental
validation of the various interference models being developed here is
being planned as part of the ITS/OT-OTP spectral occupancy
investigation.

Fimally, we remark that what makes these analyses a
technically non-trivial exercise igs the fact of the nonnormal or
"impulsive'' character of both classes of interference. The
practical significance of these studies, of course, lies in the
ability of the treatment to achieve the spectral management goals

of (1)-(3) above.

David Middleton
Contract OT-0026

127 E 91 St

New York, N.Y. 10028
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STATISTICAL-PHYSICAL MODELS OF MAN-MADE RADIO NOISE

PART 1. FIRST-ORDER PROBABILITY MODELS OF THE
INSTANTANEOUS AMPLITUDE

David Middleton®

Abstract

A general statistical-physical medel of man-made radio noise
processes appearing in the input stages of a typical receiver is
described analytically. The first-order statistics of these random
processes are developed in detail for parrow-band reception. These
include, principally, the first-order probability densities and proba-
bility distributions for a) a purely impulsive (poisson) process, and
b) an additive mixture of a gauss background noise and impulsive
sources. Particular attention is given to the basic waveforms of
the emissions, in the coursge of propagation, including such critical
geometric and kinematic factors as the beam patterns of source and
receiver, mutual location, doppler, far-field conditions, and the
physical density of the sources, which are assumed independent and
poisson digtributed in space over a domain A

Apart from specific analytic relations, the most important general
results are that these first-order distributions are analytically
tractable and canonical. They are not so complex as to be unusable
in communication theory applications; they incorporate in an explicit
way the controlling physical parameaters and mechanisms which de-
termine the actual radiated and received processes; and finally, they
are formally invariant of the particular gource location and density,
waveform emission, propagation mode, etc., as long as the received
disturbance is narrow-band, at least as it is passed by the initial
stages of the typical receiver. The desired firast-order distributions
are represented by an asymptotic development, with additional terms
dependent on the fourth and higher moments of the basic interference
waveform, which in turn progressively affect the behavior at the
larger amplitudes,

This first report constitutes an initial step in a2 program to provide
workable analytical models of the general nongaussian channel
ubiquitous in practical cormmunications applications. Specifically
treated here are the important classes of interference with bandwidths
comparable to (or less than) the effective aperture-RF -IF bandwidth
of the receiver, the common situation in the case of communication
interference.

Key waords: Man-made radio noise, Radlo noise models,
Statistical communications theory,

*The author is under contract to the U.S. Department of Cornmerce,
Office of Telecommunications, Boulder, Colorado, 80302,
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STATISTICAL-PHYSICAL MODELS OF MAN-MADE RADIO NOISE
PART I. FIRST-ORDER PROBABILITY MODELS OF THE
INSTANTANEOUS AMPLITUDE

David Middleton

1. INTRODUCTION

Man-made electromagnetic interference (or noise) has become
a problem of great concern in the telecormmunications community,
particularly in the face of available bandwidth resources. Such
noise is also, and will become more and more s0, a major limiting
factor for the successful functioning of communication systems, not
only in urban environments but over larger regions as well. Effective
analysis of system performance and design requirements demands
tractable models of these noise mechanisms, so that the standard
methods of Statistical Communications Theory (SCT) can then be em-
ployed for the desired system evaluations (Middleton, 1960; 1965; VarTzees,
1968). Our models are necessarily statistical, on the one hand, since the
processes they describe are inherently random in time and space.
On the other hand, since these processes are generated in the real
world, for an adequate description we must also include the appro-
priate physics of the propagation and reception (Middleton, 1970).

Accordingly, we shall construct first-order probability distri-
butions for some typical classes of man-made interference: (1)
"anintelligent'' noise, produced by the radio emissions from, say,
mobile land vehicles (e.g., automobiles, trucks, buses, etc.), and
(2) "intelligent'" noise, which may appear in a communication link
because of unwanted spectral overlap with, and physical proximity

to, nther communication links (Middleton, 1971), The general



models are the same, but the specific characteristics of the interfering
signals, e.g., their waveforms, frequencies, durations, source distri-
butions and movement, geometries (location, beam patterns, etc.), are
usually quite different. In this report our construction of explicit statis-
tics will be for interference of type (2) only. Cases of type (1) are treated
in a following study (Middleton, 1973c).

Technically, what has made a quantitative treatment very diffi-

cult in the past is the fundamentally impulsive, nongaussian character

of these classes of noise, However, with new techniques (Middleton,
1970) and recently developed models (Middleton, 1973), this difficulty
can be overcome, as the material below will indicate. There appears
to be comparatively little earlier apalytical work along these particular
lines (Middleton, 1970, 1973a)regarding man-made noise. Important
exceptions, however, devoted primarily to atmospheric models, are
papers by Rice (1944), Middleton (1951)? Rirutsu and Ishida (19 61), the
critical study by Hall (1966), and more recently, Disney and Spaulding
(1970). Particularly to be noted, also, is the significant investigation
of Giordamno (1970), who establishes, among other results, the special
conditions justifying the quasi-phenomonological distribution derived by
Hall (1966).

The new results presented here are obtained by taking advan-
tage of the above, and especially, the current studies of the author
(Middleton, 19732)on ocean reverberation models. It is found, generally,
that as long as the received waveform (at or after the RF stages of the
receiver) is narrow band, a canonical treatment is possible, which is
analytically tractable. Thus, under practical operating conditions we
show here that we can construct useable statistical physical models of

man-made noise environments, which have the especially important

*See also, Sec. 11.2 of Middleton, 1960.



feature that they are founded in a physical model and are not an ad hoc
statistical construction to be fittable only to particular, local, empirical
results. An important consequence of this physical basis is that the
statistical parameters of the model are specified in terms of the under-
lying physics. This first report indicates how one can derive a class of
canonical, approximate first-order distributions for "intelligent" man-
made noise of type (2) above, with this degree of generality and applicability.
The report is, accordingly, organized as follows:

A, Section 2 outlines the formulation of the basic statistical

model (BSM), including gaussian background noise as well as impulsive
effects. As before, the apalytical starting point is an appropriately
structured poisson process (Rice, 1944; Middleton, 195]; Furutsu and
Ishida, 1961; Hall, 1966; Disney, 1970; and Giordano, 1970).

B. Section 3 is devoted to the specific calculation of the
first-order characteristic function Fl(ig. t)X from the generalized
poisson model, for both low (and high) impulsive densities, with and
without an additive gauss process, for this class (2) noise type.

C. Section 4 gives explicit (exact) expressions for the
lower order moments (up to and including the sixth), for this process.

D. Section 5 presents the desired first-order probability
densities of the instantaneous amplitude of the receiver interference,
and its distribution (in both normalized and unnormalized forms).
Included is a calculation of the probability that a given threshold level
will be exceeded, A number of characteristic curves illustrate the
results.

E. Section 6 considers in a preliminary way the problem
of determining the governing parameters of the distribution from em-

pirical observations.



F. Section 7 concludes this first report with a brief
resumé of what has been done, and a statement of various next steps to
be taken in the development and validation of this class of canonical

statistical-pnysical model,

2, FORMULATION

In this section we present the general forms of the first-order
characteristic functions and probability distributions for impulsive
noise and a mixture of impulsive noise and a gaussian (i.e., normal)
background. For further development we need also some specific
structure for the individual interference waveforms as they may be
expected to appear following the RF stage of a typical receiver,

Since the spatial distributions, as well as received waveforms, of these
noise sources play a key role in determiping the statistics of the resul-
tant interference process, we shall need to examine its general form
also, cf. Sec. (2.3). Finally, two parameters that appear explicitly in
the desired probability distribution are the mean and mean intensity,
These we shall determine in Sec. (2.4) below. Other important para-

meters of the distribution we considered later in Sections 3 and 4.

2.1 The Basic Statistical Model (BSM)

For most applications it is reasonable to postulate the familiar
poisson mechanism (Middleton, 1951; 1970; 1972a; 1973b) for the initiation
of the interfering signals that comprise the received waveform X(t).

