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CALCULATION OF GEOSTATIONARY SATELLITE FOOTPRINTS FOR CERTAIN
IDEALIZED ANTENNAS

K. P. Spies and E. J. Haakinson*

This report describes methods for calculating, under certain
simplifying assumptions, footprints (contours of constant power density)
for idealized models of several common types of transmitting antennas
(circular aperture, elliptical aperture, rectangular aperture, and helical
beam antennas), and for antenna beams of specified but rather arbitrary
shape. The tr.ansmitter is mounted on a satellite at a prescribed location
in the geostationary orbit and has its main-lobe axis directed toward a given
aim point on the earth.

Formulas are first derived for calculating the intersection of the
earth with a ray emanating from a given geostationary satellite and having
a prescribed direction in space. For each idealized antenna type, pro­
cedures are next discussed for finding those directions in space where the
relative power density has a specified constant value; intersection formulas
are then applied to locate the corresponding footprint. Far-field patterns
are approximated for aperture antennas by evaluating Fourier transforms of
assumed aperture illumination distributions, and for the helix by assuming
it radiates in the axial mode. Owing to gross discrepancies between actual
and ideal side-lobe patterns, the analysis is confined to the main lobe of
idealized antenna models.

Key words: antenna patterns; footprints; geostationary satellite; power
densi ty contours

1. INTRODUCTION

1.1 Purpose

Transmitting antennas mounted on satellites and beaming signals toward the

earth may, depending on characteristics of the particular antenna, illuminate

virtually the entire visible earth with a nearly uniform power density**, or they

may concentrate most of their radiation on a rather limited area of the earth's

surface. In any event, it is often useful to describe the received fields of a

satellite antenna by means of contours of constant power density at the earth's

surface. Such contours, commonly called "earth footprints" or simply "footprints,"

are utilized by communication system designers and spectrum managers in maximizing

*The authors are with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce,
Boulder, Colorado 80303

**Everywhere in this report, the term "power density" implies a spatial density;
i.e., power/unit area (expressed in mks units as watts per square meter), and
should not be confused with power spectral density.



a satellite antenna's coverage of a particular geographic area, and in miQimizing

the effects of interference on other communication systems.

A desirable engineering aid in the design and development of a satellite

antenna system is the ability to plot, on appropriate maps of the earth's surface,

footprints corresponding to given levels of power density. To this end, a

computer program (FOOTPRINTS) has been written (Haakinson et al., 1977) which

automatically calculates and plots footprints for idealized models of several

common types of transmitting antennas (circular aperture antennas, elliptical

aperture antennas, rectangular aperture antennas, and helical beam antennas) and

for antenna beams of specified but rather arbitrary shape, when the transmitter

is mounted on a satellite at a prescribed location in the geostationary orbit and

has its main-lobe axis directed toward a given point (the "aim point") on the

earth. The purpose of this report is to describe computational procedures used

by the FOOTPRINTS program in determining contours of constant power density.

1.2 Approximations and Limitations

In applications for which these calculations are intended, it is not necessary

to locate footprints with great precision. To facilitate our task, we make two

simplifying assumptions. First, we neglect all effects resulting from the inter­

action of antenna radiation with the earth and its atmosphere (e.g., we ignore

diffraction, refraction, scattering, and absorption). Second, for points on the

illuminated earth's surface, we neglect the small variations of received power

density that are due to slightly differing distances from the transmitter.

Under these assumptions, we 'then approximate the footprint corresponding to

a prescribed relative power density as follows: Suppose the antenna's three­

dimensional relative power density pattern to have its origin at the satellite and

be oriented with its main-lobe axis directed toward the aim point. Now consider

the set of points where the power pattern assumes the prescribed value; these

points will, in general, form one or several simple closed curves, which may be

regarded as the intersection of the power pattern with a sphere centered at the

satellite and h?ving a radius equal to the given power density. A straight line,

drawn from the satellite (i.e., the pattern origin) through any such point,

corresponds to a direction in space for which the antenna's relative power density

has the prescribed value. The set of all such lines forms, in general, one nappe

of a cone whose vertex is at the satellite, and whose intersection with the

illuminated earth's surface constitutes the desired footprint. This situation is

2



illustrated in Figure 1-1, where we indicate a footprint for a geostationary

satellite antenna located at 8 with its main-lobe axis directed toward the aim

point A on the earth.

The task of determining footprints is further simplified by assuming the earth

to be a sphere, rather than any of the various spheroids commonly used in geodesy.

Once the shape of the cone (corresponding to a constant relative power density) is

specified, the footprint calculations then reduce to finding the intersection of

a sphere and a cone.

For the idealized antennas considered in this report, we restrict our attention

to main-lobe patterms, which simulate those of actual antennas sufficiently well

(from a fraction of a decibel at peaks to within a few decibels near nulls) to be

of value in footprint applications. However, these idealized models generally

fail to provide a useful approximation to side-lobe patterns of actual antennas,

since the latter are strongly dependent upon characteristics of the particular

antenna (e.g., primary illumination, spill-over loss, aperture blocking) and upon

the geometry of nearby devices on the satellite.

Finally, we mention certain approximations implicit in our assumption that

the satellite is in a geostationary orbit about a spherical earth--viz., that the

earth rotates at a uniform rate on a fixed axis, that the earth's density dis­

tribution is spherically symmetric, and that the effects of atmospheric drag are

ignored~ as are graviatational perturbations due to the moon and sun. In such an

idealized situation, it then follows that the geostationary satellite is located

in the earth's equatorial plane and its distance s from the earth's center is

given by

s = 6.62 a (1-1)

-11
where G = 6.670 x 10 is the universal gravitation constant (in mks units),

24
M = 5.976 x 10 kg is the earth's mass, P = 86,164 sec is the earth's rotation

period, and a = 6371 km is the earth's mean radius. Thus, the location of an ideal

geostationary satellite is completely determined by specifying its longitude

(It in Fig. 1-1), or in more precise terms, by specifying the (geographic) longitude
s

of the so-called "sub-satellite point." As indicated in Figure 1-1, the latter is

the point (8') on the earth's surface that is directly below the satellite.

3



Lstationary
Satellite Antenna

~
Ma i n Lobe of Relative
Power Pattern .

~

,cone of Constant RelativeJ Power Density

~ r-Main-Lobe Axis

'? \ Aim Point

----~'..-- Footprint

Sub-Satell ite
PointEquator

-----Prime Meridian
North Pole

~

Figure 1-1. Scheme for approximating geostationary satellite antenna footprints.