As far as the receiver is concerned, each "event', representing an



interfering signal U(t) is initiated independently here*

in time and space,
vis-a-vis all other such signals. For the moment we leave open the
details of the individual waveforms Uj s except to remark that they

have a deterministic structure and arbitrary durations. The received

interfering process is
X(t) = }J: Ut 0), (2.1)

where @ now represents a set of time-invariant random parameters
descriptive of waveform scale and structure. (For simplicity, and with-
out seriously restructuring the useful generality of our model, we shall
assume that only one type of waveform, U, is generated, Variations
in scale, duration, frequency, etc. may be subsumed under appropriate
statistical treatment of the parameters ,@,: cf. Sec. 2.4 below,

The first-order characteristic function of X(t) for these classes
of space-time poisson process is known to be (Middleton, 1967; sec. 3;

1970, eq. {29); 1972, eq. 4.4; and 1973b)

iéU(tl;A,"e_,)
Fl(ig;tl)x=exp J‘pQ\)" <e -1 dA (2. 2)
A 0

where Zﬁ. (=t, 0, @) are coordinates of the source-receiver geometry;
d\ = d\ d@ d¢ for sources distributed in a volume, and ﬁi,.)}, = d\xd¢ for
sources distributed on a surface (not necessarily flat); for the latter
one has then 0 = O(t,9); Ais the physical domain in which the sources

are located. The quantity f p(x) d\ is a "counting' functional,
A

*The usual poisson model may be readily extended to include (indepen-
dent) sets of non -independent events, e.g., signals such as occur in
atmospheric noise (Furutsu and Ishida, 1961; Hall, 1966; Giordano, 1970),
or in various types of man-made interference where an initial distur-
bance produces a sequence of related transients, as for example in
automobile ignition noise,



which adds up the contributions of the individual sources without regard

to their magnitude (Middleton, 1967).

We shall refer to p(M as the process density, which is defined
by (Middleton, 1967)
P, 0) =0 Qx)dS/dx de; py,0A, 6, 9) =0, (A)dV/ax dBds  (2.3)

respectively for surface and volume distributions of sources; 0., O

s “v
are the source densities, per unit area or volume.

The desired probability density W and distribution D1 of the

1
instantaneous, received process X(t) are given formally by the indicated

Fourier transforms:

-1 . _
WKt =g, {Fl(lr—;, ty)y }-

] f% exp [-EX +J'inEU ->dx:|
- A

(2. 4)

f-ig, X
e

= 0D

and

X X
-1 .
D (Xt =f wl(x,tl)de =f ig{Flhg.tl)X}dX. (2. 5)
-0

-

The key technical problem, and the one to which we address ourselves

primarily here, is now at once apparent: the explicit evaluationof

Wl(X. tl)P. cf. (2.4). Because of the inherently non-normal nature of
the poisson process, as reflected by the integrand of (2. 4) (which is not
limited to terms 0(52) in the exponent), this is a difficult task.
However, as we shall see below (Sections 3 - 5), by taking advantage
of waveform structure, source distribution, and the pertinent physics
of the process generally, we can achieve tractable results.

Frequently, the source field can be regarded as consisting of
two independent components: one, the poisson 'impulsive' interference,
containing only a few (0 (10) or less), discrete sources of relatively

high level, and a second (zero-mean) normal background noise
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(Middleton, 1972a), which stems either from receiver system noise
directly (when there is negligible external background interference), or
background interference itself, which is a high-density poisson process
and thus (asymptotically) normal. This latter is the resultant of a large
number of source emissions, similar to those producing the "impulsive',
or poisson component, but none of which is sufficiently strong to exhibit
the structural character of the former. Accordingly, since these two
components are independent, we have directly for the sum process

(gauss plus poisson):

@
-ig X
= i F _(ig, t (5] d§ (263.)
WX ) g g fFl(lé,tl)P (8t a8
-ob
00 .
2.2 it0 2.6b
B oot [ D]
m
- A
where OéE Xé, (?G=O), and XG(t) is the gautsian component of
X(t) = XG(t) + Xp(t) now. The distribution, Dl(X. tl)P+G' is defined

by (2. 5), with W replaced by W (2. 6). The presence of

1P V|P+G’
the normal component does not remove the analytical difficulties

attendant on the evaluation of WI(X. tl). but, physically, it does elimi-
nate the non-zero probability of X = 0 which is typical of impulse noise

alone.

2.2 Waveforms, U(t,'g‘):

Here we shall use results already obtained in a previous analysis
(Middleton, 1972) to specify the received waveform U, which is a key element

of the probability structure, cf. eqs. (2.1), (2.2), (2.4), (2.6). We shall



need a certain degree of generality in this respect, to describe the
major classes of mechanisms. We accordingly develop below a
hierarchy of expressions for U, in decreasing order of complexity,
We make the following assumptions regarding the physical process
of source emission:
(1) the various sources are independently radiating (as already
noted above);
(ii) a far-field (Fraunhofer) condition (Middleton, 1970) applies,
which in some respects permits us to treat both source
and receiver as point elements;
(iii) there is a small doppler (sources and/or receiver moving in
a fixed frame of reference);
(iv) the typical source has a beam pattern that is not necessarily
omni-directional;
(v) the receiver generally has a directional beam pattern;
(vi) the typical source may have a time-variable mechanism,
e. g., change in level, frequency, etc., with time;
(vii) the sources are distributed with density 0(_)9, in some region, A.
For the moment no restriction is placed on the waveforms of the
various-sources or on their domain of distribution, A. Then, the

waveform after entering and leaving the aperture-RF-IF

. . .. .th ,
portion of our receiver, arising from the j— source(j=1, . . ., J),

is given generally by (Middleton, 1972a, eq (3, 28)]

. 1 coi+d R . .. st ds

(1). Uj(t) -y {f Q,R(-;Rs/ch.s/ZTrl)e 7
J “leoi4d
ooi+d ~(1 '
S a5+ Rl 0 remer [0 am, LB g ]
I —aoi4d
SR Lo -s'T, ds'} (2.7)
2171
Y



where yI 1s the bi-frequency function (Middleton, 1367) of the (jth) time-

variable source S_., viz.

1
. z ;€0 z T, t; E(R)M . 2.8
PRCASYREIE gt{sn(f. sg Rifd Ifs (x 6 f] )} (2.8
J
Here, in addition, we have
/7
QR’ QI‘ = beam-patterns of receiver and interfering source;
(These are the spatial Fourier transforms of the
respective aperture weightings, A_, A_.)
R T
= ; . .th .
T = Aperture weighting of the (j—) interference source;
}'R = §/|§| = unit vector to the origin (OR) of the receiver's
1 - - .th
coordinate system, from the origin (OI) of the j—
source's codrdinate system [cf, Fig. 2.1];
B = B..+8 = sum of dopplerized velocities, receiver
(2.9) < RS "SR
to source and source to receiver, where
BSR =“!S . _Q-R/c.; BRS = _XR . }'R/c, and XS' -Y-R are
(linear), measured with respect to a stationary
coordinate system.
c = speed of propagation (group velocity) of these
(electromagnetic) emissions.
To = R/c = path delay, of emission wavefront to receiver,
R = distance between OI and OR' cf. Fig. (2.1)
\

There is a limitation on our model here: we treat the emissions
as a scalar phenomenon, when in actuality they are a vector field.
However, this is not a serious restriction vis-3-vis the receiver as
long as we are not concerned with polarization effects; we consider
the received field to have only one dominant component, E or H,

which is whatever the receiving aperture is designed to couple to.
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Geometry of interfering source and the receiver.




(Later, in considering possible means of interference reduction,
we should remember the possibilities that may occur here if advantage can
be taken of any systematic polarization in the interference field. )

Equation (2. 7) is a result of considerable generality, including
broadband™ sources, However, except in some measurement
situations where very broad-band receivers are employed, most man-
made interference is comparatively narrow-band,* so that we can

write, using now for convenience a complex representation

A

A ATIN 4 i (7, t; 2. 10
SAmtIEIR) = S_(, 6:£)e P § = A (r ;50 0l® B (2.10)

A
where S, is a complex envelope; AO and ¢, 2Te 2 real envelope and

phase, The bi-frequency function (2. 8) accordingly reduces to

(3( ) =f S l:(x +BNs'-s ) 2mi, t; g] oLe-(1B)s e g (2.11)
I o e (o} [o] ~
5, = 2 ifo ’ as it appears in (2.7), with

S_ =§£{§o}. (2. 1la)

o~

Using (2. 11) in (2, 7) we get directly

-iw T oi+d

. e o o . . ., St ds
(11.) Uj(t)n.b.l._Re{—AIFR— . a.R(:_l,Rs/Zm,SIZTrﬂe I
-oi+d
oi-+d ] g’ ,
TR U LR A ————5°+s g 3lenTo)
v T\ 2wi /¢
1 ~oi+d
r% |: . S-(1+B)(S"+So) l ] ds"
. (1+B)s"/ 2mi, ST i EIR, Zni}. (2.12)

i

s

"Broadband'' here means a bandwidth Af comparable to the center
frequency, f , e.g., £ ® Af. Conversely, "narrow-band'' means that
fo >> Af; fo "much grea%er than Af'* may be f0= 0(5 Af) or more.