2 • FOOTPRINTS FOR AN ARBITRARY ANTENNA BEAM

2.1 Introduction

In this section, we derive formulas for calculating the latitude and longitude

of the intersection of a straight line, emanating from a given geostationary

satellite and having a prescribed direction in space, with a spherical earth. By

relating an appropriate set of such lines to the main-lobe axis of an antenna

on the satellite, our formulas can be used to generate footprints when the cone

corresponding to a particular constant relative power density has essentially any

specified shape. This capability includes, for example, the generation of rather

complex footprints arising from the side lobes of an actual antenna. Our approach

is an adaptation and modest extension of that used by Ott (1975) to calculate foot-

prints for antenna beams having elliptical cross-sections.

2.2 Coordinate Geometry

We assume the earth to be a sphere with unit radius centered at the origin

a of the right-handed system of rectangular coordin~tes (x,y,z) indicated in

Figure 2-1. Note that the earth's polar axis corresponds to the z-axis of the

rectangular coordinate system, with the north geographical pole being located at

(0,0,1). The earth's equatorial plane then corresponds to the (x,y)-plane, and the

intersection of the prime (Greenwich) meridian and the equator is located at (1,0,0).

Note also, since the earth is assumed to have a radius of unity, that all distances

are expressed in earth radii.

Let the geostationary satellite, located at the fixed point S in the (x,y)­

plane, be a distance s = 6.62 from the origin 0 and have a longitude A. If s
s

denotes the vector from a to S, then in terms of the unit vectors e , e ,e along
--x -y -z

the positive x-, y-, and z-axes, respectively, we have

s = s e + s e (2-1)
x -x y-y

where

s s cos A and s = s sin A (2-2)
x s Y s

5
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Let the aim point A have latitude ¢A and longitude AA; if a denotes the (unit)

vector from 0 to A, then

where

a a e + a e + a e
x-x y-y z-z

(2-3)

a
z

sin rh\f-'A (2-4)

A second right-handed system OL rectangular coordinates (~,n,s) has its origin

at the satellite 5, and is oriented as follows (see Fig. 2-1):

i) the positive ~-axis is directed from 5 toward the aim point A (i.e., it

lies along the main-lobe axis of the antenna);

ii) the n-axis lies in the plane that is normal to the equator and contains

the ~-axis, positive values of n being located in the z>O half-space; and

iii) the s-axis completes the right-handed system so that e = ee x e , where,
~ -s --n

as usual, we use ee' e , e to denote unit vectors along the positive ~-,
-s -n -s

n-, and s-axes, respectively. Note that the s-axis lies in the equatorial

plane, since it is normal to the {~,n)-plane at 5 and the {~,n)-plane is

normal to the equator.

2.3 Calculation of Intersection Points

The direction in space of a line from 5 (i.e., of a typical element of the cone

corresponding to some constant relative power density) is now determined by specifying

its orientation with respect to the (~,n,s) coordinate system. In particular, we

specify the angles a and w, where (as indicated in Figure 2-2):

i) a is measured from the positive ~-axis to the line (i.e., from the

antenna's main-lobe axis to the cone element), and

ii) w is measured from the positive n-axis to the projection of the line in

the (n,s)-plane, the positive sense of W being clockwise for an

observer looking in the direction of increasing~. Note that a and w

correspond to the colatitude and longitude, respectively, in a spherical

coordinate system centered at 5 and having the ~-axis as its polar axis.

Now suppose that the line from 5, characterized by the angles a and w, inter­

sects the earth at the point F (see Fig. 2-1). We wish to calculate the latitude

7



To Aim Point A

<.

To Intersection Point F
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¥from S

S (Satellite)

Figure 2-2. Geometry for specifying direction of line from satellite.

¢F and longitude A
F

of F in terms of the satellite distance s and longitude AS'

the aim point coordinates ¢A and AA. and the angles a and w. Let

f = f e + f e + f ex-x y-y z-z

be the (unit) vector from 0 to F, and

t = t e + t e + t ex-x y-y z-z

be the vector from S to F, then note that

f = s + t

(2-5)

(2-6)

(2-7)

Now, the direction of t is known; from Figure 2-2, a unit vector ~ in the direction

of t can be written as

~ = (cos a) e~ + (sin a cos w) e + (sin a sin w) e
-~ ~ ~ ~

(2-8)

If we let t denote the (as yet unknown) magnitude of t, so that t = t ~t' then we

can also write

(t It) e + (t It) e + (t It) ex -x y --y z -z

8
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The components tit, tit, t It of ~ can be found by replacing each of the unit. x y Z-L.

vectors ee' e ,e in (2-8) by the appropriate linear combination of the unit
-s, -n -r;

vectors e , e , e , then equating the resulting expression for e to the right side
-x 1 -z ~

of (2-9).

We start with ~~; if d
l

denotes the (known) distance from S to A, then the

vector from S to A can be written as d
l
~~. From the relation

a (2-10)

we see that

1 [(a - s ) e + (a
d

l
x x -x y

(2-11)

so

+ (sin \) ~] (2-12)

If AI is the projection of A onto the (x,y)-plane, and d
2

is the distance from

S to. AI, then

by applying the cosine law to the triangle AIDS, we obtain

d
2

= [s2 + cos 2 ~ - 2s cos A cos(AA - A )Jl/ 2
A ·A s

so

(2-13)

(2-14)

(2-15)

Next consider e , which, because it lies in a plane that is normal to the equator
11

and contains the ~-axis, may be expressed as a linear combination of ~~ and~. The

relevant geometry is shown in Figure 2-3, and we see that

-(tan y) ~~ + (sec y) e
-z

9
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(x.yl-plone

Figure 2-3.

s

Relation between the unit vectors e , e , and e .
-t: --.z --n

where (from Fig. 2-1) Y is the angle between ~t: and the (x,y)-plane. If were­

place ~t: in (2-16) by its representation in (2-12), we obtain

e-n l (- sin ~A) (cos ~A cos AA - s cos A )
s

e
---:X

Finally, e can be obtained from the relation-s

e = e x e
-l; -t: -n

when (2-16) is substituted into (2-18), we see that

(2-17)

(2-18 )

e = (d1)
-l; d

2
(2-19)

which, on replacing ~ by its representation (2-12), becomes

(2-20)