11



This relation is needed when the input signals, though narrow-band,
are still spectrally comparable to or broader than the receiving (and
transmitting) apertures, which are frequency selective, and the RF
stage of the receiver, which is spectrally comparable to these apertures.
Frequently, however, we can simplify (3,12) very considerably.
This happens under a variety of circumstances:
1) the input field, though broad or narrow, is still very
much wider, spectrally, than the RF¥ stage of the receiver.
2) the receiving apertures are spectrally insensitive
over the domain of the input, which is narrow-band,
as defined here. (The bandwidth of the RF is again
the controlling factor.)
Then, we may regard dR in (2.7) and (2.12) as effectively frequency
invariant: in effect we are considering only the frequency range Af,
determined by the R¥ stage, about some receiver carrier frequency,
fOR' to be of interest, and that QR is invariant over this interval.
The magnitude of @R' of course, will depend on the particular fOR
chosen. Thus, for systems with specified RF bandwidths, we are

mainly concerned with the interference process, as it leaves the RF(-IF)

stages for subsequent processing in the receiver; e.g.,
o @
X(t)RI=fX(t-T)hRI(T)dT:%:ij(t-T ;'g‘)hRI(T)dT:JE UjThRIEEj(Uj)RI' (2.13)
- -0

Then, in (2.7) and (2.12) we replace s/2mi by f,_ =f, in 4;\ and

remove dR from under the integral.

12



Next, we integrate over s to obtain (narrowband, RF¥ and [F):

i+d
Aq (irfs/c. £o) g Sy oM’
(1I1). [Uj(t)qué% R=R%7T™ 7o '[/‘Lgf Afsam e

" 4TR I »i+d
158 us' (t41 - E/c-T )
. ~R ~ ~R & o’ ds'
cY ! H - >
p(us'/2mis e+ > Tolg.g)e Torl . 0 (214)
j
u=1+48

for general sources and source apertures, Here YI is the time-varying

frequency response (Middleton, 1967)

=T

(]

-]
YL 6SR) =0, F(Lvig, g)s : J;hI(T,ﬂg.B)f , etc. (2. 143)

The analogous version of (2, 12) [i. e., when the sources are narrow

band, cf. (2.12), and aR is again frequency insensitive], is at once

i‘-b (lJ.t-T ) i-:'oiR'lS/C
» o A £
(1V). [Uj(t)n_ b‘] = Rez e ® Apl-iRfo/c, £,) fgi,;.;e
4TR '
I
01+d . e 5||(“t+£R.E/C_T )
An(E =2 —) Y (s"/2m, 5 5R) e ° ds" |, (2.15)
lwivd T 2T == 2
3.-1
with (Y)) = 2 {(3‘1)}0 , cf. (2.14a),

A further simplification of (2,14), (2.15) is possible if the obli-

quity factor ER"&/C is small compared to the path delay To' which is

13



insured by the fact that our postulated far-field condition, and the inter-

fering source, or its complex envelope So do not change noticeably in

periods of time O(L /c), where L is the largest dimension of the
max max

A

source's radiating aperture. Then we may replace the term _lR'_I;/c-TO

by T_ alone in (2,14), (2,15), For example, suppose that Lmax is
3 meters, then Lmax/c =(3/3- 10“8)seconds = 10 nanoseconds, during
which time we may expect ignorable change in SI or go for most classes
of interference.
Finally, when we can postulate the essential frequency insensitivity

» é A N
of the source aperture so that AT(E-, s/2mi) T(.E.'.' 30/2171), or AT(i'fo)'

we get for the narrow band receiver, (2,14)

Q=i f /c,f)
. "R'~*R’o o
(V). [Uj(t)n.b.] = ATRL :

L€
. . —R 2
L %Sl(u[t+_5R§~—To],[t+ = -To]lg,5> AL(5 1), (2.16)
I c

and with narrow-band sources, in addition, (2, 1€) becomes

embmt-To)aR( -ipf /e, i)

(VI). [Uj(t)n.b’] : Re TR

j;/ dg Soluttip’ Fe -T ot HRALHS L)
I

14



(2.17b)

i - .

e uJo(th To)d (_i f /C f )

Re R'“R o’ "’ o
4TR p

ol D . -
+d . 0 LR E(so+s)/c +s(Mt To) ds
Ll ; ’ ]
 f sqpterams B ERIALE 1 e e
-~ {+d

alternatively, where So is the (amplitude) spectral density of the complex
envelope go’ cf. (2.1la).

Frequently, all of the individual conditions illustrated above are
obeyed in practise, In addition, it is not unreasonable to postulate that the
driving source, SI' of the typical interference mechanism is applied equally
at each element d§ of the source's aperture, i.e., SI is independent of
E, cf. (2.8)., For 'intelligent'" man-made interference, e, g., other radio
communications, this is certainly an acceptable approximation in view of the
far-field relation between the sources and the receiver, so that each may be
regarded in this respect as point sources (with, of course, directional beam
patterns still). [ For the "non-intelligent'" man-made noise, e.g., ignition
noise, the full mechanism is not yet entirely clear, but again by the same sort

of argument we may reasonably approximate SI in the above way, ]

With the usual small dopplers (M=1) and small apertures AT

(cf. remarks following eq. (2.15)], we have the still simpler relation

i oH(t-T,)

- e -~ - -T, i) 1
(VII). Uj(t)- Re R sOI(t 5 t)dR( 18 le, fo)dl(‘t_Rfo/c, fo) , | (2.18)

j

P
which is the one we shall use in the remainder of this Report. The

conditions under which eq (2.18) applies are

*See the comments under condition {ii1), (2.18a) below,and remarks
following (2. 21).
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(1) transmitting (i.e., source) and receiving apertures are fre-
quency insensitive for the bandwidths of emissions passed
by the RF stage of the receiver; o

(ii) the source aperture is electrically small: Lmax/c<<{|éol 2} 1/;2

(1i1) both the source emissions and the (aperture-RF-IF) stages of
the receiver are of comparable bandwidth in this study (see
remarks pp. 2,3) and are narrow-band: e.g., fo>>'AfRI. AII;
[(We do not need to restrict the emission from the source to be
narrow-band, e.g., automobile ignition noise, atmospherics,

(2.18a) etc. Then the receiving aperture, of course, acts like a filter,

whose effects we can equivalently lump into those of the RF-IF

stages of the receiver, provided the shape of the beam pattern,

aR’ 1s not strongly affected over the region of significant fre-
quency response of the aperture, which is a reasonable assum-
ption. Otherwise, of course, we must use the more general
form (2.20), (2,21). In any event, we reserve to a subsequent
report the detailed study of these cases (Middleton, 1973c). )
(iv)  doppler is small, e.g., =0 (or u=1);
(v) the source mechanism driving its aperture does not depend on

aperture geometry, i.e., S_is independent of £.

I
For measurement and study of typical sources, some form of (I),
(11), for Uj may be needed, with ?I independent of £, and the usually

acceptable condition of time-invariance of S_over properly chosen periods

I
of observation. Then we have

Y YL ViR) = S{GR) §(30), S (1) =§t{SI(t)}, (2.19)
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and (2. 7) reduces to

oit+d
. 1 23}-15' us'! A, . : .
( VIII). Uj(t) = {4nR dR(-ZTric ’m’d‘I‘(J’RS /2mic, s'/2mi)
-=i+d
ws'(t-T /W) 44,
.SI(US'/ZTTl; B) e Y 2 . (2, 20)

J
With narrow-band invariant sources (and small doppler), (II), eq (2.12)

reduces similarly to

Hw (t-T ) oi+d
O

5 ° -1 (s +s) s +s (s +s) s +s
(IX). [U.(t) ]= Re { £ (-R o o “R'7 o o
] 'nbl 4R QR 2nic ' 2mi q 2mic ' 2mi

—mi+d

Mus(t-T )
o

ds { . (2.21)
21

. S;(s/.?.ni |]i)o e
j
Reductions to the primary form (2.18) follow directly when corditions
(i) - (v) warrant.*
Note in all cases (I) - (IX) that these results are canonical in
SI’ QR’ gT: we need not specify for our purposes in this Report,
precise source waveforms, beam patterns, etc. It is sufficient to

delineate their general properties, e.g., bandwidths, beamwidths,

directionalities, etc.