Note that e lies in the (x,y)-plane, as it should.
-l;

When (2-12), (2-17), and (2-20) are substituted into (2-8), and the result

is equated to the right-side of (2-9), we obtain

10



and

t
1x

[(COS ¢A A-A A- ) (d
2

cos a - sin <PA
sin a cos co)-- cos - s cos

t d
ld2

s

+ (cos <PA
sin A- - s sin A- ) (d

l
sin a sin w) ] (2-2la)A s

t
1.1= [(cos epA sin A- - s sin A- s) (d 2 cos a - sin <PA

sin a cos w)t d
ld2 A

- (cos <p. cos A- - s cos A- s) (d
l sin a sin w)] (2-2lb)

A A

t
z

-=
t

1
d

l
(sin ¢A cos a + d 2 sin a cos w) (2-2lc)

To find the magnitude t of ~, we note that (since f is a unit vector)

f • f = 1 = (~+~) • (s + ~)

which leads to the quadratic equation

(2-22)

where

o (2-23)

and

2 (~ • .!) + s
y

(2-24a)

a = s2 - 1
2

When (2-2), (2-2la), and (2-2lb) are substituted into (2-24a), we find that

(2-24b)

s) (d
2

cos a - sin <P
A

sin a cos w)

(2-24c)

There is a rather obvious connection between the discriminant at - 4a2 of the

quadratic equation (2-23) and the satellite-lin~-earthconfiguration. First,

if ai - 4a
2

< 0, then (2-23) has no real root, and the specified line from the

satellite does not inter~ect the earth at all. When ai - 4a2 > 0, (2-23) has two

real roots given by

11



1
2

and (2- 25)

corresponding to the distances from S to the ~wo points at which the line

(characterized by the angles a, w) intersects the spherical earth. Since t denotes

the magnitude of a vector, we would expect that t
l

> 0 and t
2

> O. If we note

that

a 1 := 2 (~ • !.)I t := 2s cos (1T - ljJ ) - 2s cos ljJ (2-26)

where TI - ljJ is the angle between ~ and!, and ljJ is the angle aSF in Figure 2-2, then

for any point F on the earth (and any s > 1), we have 0 ~ ljJ < 1T/2, so cos ljJ > 0

and a
l

< O. It then follows (since lall > (ai - 4a
2)1/2

when ai - 4a
2

> 0) that

t
l

> 0 andt
2

> 0, as expected. We are, of course, interested only in the inter­

section point nearer S; i.e., the one illuminated by the satellite antenna, so we

take the length of t to be the smaller of the two solutions t
l

and t
2,

thus

obtaining

and

1 2 1/2
t := - r -a - (a - 4a) ]

2 L 1 1 2

We can now write the latitude ~F and longitude A
F

of F as

-1
tan (f/f)

y x

(2- 27)

(2-28)

(2-29)

where, from (2-7),

and

f
x

f
y

f
z

s + (t It) tx x

s + (t It) t
Y Y

(t It) tz

(2-30a)

(2-30b)

(2-30c)

with sand s being ,given by (2-2), t by (2-27), and tit, t It, and t It by (2-21a),
x y x y z

(2-2lb), and (2-2lc), respectively. The proper choice of inverse tangent in (2-29)

is that which makes

12



A
F

= Phase(f + if )
x y

(2-31)

where -TI < A < TI. In FORTRAN computer programs, AF may be evaluated simply byF-
calling the subroutine ATAN2 with arguments f and f (in that order).

y x

2.4 Limb Line Calculations

There remains the case where a
1

2 - 4a
2

= 0 and the quadratic equation (2-23)

has one (double) real root t = -al/2, corresponding to the situation in which the

line from the satellite is tangent to the earth. In this event, a
l

= - 2a
2
1/2,

so the distance t from the satellite S to the point F of tangency is just

t (2-32)

The locus of all such tangent_points, i.e., those points on earth where the satellite

is on the (idealized) observer horizon, is called the limb line, and may also be of

interest.

One could, for an arbitrary given w in the interval (0, 2TI), use (2-24c) to

find the value of a for which a
1

2 - 4(s2 - I) = 0, then (setting t = (S2-1) 1/2)

compute the latitude and longitude of the corresponding limb line point using

(2-28) and (2-29). However, this is the hard way, for a then depends on wand one

must solve (2-24c) for a for each point. It is much easier to note that the limb

line is a (small) circle where the spherical earth is tangent to a right circular

cone whose vertex is at S and whose axis lies along the line os. All points on the

limb line are, as we have see, a distance (s2 - 1)1/2 from Si furthermore, the

location of the limb line is a function only of the satellite position S, being

independent of the aim point A. For convenience, we thus let the aim point coincide

with the sub-satellite point Sl i i.e., we take ¢A 0 and AA = As. Under these

conditions, it follows from (2-14) and (2-15) that

d = d = s - 11 2

as they should. Limb line points then correspond to a single value a

values of Wi from Figure 2-4, we see that

(2-33)

a
L

for all

sin = lisaL
and cos a L

13
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F

s

Figure 2-4. Geometry for limb line calculations.

For any prescribed w in the interval (0, 2n), the latitude ¢F and longitude ~F of

the corresponding limb line point F are given (as before) by (2-28) and (2-29), but

now, on using (2-2), (2-32), (2-33), and (2-34), the expressions for f, f , and
x y

f become (after some simplification)
z

f
1 (s2 - 1)1/2

cos x sin x sin w
x s s s s

f
1

sin ~
(s2 - 1)1/2

~+ cos sin w
y s s s s

(s2 - 1)1/2
f t cos w

z z s

(2- 35a)

(2-35b)

(2-35c)

Finally, we derive a simple criterion for deciding whether or not a given

point A, whose latitude ¢A and longitude ~A are prescribed, is illuminated by an

antenna located on a specified geostationary satellite S. To do this, we regard

the given point Aas the aim point, then consider the special case where a = 0;

i.e., where F coincides with A. From (2-24c), it follows that

which, after some algebra, leads to

(2-36)

a 2 - 4a
1 2

~ [s cos ~ COS(A - A ) - 1J2
d

l
A A s

(2-37)

When (2-37) vanishes, the point A is located on the limb line, this condition being

equivalent to

14



From Figure 2-1, one can deduce that

A )
s

A )
s

l/s

cos T

(2-38)

(2-39)

where T is the angle AOS; it then follows that the condition for A to be illuminated

by the antenna at S is that T ~ TL , T
L

being the value of T when A is on the limb

line. From Figure 2-4, we note that T = n/2 - a and cos T
L

= sin a = l/s. Since
L L L

o < T < T < n/2 for illuminated points, our condition that A be illuminated is
- L

equivalent to

cos ¢ COS(A - A ) > l/s
A A s- (2-40)

The negation of the relation (2-40) implies, of course, that the point A is not

visible from the satellite.

As a check on our calculations, note that when a = 0, it follows from (2-37)

and (2-40) that for any illuminated aim point A,

on substituting (2-36) and (2-41) in (2-37), we find (as we should) that

(2-41)

t
1

[s2 + 1 - 2s cos ¢ COS(A ~ A )]
d

l
A A s

2.5 Footprint Calculations

(2-42)

The usual end result in a footprint generat~on procedure for a particular

antenna is a map on which are portrayed the footprints corresponding to selected

constant values of power density. In rather broad terms, one obtains this foot­

print map by (1) calculating, for each footprint, the locations (i.e., the geo­

graphical latitudes and longitudes) of a finite number of representative contour

points, then (2) projecting these points onto the desired map, and (3) renresenting

the footprints by a curve drawn through the projected contour points. In subsequent

sections of this report, step (1) above will be considered in some detail for each

of the idealized antenna models. Here, our discussion of the sUbject will concern

certain features applicable to geostationary satellite antennas in general.

15



Within the geometric framework that we have established for describing earth/

satell~te/antenna configurations, let P(a,w) denote the far-field power density pattern

(normalized to a maximum of unity) of a given antenna ·located at S and having its

main-beam axis directed toward a specific aim point A. The footprint corresponding
A

to a constant power density P is then the intersection of the earth with a cone
o

consisting of all straight lines from S whose directions are characterized by the

angles (a,w) satisfying the relation

P(a,w)
A

P
o

(2-43)

Thus, when generating footprints for a specific antenna, one first determines (a,w)­

values for each of a finite number of representative cone elements corresponding to
A

a prescribed Po; that is, one finds a suitable set of angle pairs (al,w
l),

... ,

(aN,w
N)

satisfying (2-43). In the usual approach to Obtaining these angle pairs,

one first specifies a suitable sequence WI' ... , wN of w-values, then for each w
j

in the sequence, finds by some appropriate means the corresponding a. that satisfies
J

(2-43). One next applies (2-28), (2-29), and related formulas to calculate the

geographic coordinates of the earth's intersection with each representative cone

element.

The choice of w-values in any particular situation depends on a variety of

factors, in particular the character of the footprint itself. Suppose, as a first

example, that the footprint consists of a simple closed curve about the main-lobe

axis such that, as a point traverses the curve in one direction, the associated

w-values vary in a monotone fashion. This is equivalent to asserting, for the set

of (a,w) pairs satisfying (2-43), that a is a single-valued function of w. Of course,

a is also a periodic function of w, the period being 2n radians; on physical grounds,

one further argues that this function is continuous. Such footprints ordinarily
A

occur, for instance, when the prescribed P is sufficiently large that the resulting
o

contour reflects the simple structure of the well-defined main lobe of a typical

satellite antenna. Suppose now in addition that the footprint is roughly circular

in outline with the aim point near the center; then, as indicated in Figure 2-5(a),

it is both convenient and optimum to choose a sequence of equi-spaced w-values

spanning an interval of 2n radians. If" on the other hand, the footprint is highly

elongated in some direction, then as illustrated by Figure 2-5(b), such a choice

of uJ-values is not optimum, for it tends to under-determine the sharply curved

"ends" of the footprint and/or over-determine {from the standpoint of computing
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economy) the relatively flat "sides." Especially when computing or plotting economy

is an important consideration, a better choice of w-values in such a case would be

one in which the representative points are more closely spaced where the footprint

curves more rapidly. This is indicated in Figure 2-5(c), which shows the same

footprint and the same number of representative points as in (b); that the modified

arrangement of points results in an improved representation is apparent.

\
\

\
\

......... \
......... \

.........~

----e-----
// I'<, <,,/,/ / \ <.

»: / \ <,

/ \
/ \

\

(a ) (b ) (c )

Figure 2-5. Footprints illustrating relation between contour shape and
optimum arrangement of representative points.

A

As a more extreme example, suppose the prescribed P is sufficiently small
o

that the resulting footprint reflects rather complex side-lobe structure of an

antenna pattern. The footprint shown in Figure 2-6 is hypothetical, but illustrates

the sort of features (such as fusing of somewhat irregular lobes) that one might in

fact encounter, especially when dealing with the measured pattern of an actual

antenna or the calculated pattern of a rather sophisticated model. As indicated

in the figure, such footprints ordinarily consist of several simple closed curves,

a particular one of which mayor may not enclose the main-lobe axis. Note that in

all cases where a particular curve does not enclose the main-lobe axis, and in some

cases where it does, the variation of w-values fails to be monotonic as a point

traverses the curve. In other words, for the set of (a,w) pairs corresponding to

such a curve, a is not a single-valued function of w. Then the choice of a mono­

tone sequence of representative w-values is obviously unsuitable; one must instead

choose a sequence that is somehow "tailored" to the curve in question.
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Choosing a distribution of representative contour points that is at least

roughly optimum, while certainly desirable from economic considerations, is not

Figure 2-6. Hypothetical footprint reflecting complex side-lobe structure
of antenna pattern.

always feasible. For example, the available data may severely limit the choice of

w-values for an actual antenna, or one may desire a single program to generate

variously oriented footprints whose outlines can range from circular to highly

elongated. The usual procedure in the latter case is to specify a sequence of

w-values that are equi-spaced and sufficiently close together to adequately re­

present the more sharply curving contour segments.

Besides the nature of the footprint itself, another important factor in­

fluencing the choice of representative contour points is the means by which the

footprints are to be portrayed on maps. For instance, if footprints are to be

drawn by hand, then each contour requires the locations of only relatively few

representative points, typically ten to several tens, depending on contour complexity.

Or, as a more likely example, suppose that one is producing footprint maps with a

computer graphics system having one of a variety of point-plotting or vector-drawing

devices. Then, if an accurate portrayal is desired, each contour reauires the

locations of a large number (usually several hundreds) of representative points.