#See the comments (iii), (2.18): in subsequent applications (Middleton,
1973¢) we shall assume that if the emitted source is broadband, the
filtering action of the receiver aperture can be included in the RF-IF
stages, as a composite filter effect. This is permissible because (a),
these stages of the receiver are 'linear'’, and (b), the receiving beam
pattern is not noticeably changed over the effective frequency range of
the aperture response. The net effect of this is to permit the use of (2,18)
quite generally, which we take advantage of in 2 subsegquent study
(Middleton, 1973¢),
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2.3 The Process Density, o()):

The process densities (2. 3) depend on the geometry of the receiver
vis-a-vis the various sources, Inthe case where these are distributed on a
surface, we shall assume that the surface is flat; the receiver may be above or
on the surface, in the manner of Fig., 2. 2. Following the analysis of

sec. 3,1, Middleton {1967), with L=0 therein [cf. eq (3.9)], we find that

2
N = . - ! = -
P.{A) c.(MO_,p )Ac R c)\zhf, cos & =h_/R =h /c>\.(2.22)

Similarly [cf, eq(3.16), Middleton (19 67)] we get for sources distributed in a
volume 2 3

PV(‘}_)=<{/(X, BR,QJR) A ¢ sinBR; Az 0; 0< BR <m. (2.23)
Both ps and p,, are non-negative functions, since the physical density of
scatterers, OS, q/, are non-negative necessarily, These physical densities
of radio noise sources, (i, e.,, number per unit spatial element) are quantities
whicl: 'nust be determined for the various urban and larger regions (A)

under consideration. Their magnitudes are time-dependent usually,

on a2 scale much slower than the duration of particular message or

other man-made interference waveforms. However, these secular

variations over periods in the day, week, season, etc., need to be

studied, as they can change the scale of p noticeably: as we shall

see in Sec, 3 following, small p means highly '"impulsive' noise,

whereas sufficiently large p is indicative of an effectively

gaussian process.
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Figure 2.2,

Agip=A

Geometry of an interfering source {(at P.} and a receiver at
height (tho). for an urban region A &ontaining independent
radio noise sources. (Exaggerated in the vertical direction.)



: 2 2
2.4 The M t X4, X
e Mean Intensity s I

A parameter of basic importance to both our models and to

measurement is the mean intensity

dZ

Xth) = '_3F1(i€'t)|g:o =fp(x)<Mt;x. e)2> a + )Tt)z. (2. 24)
dg 6
A

obtained from (2. 2), where the mean, if any (representing a specular
component, e.g., resolvable multipath) is

Xt = -3 P&, 0], = Joo) {uten, 6)) @, (2. 25)

a 1 £=0
6
A

in the usual way [Middleton (1951), (1960) Chapter 11, (1967) Sec. 2, etc.],
Formally, inserting egs (2.7), (2.12), (2.14) - {2.18), (2.20), (2.21)
respectively in (2.24), (2.25) yields the desired moments for these
different broad- and narrow-band situations.

In our presgent study (Part I) we assume no specular component,
e.g., X = 0, and so X2=02, the variance of this Poisson interfering
process, In the usual case of aperture, RF, and IF filtering in the
receiver [cf. (2.13) and remarks after (2.21)], we have [Middleton,
(1960) eqs (3.101), (3.102), and (3.87)]

—E = 1 ] |
X (t)ARI = ffo(t-‘r. t-T )hARI(T)hARI(T YdT dr (2. 26a)

generally, where K_, = X(t-7)X(t-7') is the covariance frunction of the

X

input process X(t) to the composite aperture-RF -IF filter (hARI)

2 .
X (f;)A_RI = pARI('r)KX(‘r)dT.

(2. 26b)

pA.RI(T) E[hARI(X)hARI(XH)dx.
‘o
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where X is "macrostationary" [cf. sec. 4, (8), of Middleton, 1972],
and P ARI is the autocorrelation function of the composite aperture-
RF-IF filter. Note that in this formulation we need the covariance
KX. which requires the second-order, second-degree moment
Kyltpt,) = fp(}_) <U(t1;}~.§_)) d\, (2.27)
A 6

L oad

[Middleton {(1967), sec. 2], However, we can easily avoid this

formal introduction of a second-order theory by noting that

UA.RI = hARI*U (cf, {(2.13), remarks after {2.4), (2.5)]; thus,
we have
X(t)E = /;;(‘)L) <URF(t; , )2>dx. etc. (2.28)
iy AP e e d
A A

Accordingly, in our subsequent development of the
statistics of these nongaussian processes in Sections 3-5 following,
we consider X and U to be observed after the aperture, RF,
and IF filters, We shall also limit ourselves, by way of illustra-
tion, to the usual cases of small apertures, uniform drives, and
narrow-band sources, so that (2.18) represents the generic wave-

form, now with U= U » when we need to include the aperture,

ART
RF, apnd IF filter effects.
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3. THE CHARACTERISTIC FUNCTION Fy(i£, t)

Starting with the parrow-band waveform (2.18), (and remem~
bering the comments after (2.21})), let us write this waveform in en-
velope and phase form:

u(t) = Bo(t,yi)cos u‘I’(t,‘)}JQ_,). (3.1)

where specifically it is now found that

QR(x,fo)QI(x.fo| )

Bo(t.xlg} = T Aj(t—x-elgs);
[t-x| € T : signal "on';
8 > (3.2)
= 0, |t-r] dTB: signal "off"
it,)1l6) = w (t-X-€) - i’l(t-k-fl,_e_s) - ofd) - epid) )

and pg =1+ f, with 8 a sum of doppler velocities, cf. {(2.9), and

AOI’ cf. (2.10), the real envelope of the emitted signal. The beam

patterns %, % are generally complex, e.g., ﬂR = |%|e-wR etc.;
- ] = _l\ f

and, in more detail QR(}_,fO) QR(r-lR o/c, fo), etc,, cf. (2.18), and

(2.9) for ‘]:.R.

the receiver's time scale) the instant at which the (typical jth)

The quantity € is an epoch, representing (vis-a-vis

source emits: € is a random variable over the ensemble of possible
source configurations, as may be the carrier frequency fo, and any
other parameters of these deterministic signal emissions, repre-
sented by 6, in(3.1). The source emissions are individually '‘on"
only a finite time (Ts)’ i.e., have only a finite duration, character-
istic for example of automobile ernissions, messages, etc., and
generally for the "intelligent'" noise considered here.

The characteristic function (2. 2) can now be written

compactly as

F(if, )l = exp [AH(E, 01, (3.3)
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where

Hl(iﬁ.t) - J;\%—M' £ iﬁBo(tzz‘J.e.lCosu‘V(t»AJ,g) ->'9.:::’ " signal"‘d& (3.42)
_ éiﬁBOCOsuV_DE, YN (3. 4b)

The averages < >E, u,gsig N are

C O oele . [oemuwe, dwo) 1de. .. a, (3.5)

where the geometric probability density wi(}) is

w5 p()/A; (3.5a)

and

S
L]

on(,yg}, (>0). (3. 5b)

The quantity A is called the Impulsive Index and is defined

at the appropriate point in the receiver: here at the output of the
combination aperture-RF -IF stages. Specifically, A canbe shown

to be equal to v :I-:s lef. Middleton, 1973c), where Vv

T o1 T is the average
rate of ''signal" generation, and T_ is the mean duration of a typical
interfering ''signal''. The Impulsive Index measures the amount

of temporal overlap among the waveforms of the interfering sources.
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When the spectral width of the receiver is greater than that of

the generic interfering signal, then the overlap is the same as that

in the receiver. However, for spectrally narrow receivers the smoothing
action of the aperture-RF-IF stages apreads the input signals in time

and thus increases the amount of temporal overlap vis-a-vis that of the
input. The amount of temporal overlap (2s measured by A) is a critical
parameter in determining the character of the p.d.f.'s and p.d.'s

of X(t). Very large values of A imply a nign density of overlapping
waveforms at any given instant, and, as noted before (asymptotically)
normal statistics for X, For small A (<0 (100)), on the other hand, there
is comparatively little overlapping,so that the composite contributions

of only a few sources are significant at the given instant, leading to a
highly "impulsive' or discretized character for the resultant waveform,
now dominated by the basic (filtered) waveiorm, U.