In this case, one should consider two alternative approaches. One is to generate

18



the entire plotter input by carrying out steps (1) and (2) as outlined in the first

paragraph of this section. The other consists of calculating the locations of a

much smaller number of contour points and then determining the required large

number of intermediate points by some suitable interpolation procedure.

3. CIRCULAR APERTURE ANTENNAS

3.1 Introduction

For several varieties of practical transmitting antennas, the radiated fields

may be regarded as issuing from a circular opening or aperture. Typical examples

of such antennas include circular horns and lenses, and the widely used para­

boloidal reflector or "parabolic dish." By an approximation which may range from

good to rather crude, we simulate the main lobe of the far-field radiation pattern

of such an antenna by that of a large, suitably illuminated curcular aperture in a

conducting infinite plane.

As indicated in Figure 3-1, we consider a circular aperture of radius a

lying in the (x,y)-plane and centered at the origin of a right-handed system of

rectangular coordinates (x,y,z). Assume that a » AI, where AI is the free­

space wavelength of the radiation illuminating the aperture; i.e., the aperture

radius is several to many wavelengths. Assume also that the aperture field is

linearly polarized, and has a uniform phase and circularly symmetric amplitude

distribution f(p), where p is the distance from the aperture center.

3.2 Radiation Patterns

If we take f(p) = 0 for p > a (i.e., outside the aperture) and neglect edge

effects, then under the above assumptions, the normalized far~field amplitude

pattern may be approximated by

IF(8) I = IF(8)/F(O) I (3-1)

where F(8) is the surface integral (Silver, 1949, p. 173; Collin .and Zucker, 1969)

F(8) = f f(p) exp(ik-p) dA
A - --

(3-2)

~ is a vector of length k = 2TI/ A' in the direction of the observer, ~ is the

position vector of a point (x,y) in the aperture, dA is an element of area containing

(x,y), and the integration is extended over the surface A of the aperture. Note
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Figure 3-1. Geometry for the circular aperture antenna.



that, apart from a constant factor, F(e) is just the Fourier transform of the

aperture field amplitude distribution f(p). As we shall see, and as one would

expect from the symmetry properties of the aperture illumination, it turns out
A

that F(e) is independent of the azimuthal coordinate ¢.

To facilitate the analysis, we also introduce plane polar coordinates (p,¢')

which are related in the usual manner to x and Yi i.e., by

x P cos ¢' and y = p sin ¢'

Then, on noting that

k = k + k
-(x, y) --z

(3-3)

where k( ) and k may be regarded as projections of k onto the (x,y)-plane and
- x,y -z

z-axis, respectively, we see that (since ~ in normal to k
-z

k • ~ = k • p = kp sin e cos(¢ - ¢')
-(x,y) -

so F(8) may be written as the iterated integral

(3-4)

F (8)

a 2n ~

P:O f(p) { /=0 exp[ikP sin e cos I e - ej>')] do ' f P dp (3-5)

To effect the integration on ¢', one can start with the standard generating

function expansion for Bessel functions of the first kind (e.g., Watson, 1944,

p. 14-15), viz.

Set

u = kp sin 8 and t

then, after some algebra, one obtains

[

i(¢-¢') + e-i(¢-¢') J
exp ikp sin 8 -e-------

2------

00

n
J (u) t

n
n=-oo'

. i{¢-¢')
le

J (kp sin 8)
o

00

+ 2 L
n=l

sin 8)

(3-6)
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exp[ikp sine cOS{¢_¢I)] J (kp sine) + 2
o

00

L
n=l

inJ (kp sin8) cos[n(¢-¢I>]
n

(3-8)

Upon integrating both sides of (3-8) with respect to ¢I over the interval

(0,2n), then interchanging the order of summation and integration on the right side

(equivalent to term-by-term integration of the infinite series), and noting that

for n

2'IT
f cos [n (¢ - ¢ I )] d¢ I
o

1, 2, ... , one finds that

2n
J exp[ikP sin e cos Cc - cjJ'>] dcjJ'
o

o

2n J (kp sin e)
o

( 3-9)

(3-10)

When (3-10) is substituted into (3-5), we get the well-known result

since J (0)
o

a
F (8) = 2n f f(p) J (kp sin e) p do

0
0

1, this leads to

a

J f(p) J (kp sin 8) p dp
0

F(8)
0

a

f f(p) P dp
0

( 3-11)

(3-12 )

From the relations 0 ~ f(p) < 1 and IJ (kp sin 8) I ~ 1, it follows that
o

a
IF(8) I < 2n f f(p)

o

a
IJ (kp sin 8) I p dp < 2n f f (p) p dp

o
o

(3-13 )

so IF(8) I ~ IF(O) I andIF(e) I ~ 1; further, because IJ (kp sin 8) I < 1 when
o

o < p ~ a and 0 < 8 ~ 'IT/2, we see that IF(S) I = 1 only for 8 = O. Thus, IF(8) I

has a maximum (of unity) in a direction normal to the aperture plane, as it should

for an aperture field with uniform phase (Silver, 1949, p. 176). Note also that
A

F(S) in fact has the expected circular syrrunetry about the e = 0 axis.

Except for certain special forms of the aperture amplitude distribution f{p),

the pattern function F(S) must be evaluated by some suitable means of numerical

integration. The normalization factor F(O) can be expressed in closed form for a

much larger class of illumination functions f(p), but in some cases, its calculation
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also requires numerical integration. Observe that rather arbitrary aperture dis­

tributions can be used in (3-12), such as those designed to simulate aperture

blocking, or ones that have been experimentally determined. Even though such

functions may provide more realistic representations of actual aperture dis­

tributions, the model is still sufficiently idealized (e.g., the aperture field is

assumed to be linearly polarized and to have uniform phase) that the resulting side

lobes are unlikely to be an adequate approximation of real situation.

A "suitable means" of numerical integration depends to some extent on the

nature of f(p). It must, in any event, take into account the fact that the Bessel

function J (kp sinS) may undergo several to many oscillations in the interval (O,a).
o

By way of example, the FOOTPRINTS program uses the aperture amplitude distribution

f(p) ~ [l+TJ + ~ [i.-r] COS ('IT:> (0 .~ p ~ a) (3-14)

where the prescribed parameter T lies in the interval (0,1). A typical case of

such a "raised cosine" distribution is sketched in Figure 3-2. Note that f(p) has

a maximum of unity at p = 0, so T = f(a) is actually the ratio of the illumination

amplitude at the edge of the aperture to that at the center. The aperture radius

a and the illumination ratio T are specified by the program user; by setting T = 1,

one obtains the case of uniform illumination.

f(p)

oo-0
_-......_----------+----------~~~p

Figure 3-2. Typical aperture amplitude distribution used in FOOTPRINTS
program for idealized circular aperture antenna.

23



The pattern normalization factor F(O) can be expressed in closed form, the

integration being a straightforward exercise whose result is

(3-15)

The evaluation of F(e) is effected by first dividing the interval (O,a) into a

suitable number J of equal subintervals of length ~p = a/J, then writing

F (e)

J j~p

2TI \ f
L f(p) J (kp sin e)p dp

j=l (j-l)~p 0
( 3-16)

where f(p) is given by (3-14). Each integral in the sum (3-16) is now approximated

by the S-point Gaussian quadrature formula

8
j~p 1
f f(p) J (kp sin8)p dp ~ 2 ~p L

(j-1)~p 0 m=l

where

w
m

f(p.) J (kp . sine) P.
Jm 0 Jm Jm

(3-17)

1
Pjm = 2~P(xm + 2j - 1) (3-lS)

and x , w (m = 1, ... , S) are Gaussian abscissas and weights, respectively. Using
m m

(3-14) - (3-lS), the working formula for the normalized pattern function Fee) can be

written as

~P 8 ]~ J [1 T ,TIp.
4 l-T .2 m=L

l
Wm 1 + l~T cos( a

J m)
J (kp . sine) o ,

1 - TIT l+T J-1 0 Jm Jm
( 3-19)

where ~p = a/J and P
j m

is given by (3-lS). The number J is the largest integer not

exceeding 1 + (ka sin a)/TIi then k ~p sin e < TI, so the Bessel function J (kp sin e)
o

does not undergo more than one-half an oscillation per subinterval.

An example of a useful aperture amplitude distribution f(p) that leads to a

closed-form expression for F(e) is the function (Sciambi, 1965)

( p2)v
f (p) = T + (1 - T) 1 - ~ (0 ~ p ~ a)

24
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where v is an appropriate nonnegative constant and, as in the preceding example,

T lies in the interval (0,1). Just as for the raised cosine distribution (3-14),

the function in (3-20) has a maximum of unity at p = 0, so T = f(a) is again the

ratio of the illumination amplitude at the edge of the aperture to that at the

center. When v > 1, the graph of (3-20) appears much like that of (3-14) for like

values of a and T.

When (3-20) is substituted into (3-11) and the integration variable is trans­

formed by the relation p = a sin t, one obtains

F (8) J (ka sin
a

8 sin t.) sin t cos t dt

(3-21)
7f/2

J
o

2v+l
J (ka sin 8 sin t) sin teas t dt

o

Both of these integrals are special cases of what Watson (1944, p. 373) refers to

as Sonine's first finite integral; the general formula also is given, for example

by Abramowitz and Stegun (1964;11.4.10, p. 485) and by Wheelon (1968; 1.364,

p. 79). Its application leads to

F (8)
2 [ J 1 (ka sin e)

27fa T k . 8a sJ.n
+ (l-T) 2Vr(V+l) J V+1 (ka sin e) ]

(ka sin 8)V+l
(3-22)

where rev + 1) denotes the standard gamma function of argument v + 1. Noting that

(Abramowitz and Stegun, 1964; 9.1.7, p. 360)

lim (JV + l (ka sin 8») = 1

e~O (ka sin 8)V+l 2v+ l r(v+2)

we find, after some algebra, that the pattern normalization factor is

F(O) = 7fa2(T + 1-T)
v+l

therefore,

(3-23)

(3-24)

2
I-T

T +-­
v+l

J 1 (ka sin e)

ka sin e
+ (l-T) 2vr(v+l) JV+1(ka sin e) ]

(ka sin e)V+l
(3-25)

is the normalized pattern function. The paper by Sciambi (1965) includes a dis­

cussion of the relation between various antenna characteristics and the parameters

V, T.
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3.3 Footprint Calculations for Circular Aperture Antennas

We consider now the problem of calculating, for an idealized circular aperture

antenna on a geostationary satellite, the main-lobe footprint corresponding to a
A

prescribed constant value P of normalized power density. We assume, of course,
s

that the satellite longitude A and aim point coordinates (ep ,A ) are specified,
s A A

as are the wavelength A, the aperture radius a, and the circularly symmetric aperture

amplitude distribution f(p).

The geometry used to describe circular aperture antenna patterns is fitted into

that used in section 2 to describe the a.ntenna/satellite/earth configuration by

identifying the positive z-axis' of Figure 3-1 with the positive ~-axis of Figure 2-1.

The antenna's main-beam axis is then directed toward the aim point A, and the angle

e in Figure 3-1 is identified with the angle a. in section 2. Because the far-field

pattern of our idealized circular aperture antenna has circular symmetry about the

main~beam axis, th~ relation of the x and y axes in Figure 3-1 to the n and ~ axes

in Figure 2-1 is immaterial.

This circular symmetry also greatly simplifies the task of calculating the

locations of representative contour points. Note that the "main lobe" portion of
A

the cone corresponding to a constant power density P is a right circular cone whose
s

apex angle (i.e., the angle from the cone (antenna beam axis to any element or

generator) is the "main-Iobe u root a. of
s

A

P (a)
A

P
s

(3-26)

For any suitable sequence wI' w
2'

... , w
N

of w-values, representative cone elements

are thus characterized by the angle pairs (w
1,as)'

(w
2,as)'

... , (wN,a
S

) . One then

proceeds in the standard way to calculate the geographical coordinates of the re­

sulting contour points by applying (2-28), (2-29), and related formulas. Observe

that the footprint outlines may range from circular (when the aim point coincides

with the sub-satellite point) to highly elongated (when the antenna beamwidth is

narrow and the aim point is near the limb line). In view of the relative simplicity

of the calculations once the necessary a has been evaluated, one usually can
s

ignore the optimization of representative contour points, and simply choose a mono-

tone sequence of equi-spaced w-values that span the internal (0, 2TI) and are

sufficiently numerous to adequately define the footprint.

26



It is not ordinarily possible to write down a formula for solutions of (3-26),

as is illustrated by the particularly simple instance of uniform aperture illum­

ination, which leads to the equation

[
J 1 (ka sin a.: ] 2

1/2 ka sin

A

P
s

(3- 2 7)

Hence, obtaining a numerical approximation to the value of a , corresponding to a
s

A

specified power density P , generally requires some sort of iterative root-finding
s

procedure.