In this Report we shall confine our attention to those impor-
tant cases where the bandwidths of the interfering signals are comparable
to or less than that of the composite aperture-RF-IF stages of the
receiver. This is the usual situation when the interference consists of
other man-made communications of comparable spectral widti in a
multi-link environment. Tnen the maximum signal duration, TS,

is effectively finite, allowing us to write A<Jo - l>E as A<Jo> z -A:

thus, in this case (1)E is unity [cf, Middleton, 1973c]. On the other
hand, with highly impulsive interference, such as automobile ignition,
or atmospheric noise, where the receiver is now shock-excited and thus
generates waveforms which are simply the (temporal) response of the

receivers weighting functions, hARI' these (exponentially decaying)
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waveforms are essentially infinite in duration, e.g., Ts-'ﬁ (with,

of course, TB < ® ). Then it is easy to show that <1>?' _ is infinite:

there are, as expected no ''gaps in time', although the impulsive index

A (= VT_'i‘_s) remains finite. The analytic development now requires that

we consider A((,.T0 - 1)}, o as a whole, cf. Middleton (1973c). [We

shall consider these cases in Middleton (1973c) and subsequent reports. |
The central technical problem in these nongaussian cases

is to reduce F, to a form which can yield analytically manageable

1

probability densities, e.g., W We begin with the average with

1"
respect to emission epoch €&, and write (cf. remarks above)

it Bgcosu P
Qe 2 r; € im<Jm(gBo) cos my \I/((€)>€ (3. 6a)

(B, , (3. 6b)

since € is assurmed uniformly distributed over a typical carrier cycle
_1 - - Iy ~ . .
(~f° ) and Bo is any slowly varying function of € vis-i-vis

cos muwo(t-l—a. Thus, (3.42,b) become

H(ig:t) = <Jo(gBo[t,x| 6)) -1>A (3.7)
&, 8 . ,Ix,
Bl aas
which for these small dopplers [v £O(1000 mph); .~ €= % 4 0(10-6),

with ¢ =3-1 08 m/sec] is essentially an exact result.

Our next step requires further physical insight and some
ingenuity.

We begin by observing that a canonical reduction
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of the characteristic function (c.f.) is effected by the observation

that in accordance with the statistical pnature of "impulsive"

noise (small values of A), the "tails" (i.e., |X|—w) of the p.d.f. W (X)
fall off less rapidly than is the case for gaussian noise. This means that
for large amplitudes the behavior of the c.f. in the finite (non-zero)
neighborhood of £ = 0 is critical: a development of the c.f{.,

Fl' with a more rapid fall-off near £ =0 is required.* Conversely,

for small amplitudes (|X|——O). or equivalently, large lgl (—=), we

see that Jo-0. and that consequently, Fl—-—exp( -A). The corresponding
Fourier transform gives WI(X)—-e_Ab(X-O). This is the expected phe-
nomenon of ''gaps-in-time', typical of this class of interference:

a finite, non-zero probability of zero amplitudes,

<JO(BOE )>:

2
ey = 1-B A et vl e

At this point we are tempted to use the direct expansion of

and so obtain

(3.9}

2/ 2
-AL B )/4 4/ 4
exp EAAQ(BEDT = < { Ba2 } .

14+
2421y

This, however, is the well-known Edgeworth expansion, asymptotically
appropriate as the Impulgive Index A—w, yielding the expected normal
statistics for (very) large A, and is certainly not valid for small A

(< 100, say). Note, too, the now complete absence of the zero ampli-
tude probability, e_A: there are no ''gaps-in'time'' when A is large,
since the number of overlapping waveforms is now great enough to
insure that all gaps of finite (non-zero) duration are nonexistent, i.e.,

have zero probability.

*Equivalently, a more rapid fall-off to zero of the exponent <J°(B°g)>
about ¢=0.
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Accordingly, we follow our observation above and seek a c.f{,
with a more rapid fall-off to zero in the finite neighborhood of £=0 than the
gauss c,f. (leading texm of (3.9)). The desired form of the exponential
term Jo(Boﬁ) yielding correct behavior of the p.d.f. for both large and
small values of the amplitude is found by approximating <Jo> with a

steepest-descent term, <JO> £ 1 -<B2>§2/4 L expl- <B2>§2/4] .
o
Thus, we write exactly

2, 2 2,.2
B/ (B )/4
<J0(5130)> = e <Jo(gBo)e >

With the help of (13.107B)of Middleton(1960), one can show that
2,2
B4 Z< >

=2 2'2

. (3.10)

T (B ))e
<O (o]

2
- (F -5 B /<B ))> (3.11)

where lFl is a confluent hypergeometric function, terminating after

{41 terms. It is convenient now to introduce a set of coefficients
_ 2 2 2
= ] - -0 -1-
C,, = 28 (A1) ((F (-43); BO/(BO>)) (3.12)

which contain the 2¢, 2£-2, . . ., moments of the filtered envelope Bo'

Specifically, we have

C, = KB:) - z(13§)2] /(Bf)')z (3.12a)
C6 = [<B2> - 9<Bi> <B:) + 12<Bz>3] /<Bz>3 (3.12b)
8 6 /o 2 4N/ 2\ 2 2\4q 204
Cq = [{(B Y -16{B_)®.) +72<B-XB) " - 12¢BY1/BY, ete.

(3.12c)
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Tbus, H(i&,t), (3.7) becomes, still exactly,

By gy 1Ry
e 1+ ; > >
=2 2 ()

-1,  (3.13)

H(ig,t) =

The coefficients CZJ’ involving the higher even moments of the
envelope B, can be progressively critical in determining the shape
of the distribution (of X) at the higher amplitudes, e.g., for those
rare! events characteristic o the excursions of these impulsive
waveforms much away from zero amplitude.

The fipal step in the reduction of the c.f. (3. 3) to the desired
manageable form, particularly for small values of A, is nowa

direct expansion of (3.3) with the help of (:3,13), viz:

Flif), = expl-A + AQ (B _£)]

-A Am -m€ 2<B°2>/4
= e —5 € 1+
me= o

22 2, 2

A<B§>2£4C4e § <Bo)/4 A<B2>35606e-€<30>/4

+ + +...
$ 2 (an?

(3.14)
The resulting p.d.f., and p.d., may then be evaluated term by term,

as we shall do in Section 5.
Finally, as remarked upon at the end of section 2,1, a more

general model of the man-made noise environment includes an (additive)

28



independent gaussian process (the imit of a high density poisson
process representing the contribution of the non-resolveable

background sources)., For this we have
i = i y ig,t , 3.15

where > 2
_ -0 /2 (3.15a)
Fl(lg. t)G = e

2 _ 52
cf. (2.6b), and O = XG,

appropriate specification of p~0g (A), cf.(2.3)., Combining (3.15),

(X_G = 0), cf. {2.24) or (2.28), with an

(3.15a), (3.14), we get the desired extension,

® 2
2 .2 2 4 2,2
iy AN A SoE /2 . ABDE C, -ELB /4
14 E0pg e m! © 3 e
m=0 4
23 6 2
aebe, e/
+ 3 5 e .. } , (3.16)
47(3!)
where
2 2 2
cs = m<Bo>/2 ton (3.17)

. 2 4 .
remembering that the moments <Bo>. <B0> are usually functions of
time (t), cf. comments following egq (3.5b). With (3,14) and (3.16)
we can proceed to the calculation of the respective first-order densities,

Wl. in Sec, 5 following.
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4. MOMENTS

The lower order moments are of particular interest. These
are most easily obtained by differentiating the characteristic functions
(3.14), (3.16), after expressing the exponents therein as a power
series in EZ. We start with the poisson case and the exact expression
(3.13) in (3.7), expanding the c.f. directly in a power series and

identifying the desired moments from the relation

Fl(ig,t)P = ZO __(-1) ng X(t)Zk , (4.1)

A

cf. eq (l1.31), Middleton {1960), where now all odd moments are seen

to vanish (since (3.13) is even in £). We have

F(if,t), = exp A [(Jo(Bog)) -]
AP facehy  £ad)
=expi 2 o 3Q— A 2+...$(4.2a)
4 27 31
4 2, 2\2
) 2 A(Bj} ¢ 4|A B > N ATB)
=l-ovl7=Z |ta |t *? 2
4 2+ 4
6 2\ /. 4 3, 2\3
¢ [A<B0>6! ) A<Bo><Bo>6l ) A*BI) 6!] ,
61 | 20 31y 4 4. 3y
(4. 2b)
Using the definition
2k
) A<B°> ‘s
QZk = 7— s k<1 ’ ( - )
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we obtain for (4. 2b)
2 O 6
£ £

50, 450, Q 3
=12 s 3 g 458028,
(Fpp = 1-7% + g +392) . b+ =—E T 15 ) +L.L (404)

from which and (4.1 }) we can write at once

— —7_ 30 5 _ 9% 45
x? = q, x*- — + S +79204+15‘°;‘ ete. (%:3)
. — 2k +1 . . . .
[Since X =0;(and X = 0), 5 is that physically important quantity, the

variance and mean intensity of the poisson process X(t). ]

A similar calculation for the mixed gauss-poisson process, cf,(3.15),

yields €2 5 4 g606
Fl(lg,t)P_l_G = exp [——Z-—(Q2+ CTG)+.€_2-Q;'23(3')2+“':| , (4,6 )
4 !
cf, (4, 2a ), so that writing
ar oz 0+ o, anal =¢2/Q (4.7)
2 = 27 Tgr =% 1, ‘

r
we see at once that (4,4 ), ( 4,5 ) apply here if we replace 92 by ), therein.
Observe with the aid of (3. 5a) in (4. 3) that as the poisson process becomes
more '"dense', i, e,, less impulsive and more gaussian (A ?=), we have
as expected _
3
(x%sa.) xT 4302, xPo sl (4.8 )
2 2 2
cf. eq (7.7) (Middleton, 1960), for the higher moments in terms of the

variance. In fact, and for all A, we can write (4,5) as

—

o )

2
X760 = L (x2)? A 32}

L6 ( 3<B >

G\ el

31

6
&) (49)
2 2\3 ’ :
AT

+ L
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which shows the explicit dependence on the impulsive index A, For the

mixed process (4. 9 ) is modified to

— 4 By
( )

X0, = b ( L+ 2A[<B§>+ Zcré/A]Z

><Jl><

)z=3

£ fre S o))

= . + 3
()?2 > ZA[<B2>+ 20—?3/A}2 6A2[@2>+ mf';/A]

N

(2. 10)

Finally, in the approximate situation where we retain only terms
2, 2 . .
o(§ 2') in the coefficient of exp(-§ <BO>/4) in {3.13), so that the approximate

c. I, is

2,2 ,
expine & Bolt _a), = explAlexp [-£°0,/281-10

s 3 7
exP‘_-gz ‘;2 +E4Q§ /23A- 560;/3!2. A+ --.:}, (4.11)

Flig b,

3, .2
we get in comparison with QZ -»Qz, 04 ~+ 2{2§/A‘ 9,6 - 602/A , so that

2 4 2 1 . 3 3 1
=0 - 2 =1 - 2 _— — 1, 4.12
X L X 302[1+ 1. x 1592[1+ + =3, ¢ )

1
For the mixed process, we have 924 QZ = Q-Zfo'é, eq (47 ), again, in

(4. 12), with (4. 11) now further modified to

2
Fl(iﬁ,t)P+G = exp[-gzo-élz + et /28 -Ad, (4.13)

which is the general approximation we shall use in some of the following
work, when it is reasonable to omit the '"correction terms' in C4, Cé, PN
etc., for amplitudes (| XI) not too large vis-3-vis «./6; . Finally, from

(3. 2) into (4. 3), we can write explicitly
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2k
po) | a

2k
AT (t-x-€ |8 9 dA  (4.14)
(417C>\)2k <° ~c/e -

3

1
0. = —
2

k 2k

for the higher-order moments, cf. (4.4 ) et seq.

It should be particularly emphasized that because of the explicit
physical foundations of our model, the parameters (A, I', QZ. C4. C6 .
themselves are explicitly and quantitatively described in terms of the
substantative physical quantities, e, g., source density, beam-patterns,
propagation conditions, emission waveforms, etc,, which specify the
noise phenomenon in question, [See egs (3,5a,b) with (2.22), (2.23), for A;
(4. 5) for % : (3.12) for C4, Cé, etc., with (4. 3), (4.14), ]
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5. FIRST-ORDER PROBABILITY DENSITIES AND DISTRIBUTIONS

We are now ready to apply (2.4) to (3.16) to achieve tractable
forms of the first-order probability density and distribution of the
instantaneous (received) amplitude X(t) of the man-made interference,
when a gaussian background, as well as the "impulsive'' component,

is included. Writing (cf. (3.172))

2 _ 2 2 _ z n.
<n = mBo/2+O'G = mQZ/A+OG —Qz(m/A+1").
L2 w252
I' = 0./Q, = X /X5 (5.1)

cf. (4.7), we obtain at once on inversion of (3.16)

40
~ oA (X/c__
W (Xt z : — ,

m
2 (4)
+ C O /m+l)
5
16AC_ (5.2)
(6)
_ C602 (X X/e m+1) N
2 7 SRR I
288 A%c
1 1/2 d‘ 2/2 5.2
where oz) = (2m)” o (™2 ), 220, (5.2a)

are the lg}- derivatives of the standardized normal probability density.

(See Appendix 1, Middleton (1960), A.l.1, and ref. 3 therein, for tabu-

(£)

lations of ¢~ ‘(x)]. The coefficients C,, C,, . . . , are given by

4’ 76
(3.12a, b), etc. The leading term in (5. 2) is explicitly
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2 2
05(0)(}(/(: ) . xv/Zcm
2 m - —_- (5'3)
Cm ‘\/27Tc
m
The distribution of X, (2.5), is now explicitly
g ; ®
_ _ -AZ m ¢ 1+ @(X/c J2)
DX, ), f WX, ) dX = e A { m
m=0 m! 2
-0
2
c,N
4 3
b 22 4 N(x/e )
16ACm+l
3
C.0O
6—22—6 o (xfe_ ) H e . } . (5.4)
288 A ¢

m+l

Here @(z) is the familiar error integral,

2 2
- 2 -t (5. 4a)
® (2 = ﬁj; e 4t

(Middleton {19607, Appendix A, l.1).

Sometimes it is more convenient to work with the ('false-<-larm)

probability that X will exceed some threshold XO, €.B.»

t) o, (5. 4b)

PX2X) o' 'P+G

= -D
= T o'P+G 1 1(X

which is at once from (5. 4)
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P(X2X doia =f WX t)p 54X

O
_ A Y, A” - @(X fe/2 ] (5.5)
©  m=0 m! )
C A C, A
4 3 6 5
- > ot )-(xo/cm) + 3 ot )(Xo/cm) RN

16{m+1 + AT") 288(m+l + A T)

For computational purposes, and for discussions generally, we

consider the standardized variable

5 = x/«/o2 + cyé = X/A/Qz(l + ), (5. 6)

with the jacobian |dX/dz| = A/Qz(l +I"), and we now define

2 m+AT"

= .2 o=
o = cm/ﬂz(l + ") AT (5.7)
Applying these to (5.2), (5.4), and (5.5), we get directly
-A 0
Wiz tlpg @ Z: AT i 2! )(Z/Gm)
m=0 m! (s 4
m (5.8)
(4) (6)
C,9 (z/am) Co (z/am)
+ 5 > - = 2 3 + .. »
léa™ A(14IM) 288a A T(1+IM)
. m m
with
2 _ 2 nw . m+l+ AT!
a_ =0+ 1/A(14T) = ALFTY (5.8a)

for the probability density.
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For the distributions we have

> m 1+ @(Z/Gmﬁ)

_ -A A
Dz tlpig T z mt

2
m=0 (5.9)
3
. C, ,¢( )(z/am) ) C . ¢(5)(z/am) ,
2% Aq+Tn? 288 a® A’ ’
m m

For P(z > zo), 2 =z Xo/’\/QZ(lﬂ'") , we find that (5.5)

becomes

m ; 1- ®(zo/°m“/2—)