""A typical graph of P(a) vs. a is shown in Figure 3-3 for an idealized circular

aperture antenna. Note that the lobes of the pattern are well-defined; i.e., all
A

inter-lobe nulls are actually zero. When P exceeds the greatest side-lobe
s

maximum (of which we usually have, however, no a priori knowledge), then a is the
s

only positive root of (3-26), and its numerical approximation is quite straight-

forward by any of several standard procedures. In the contrary case, however, we

see that (3-26) has additional (positive) solutions that correspond to side lobes;
A

for example, if the specified power density is P' in Figure 3-3, then besides the
s

"main-lobe" root ai, (3-26) has the roots a l and a' . In such cases, there exists
s sA sB

the problem of devising a computer routine which will reliably converge to the

desired main lobe root a , rather than to one of the (larger) side-lobe roots.
s

This difficulty often can be mitigated, but not eliminated, by solving instead

the equivalent equation

A

F (a) ( 3-28)

As indicated in Figure 3-4, this equation has no solutions corresponding to the

first, third, etc. side lobes, leaving one to contend with unwanted roots only

for even-order side lobes.

Our approach to approximating the value of the "main-lobe" root a of (3-28)
S

consists of two parts. The first is isolating as in an interval (a , a ); i.e.,
L R

finding an interval (a
L

, aR) that contains as' but no other ("side-lobe") root

of (3-28). The second part is successively applying either the standard bisection

method or the modified false position method to compute approximations a .
SJ

( · I 2 J) t · 1 I FA ( ) A 1/2
1

. 1· h · f .J = , , ••• , . 0 as unt.i, a
S J

- P S 1S ess t an some apeca Led small

number of.
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In certain circumstances, one may be able to determine an interval (a , a )
L R

at the outset. For example, in the case of uniform aperture illumination, where

we seek as satisfying

J
l

(ka sin a)

1/2 ka sin a
A 1/2
P

S

( 3-29)

we know that (for 0 < P
s

< 1) 0 < as < 0.
0

, where 0.
0

is the angular position of the

pattern's first null. Thus,

ka sin 0.
0

( 3-30)

where jl,l ~ 3.83171 is the smallest positive zero of the Bessel function J
l

;

hence,

. -1 (jl'l)Sln --
ka

(3- 31)

In the more usual case, where a
O

cannot be easily obtained, we employ a

systematic search to find an interval (a
L,

a
R

) that isolates as. Note that if
A A A 1/2

o ~ PS < I, then F (a) > PS for all a such that 0 < a < as; furthermore,
A A 1/2
F(a) < P

s
for all a > as in some neighborhood of as. So, for some well-chosen

A

step size ~a, we simply compute in succession the function values F(m~a) for

1 2 . h· h A 1/2 d . h . hm=, , ... , M, comparlng eac Wlt P
s

an stopplng t e computatl0ns at t e

smallest (positive) integer M such that F(M~CI.) .::.. psl/2. In the (unlikely) event that
A A 1/2
F(M~a)= P

s
,then a = M~a and our root-finding is done; otherwise, set a = (M-l)

S L
~a anda

R
M~a.

If the specified power P
s

exceeds the greatest side-lobe maximum, then the

foregoing procedure works well for a rather wide range of ~a-values. In the

contrary case, however, where "side-lobe" roots exist, there is a fairly obvious

pitfall. Although the interval (a
L,

aR)certainly contains a 'root of (3-29), it

does not necessarily contain as; and even if it does contain as' there is no

guarantee that it does not also contain side-lobe roots. If the step-size ~a is

less than the angular width of the first side lobe, then a is indeed isolated
S

as desired in (a
L,

a
R).

(Ideally, for the sake of computing economy, ~a should be

only slightly smaller than the first side-lobe width.) Unfortunately, however,

one generally has no a priori knowledge of the angular width of any lobe", so the

choice of ~a becomes a matter of judgement, more or less informed bv experience.

Evaluating the wrong root of (3-28) is apt to be a more serious fault than simply
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failing to minimize computer time, so it is usually better to choose ~a un­

necessarily small in order to increase the likelihood of isolating as. One might,

for example, take ~a to be aO/lO, where a
O

is given by (3-31). In situations where

one suspects a problem, or where many footprints are to be generated for a par­

ticular antenna, it is wise to undertake a detailed calculation of the pattern

structure in order to obtain an accurate estimate of aO' rather than to rely on

the step-wise search outlined above.

Generalized flowcharts for algorithms that implement the bisection and modified

false position methods are shown in Figures 3-5 and ~-6, respectively. In the

latter (Hamming, 1971; Conte and deBoor, 1965),

a
e (3-32)

H H(a
L)

, He H(a
e),

H H(a )
L R R

where

F(a)
A 1/2

H (a) - P
S

(3- 33)

(3-34)

The bisection method is particularly simple and effective, but tends to be some­

shat slow; the modified false position method is generally faster, equally effective,

and only slightly less simple.

In practice, specified power levels are often expressed in decibels relative

to the main-beam maximum; that is, one is given

so that

( 3-35)

PSdb/20
(10) (3-36)

4. ELLIPTICAL APERTURE ANTENNAS

4.1 Introduction

Through an approach analogous to that employed for circular aperture antennas,

we simulate the main lobe of the far-field radiation pattern of certain antennas

by that of a large, suitably illuminated elliptical aperture in a conducting in-
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No

START

COMPUTE
a = (aL+ QR)/ 2,

"F(Ci)

SET a =as

END

SET Q( a

No

Figure 3-5. Generalized flowchart for an algorithm implementing
bisection method of evaluating as.
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No

START

INITIALIZE a l , Q R

COMPUTE a cI He

SET a l = ac,
Hl= He I HR= HR/2

SET aR= 0c,
HR=He, Hl =Hl /2

No

Figure 3-6. Generalized flowchart for an algorithm implementing
modified false position method of evaluating as.
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finite plane. As indicated in Figure 4-1, the aperture lies in the z=O plane and

is centered at the origin or a right-handed system of rectangular coordinates

(x,y,z); the aperture boundary is the ellipse

(4-1)

For later convenience in specifying the antenna's orientation, we somewhat ar­

bitrarily require that a ~b, so the aperture's major axis lies along the x-axis

of our coordinate system. Assume that a » A' and b » A', A' being the free­

space wavelength of the radiation illuminating the aperture; i.e., both axes of

the aperture are several to many wavelengths long. Assume also that the aperture

field is linearly polarized and has a uniform phase and a separable amplitude

distribution f(x,y) of the form

f(x,y) X(x) Y(y) (4-2)

where X(x) is a function of x only and Y(y) is a function of y only (Silver, 1949,

p. 182).