@

o A E' A

P(z ZZo)P+G © m!
m=0

2 (5.10)
(3) (5)
Cy 8 n/2g)  Ce ? a)
16 at A(1+1"')2 288 a.6 A2(1+1'")3
m m

Observe that as | zl —~ @, each term of Wl(z’t)P+G vanishes, as expected,

and {with zo—ﬂn) the leading terms of Dl' P are respectively 1 and O,

as required. Furthermore, each of the 'correction terms" in these

asymptotic expansions vanishes individually,

An important special case arises when the gaussian background

vanishes, e.g., T'" =0, Now, from (5.1) and (5.7) we have

o 2 2
(Tt = 0): c. =Q,m/A; o = m/A (5.11)
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The results (5.2), (5.4), (5.5), and the corresponding standardized

forms (5.8) - (5.10) now become

2

- = AT [ A (0)
Wl(X.t)P‘*' e A [G(X-0)+ ; oY) { e ¢ (X«/A7m02)

3/2

+ 4 & ¢(4)()Q/A/(m+l)(zz)

16(m+l)5/2,/§2
3/2

C6A

288 (m+l)7/2ﬁ2

<15(6) (xJA/(m+l)QZ)+ ... }J (5.12)

and

. -A AT 11+ @0 x/a/2m05]
mgsi = [ oo+ AT 10 B

(3)

C4A¢ (xJA/(m+1)szz)

+
16(m+1)2

C A
- ._6____3 ¢(5)(xA/A/(m+1)92) +. . {] _ (5.13)

288(m+1)

The probability of exceeding the threshold Xo is now

o« —

m
- A 1 - (:)D( JA/2mQ, )
p(xzxwe“[[a(xw)ﬂui: -1 5 2=
o - m. 2
m=1
o

C. A 3 C6A (5
;2 ¢( b(o-./A/mQ.Z) + 3 ® zxodA/mQ-Z) +. ..
16(m+1) 288 (m+l)

(5.14)
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cf. (5.5). Similarly, we get for the standardized cases
3/2 . (4),

2
-A m -2"A/2m AT TCL0 iz )
w{z,t > e 6(z=-0) + A__ [e 4 Ym+1
1120t 1 ; m | Zam7A T » (m+l)5/2
3/2
(Se? ¢(6)(ZZ)+...]} (5.15)
288(m+1) "/ 2 m+l
and ©
A m T
_ -A AT T1+®) [2/A/m]
Dl(z,t)P e fﬁ(z.-O)dz. +;l - [ >
AC4¢(3)[A/A/m+1] AC6¢( 5)[ZJA/m+1]
+ > - 3 +. . ] (5.16)
16 (m+1) 288 (m+1)

with the probability of exceeding the threshold 2.t

Al AT 1 -BftvA/m]
Plz 22 ), e 6(z-0)dz + ém—-. [1 [;, frm]
z, m=1
ac oY [2) ac, sk /—A )
¢ /) _mtl 6 ey m+l 5 17
- 2 + 3 + ... (5.17)
16 (mi+1) 288 (m+1) .

With A — @ the correction terms drop out, as can be seen
by returning to the c.f. (3.9) and developing the usual Edgeworth series,
which yields asymptotically the expected normal forms, corresponding
physically to the resulting indefinitely large number of overlapping,
independent events (i.e., source emissions), Finally, we remark,
in passing, that with non-vanishing mean values, including a possible
desired signal, we simply replace X by X-X-S, with corresponding
modifications for 2z, cf., (5. 6).

Figures (5.1) - (5. 6) show some typical results for various
selected values of the parameters (A, I"), and include modifications
necessitated by the correction terms .(C4, Cé)' The general behavior

is as expected: for T'' = 0 (no gaussian background) there are
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Figure 5.1. Normalized probability density for I''=0 (no gauss
background component) Leq (5.15), with correction
terms omitted]; (A = 10" %, 1071, 10°, 10).

40 { e



| 1
| —
i _
© 22 —
w(z)-e'AZ A 6 1202,
(Al ]
1.0 mo " A2mod,
o . T4y .
T L Y| ]
|
10 = =
= .
4— ]
—~ [C I'=0.001 —
N
\: Hl— ]
F | .
10" f— =
T —
i _
-’

g Az1.0 —
i SAUSSIAN =
i LINIT A20.2 =
| \A=l0 Az0.0 |

i | | | |
0 2 4 3 8 0 2 i

Figure 5, 2.

z

Normalized probability density for I"=10-3 (a small

gaussian component {eq
terms omitted]; (A = 10~
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5.8) with correction
, 2-107%, 10°, 10).
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Figure 5.3. Probability of exceeding a threshold z , for r'=10-3
(2 small gaussian background component) [eq (5.10),
with correction terms omitted] (A = 102, 107, 10°, 10).
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Same as Fig. {5.1), including now the correction terms
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"gaps in time', where there is a non-zero probability [exp (-A)] of

zero amplitudes (A < =) cf., (5.12), (5.15). This occurs here because the
''transient" sources comprising the received waveform, X, do not always
overlap in time, particularly if this number is small (small Impulsive
Index), As A gets larger, the gaps tend to disappear, until with

(A—w=) we obtain an effectively gaussian interference,

Of particular importance is the physically anticipated slower
fall-off with amplitude (a5 |X|-—~w) vis-h-vis the limiting normal distri-
bution in these situations, which occurs for both the purely '"impulsive"
(7" =0) and mixed processes (U''>0). When there is a gaussian background
in addition (I"'> 0), noticeable distortion of these curves occurs, as the
figures indicate, in the regions (dependent on A) where one passes
from a gaussianly-dominated background (small amplitudes, i.e.,
| X ' « 0), to where the "impulsive'" or more determinant character of
the noise process takes over, toward the larger amplitudes ( IXI — @),
out on the 'tails' of the distributions and probability densities, which are
more and more dominated by the typical waveforms of the impulsive
(poisson) component. This is precisely what we expect physically: note

from (3.12) that the coefficients C4, C,, etc., depend on progressively

higher-order (even) moments of the ge6neric envelope, BO » of the
typical impulsive source. Thus, C4 is a function of <Bj> as well as
<B§>; C6 depends on<B:> and <B:>, as well as <B§>. and so on, We
expect that such measures of signal waveform should become increasingly
important as we go to regions of rarer and rarer "events", i.e., large
amplitudes, where the source waveform is the essential determinant of
instantaneous amplitude. Accordingly, for certain ranges of values of

X (and A, T') the first correction term (C4) will have an observable

influence. At still larger values of X, the (Cé) term next becomes
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dominating, and so on. These effects are especially evident for small
A (<1.0), and I"'(<0.1), which represents the class of situations often
encountered in communication practice, where the man-made
(intelligent) interference, from comparatively few sources at any

given instant, dominates, and there is a very small gaussian back -
ground of unresolveable emission ""events''. The effects of progres-
sively including these correction terms is illustrated in the figures.

A systematic, quantitative study of these effects including the analytical

determination of C

4 Cé, etc., is reserved to a subsequent report

in this series,
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6. PRELIMINARY REMARKS ON PARAMETER MEASUREMENTS

In order to relate theory to experiment, and of perhaps even greater
importance, to guide experiment toward the quantitative establishment
of suitable models and quantative measures, we need to relate our
analytical results (sec. 5) to observation. An essential step in this
direction is the measuremeant of statistical model parameters,

’
A, QZ' T . and C4. C etc.

6‘
We shall consider only the case here of very weak gaussian back-

grounds (I'= 0), which appears practically to be a common situation in

the man-made noise environment, where also the impulsive index, A,

is 0(1) or much less, say 0(0,1 or 0, 01), From (4.12) we see that we

can estimate A jin a straight-forward way, from our estimates of

QZ (=X2 ), Thus., we have the estimate

n A
A 1 2 2 1
=z — =X; = 6.1
0, nz:xj (n‘\:xj 0) (6.1)
J=1 J
and also
/N n
4 1 . 4 (6. 2)
= X.
e

Accordingly, from (4.12), we have (theoretically)
Az[_x _1] ‘ (6.3)
so that our estimate of A is
A = [Zx;‘ /n)/a(zszln)2 - 1]-1 (>0), (" =0) (6.4)
) J

] 2 2
where the (=) indicates that T'' is treated as zero. Since <Bo> == QZ.

2\ .
cf. (4, 3), a reasonable estimate of <BO> is
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n
<Bz\= 2 1 v (6. 5)
(o 0% A n J J

with A obtained from (6. 4).
To get estimates of C4. C

5 etc.. (I' = 0), we need to rewrite
(3.12)

with the help of (4.' 9), (but not using (4.12): we must remember
that "' > 0 actually).

Thus, we use first the theoretical forms to get

<B2> - 292 ZX_2

~ (6. 62)
o A B A
4 _.22 4 —°
pty (X ) X s x e
) —22 A =3 "a - T A (6. 6b)
3X
6 16 6 4 2 =3
By =( X® _48x X% + 96X" AT (6. 6c)
o) . 5 /
Putting these into (3.12) gives finally (I'' = 0)
! o2
C, = 28(X°/3X" -1) -2 (6. 7a)
b 4 4
a2 2 ) 6X 1 X \ 7b
C, = A" | = —s "=z +12J—18A(_22 = 1) +12. (6.70)
X X 3X

2 .4
Now we replace XZ, X , X by the experimental estimates,

2k 2 ~

< = ZXAVn, in{(6.7)and A by A, (6.4). We thus obtain
expt ] J . A

experimental values C4, C6,

. . of the correction parameters C4,
C6’ etc., based on our model,
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C

Using these to estimate A, C etc., in our various

4 6
results (sec. 5) offers one form of comparison of theory with experiment.
Another, somewhat more refined approach, is to employ the parameters
as estimated above, to locate the neighborhood of values of A, C4. Cé'
(T'* = 0), etc., and then, by computation, find those that actually most
closely fit the data, We shall, however, reserve to a later report

these and other questions which arise in relating theory and experiment,
includipng such topics as ''goodness of fit!, ''best'' estimates, sampling

statistics, etc.
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7. CONCLUSIONS; NEXT STEPS

In the preceeding sections we have developed a basic first-order
mathematical model, including 2 gaussian background component, of
man-made interference, where the bandwidth of this interference is
comparable to or less than that of the receiver's input stages. Manage-
able analytical results, exact for the characteristic function and asymp-
totic for the desired probability densities, have been obtained. In
addition to analytical tractability (sec. 5) is the critical fact that the
parameters of the distribution are explicitly represented by the physical
quantities which underlie the noise phenomenon in question, e.g., geo-
metry, beam-patterns, propagation modes, doppler, source waveform,
density of souces, etc. (secs. 2-4). Moreover, our model for this
class of man-made noise is canonical, i.e., as long as the interference
appears narrow-band at the receiver's first-stages, the form of the
results is independent of the particular magnitudes of the physical
parameters involved., This feature is specially important, because it
allows us to apply the model to many practical situations, since
reception is usually a narrow-band process. For these various reasons,
we avoid the limitations of ad hoc distributions which are necessarily
tailored to fit local and limited data, and where there can be no
structural insight to, or derivation of, the postulated parameters.

Our model is also intended as a guide to experimental study of these
man-made interference phenomena,

Next steps, to be carried out in succeeding reports are:

I. A corresponding analytical model for the envelope and phase of
the received, narrow-band noise. This will include representative calcu-
lations, similar to those of figs. (5.1) - (5.6) here, and an initial comparison
with appropriate existing experimental data. An analytical study of the
“"correction'' parameters CZk(kz 2), which like the other parameters of the

model, are derivable from physical considerations, is also planned.
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II. A report devoted primarily to comparisons with experi-
ment and including possibly various model extensions, such as mixed
types of interfering sources. Experimental estimation of model

parameters will be a feature here.

OI. Later stages of the investigation will include the effects
of desired signals along with the interfering noise, higher-order
distributions, modifications and extension of the model to incorporate
multipath and scatter effects [Middleton (1972b)], '"goodness of fit'",
and other statistical data analysis techniques [ Middleton (1969)],
sampling statistics, etc., as well as a continuing relation to the
experimental environment. Our ultimate aim is to be able to predict,
and quantify, from appropriate and limmited measurement, at least
the first-order statistical characteristics of man-made noise environ-
ments and their relation to the various physical mechanisms producing the
the noise. With this we are technically empowered to describe and
regulate the noise fields, as well as to evaluate the performance of
communication systems embedded in such fields (sec. 1].

This is an extensive program, but one that appears mandatory,
in the large, if we are successfully to quantify, predict, and measure
these non-gaussian channels, which now rival in practical importance the
familiar gaussian channel of previous decades of study. Indeed, we may
say here, that predictive, tractable, verified analytical models of the
nongaussian channel present one of the major technical challanges of

this decade in Communication Theory.
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8.

GLOSSARY OF PRINCIPAL SYMBOLS

an expansion coefficient

the Impulsive Index

Sample value of A

Typical source envelope, in receiver
aperture - RF-1F

time -constant of external source

time constant of aperture-RF -IF stages
beam patterns

Source aperture

A normalized doppler speed
Envelope of interference in receiver

Even moments of received envelope

Characteristic function
c.f. variable

speed of propagation

'torrection parameters'‘of p.d.f., p.d. development

an expansion coefficient

p.d. (probability distribution)

Sam of dopplers (B)

receiver epoch (3.2)

carrier frequency
confluent hypergeometric function

lst-order characteristic function
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AF bandwidth of extermal source

A
AFA_RI bandwidth of aperture-RF-IF stages
5-[ } fourier transform
J'l{ 1 inverse fourier transform
G. G gauss
I ratio of gauss to impulsive noise powers

H. k_, h__,h weighting functions of linear filters

R "RI' "ARI

Hl( if, t) exponent of c. f.
L «'ivR"j‘\R unit vector
J. Jm(g, Bo) mth order Bessel function {1lst kind)
K. KX a covariance
L. 'y (A, 6,9 ); coordinates

source domain

M. pu 1 + doppler
N. 6-2 sample moment

Q'Z 2nd moment (P + G)
O. Ws W angular frequencies

'QZk moments distributions
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P(X>X )

(b(k)

probability distribution

probability density function

poisson .
as subscripts
poisson plus gauss

false alarm probability

k_tg derivative of error function

process density

covariance of ARI

surface and volume source densities
complex variable
mean intensity of gaussian noise

wave form, of sigpal or driving source

set of source parameters
path delay
signal duration

error function
basic waveform into or in receiver
domain occupied by a typical source

p.d.f. of sources

p-d.f. of received wave, X
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< XZkgxp, 62, A sample moments

X
& x2, %K
Y

Yy

received interfering wave

even moments of X

time-varying frequency response

bi-frequency function of source

normalized random variable
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STATISTICAL- PHYSICAL MODELS OF MAN-MADE
RADIO NOISE

Part I. First-Order Probability Models of the
Instantaneous Amplitude

David Middleton

Abstract

A gencral statistical-physical model of man-made radio noise
processes appearing in the inpat stages of a typical receiver is
described analytically. The first-order statistics of these random
processces arce developed in detail for narrow-band recepntion. These
include, principally, the first-order probability densities and proba-
bility distributions for a) a purely impulsive (poisson) process, and
b) an additive mixture of a gauss background noise and impulsive
sources. Particular attention is given to the basic waveforms of
the emissions, in the course of propagation, including such critical
geometric and kinematic factors as the beam patterns of source and
rcceiver, mutual location, doppler, far-ficld conditions, and the
physical density of the sources, which are aasumed independent and
poisson distributed in space over a domain A

Apart [rom specific analytic relations, the most important general
results are that these first-order distributions are analytically
tractable and canonical. They are not so complex as to be unusable
in communication theory applications; they incorporate in an explicit
way the controlling physical parameters and mechanisms which de-
termine the actual radiated and received processes; and finally, they
arc formally invariant of the particular source location and density,
waveform emission, propagation mode, etc., as long as the received
disturbance is narrow-band, at least as it is passed by the initial
stages of the typical receiver. The desired first-order distributions
are represented by an asymptotic development, with additional terms
dependent on the fourth and higher moments of the basic interf{crence
waveform, which in turn progressively affect the behavior at the
larger amplitudes.

This first report constitutes an initial step in a program to provide
workable analytical models of the general nongaussian channel
ubiquitous in practical communications applicalions. Specifically
treated here are the important classes of interference with bandwidths
comparable to {or less than) the effective aperture-RF -1F bandwidth
of the receiver, the common situation in the case of communication
interference.
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