By taking a=b, one may be able to simulate main-lobe patterns of certain

circular aperture antennas whose illumination distributions lack circular symmetry.

By the same token, it is not generally possible to represent a circularly symmetric

illumination distribution by a function of the form (4-2). Indeed, by noting that
\

a circularly symmetric function f is characterized by the condition af/a~ = 0

(where (r,~) are the usual polar coordinates about the aperture center), it is a

routine exercise to show, if the distribution f(x,y) in (4-2) has circular symmetry,
2 2

that X(x) and Y(y) must be proportional to e
a x

and e
a y

, respectively, where a is

a constant. Observe that a = 0 corresponds to a uniformly illuminated aperture.

4.2 Radiation Patterns

As before, we assume that the illumination distribution f(x,y} = 0 outside

the aperture and neglect edge effects, so the normalized far-field amplitude pattern

may be approximated by

IF ( e, <P ) IF (0 , <p) I
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where F(8,¢) is the surface integral (Silver, 1949, p. 173; Collin, 1969)

F(8,¢) f f(x,y) exp(i~ e £) dA
A

(4-4)

~ is a vector of length k = 2n/A' in the direction of the observer, £ is the

position vector of a point (x,y) in the aperture, dA is an element of area con­

taining (x,y), and the integration is extended over the surface A of the aperture.

Of course, it is also the case here that, apart from a constant factor, F(8,¢) is

the Fourier transform of the aperture field amplitude distribution f(x,y).

From Figure 4-1, note that

where

ke.e..=k x+k y
x Y

(4-5)

and

k
x

k
Y

k sin 8 cos ¢

k sin 8 sin ¢

(4-6a)

(4-6b)

Substituting (4-2) and (4-5) into (4-4) gives

f X(x) Y(y) exp[i(k x + kyy)J dA
A x

(4-7)

which may also be written as the iterated integral

where

F(8,¢)
+a

f
x=-a {

+b h(x) }
X(x) exp(ik x) f Y(y) exp(ik y) dy dx

x y=-b h(x) Y
(4-8)

h (x)
2

(1 _ x ) 1/2
2

a
(4-9)

Except for certain special forms of the functions X(x) and Y(y), one must evaluate

F(8,~) (and F(8,¢» by means of numerical integration.

4.3 A Special Case

Useful examples of "certain special forms" of the functions X(x) and Y(y) are

given by Adams and Kelleher (1950), who let
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M
X(x) L (m1fx)p cos 7 (4-10a)

m=O m

and

N
Y(y) I n7fY

(4-10b)qn cos( b )
n=O

By a proper choice of coefficients Pm and ~, most practical illumination dis­

tributions can be adequately approximated by using only a few terms in (4-10a) and

(4-10b). When X(x) and Y(y) are expressed in this way, F(8,¢) can be evaluated as

a linear combination of Al functions, where in terms of the more familiar Bessel

function J
l

,

Al (u) = (2/u) J
l

(u) (4-11)

The explicit form of F(S,¢), along with an outline of its derivation, will be

given in this section, as neither were included in the brief paper by Adams and

Kelleher (1950).

When (4-10a) and (4-10b) are substituted into (4-8), F(S,¢) may be written

as a sum of iterated integrals

where

F(8,¢)
M N

m~o n~o Pm ~ Smn
(4-12)

Sron

+a

J
x=-a {

+bh(x) }
exp (ikxx) cos (m:x) f exp (ik y) cos(n~y) dy dx

y=-bh(x) Y
(4-13)

and hex) is given by (4-9). On introducing a new integration variable t by means

of the relation x = a cos t, the expression for S becomes
ron

S = a
ron

7f

f
t=O

exp(ik a cos t) cos(m7f cos t)
x {

+bsint }

f exp(ikyY)COS(n~Y)dY sint dt
y=-bsint

(4-14)

The integration on y is a standard form that may be evaluated in any of several

ways, the various results being equivalent to
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+bsint
J exp(ik

yY) coS(n~Y)dY
-bsint

b sin [(k b + ntr ) sin t]
k b + nn y

y

b
+ k b _ sin [(k b - n'IT) sin t] ·nn y

y
(4-15 )

Substituting (4-15) into (4-14) leads to

S
mn

ab n
k b + n'IT J

y 0

exp(ik a cos t) cos(mn cos t)
x

sin [(k b + nn)
y

sin t ] sin t dt

+ ------ab
k b - nn

y

n
f exp(ik a cos t) cos(mn cost)

xo
sin [(k b - rirr)

y
sin t] sin t dt ,

(4-16 )

or, if one uses the complex exponential representation of cos(mn cos t),

S ab/2 {I exp[i(k a+mn) cos tJ sin [(k b + nn ) sin t J sin tdt
ron k. b + n'IT x y

y v 0

+ I exp [i (kxa - mrr ) cos t] sin [(kyb + n'IT) sin t ] sin t dt }

+ ab/2 {I exp[i(k a + mrr) cos t] sin [(k. b - mr ) sin t] sin t dt
k b - nn x y

y 0

o

n
+ f exp[i(k a - mrr) cos t] sin[(k b - mr )

x y

Each of the integrals in (4~17) is of the form

sin t] sin t dt1 (4-17)

S (u , v)
n
f exp(iu cos t) sin(v sin t) sin t dt
o

(4-18)

which can be evaluated by differentiating the relation (Gray, et al., 1922)

n
J exp(iu cos t) cos(v sin t) dt = 'ITJ

o([u
2

+ v
2]1/2)

o
(4-19)

with respect to v. The result is

2 + v 2]l/2)
n J

l
([u

S(u,v) f exp(iu cos t) sin(v sin t) sin t dt nv
2 2]1/2

0 [u + v (4-20a)
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or

S(u,v) (4-20b)

On using (4-20a), the expression for S can be written as
ron

S = TIab {A (lk a + mn)2 + (k b + mn)2]1/2) + A (lk a - mTI)2 + (k b + nTI)2 Jl/2)
ron 4 1 x Y 1 x Y

"
+ Al (lkxa + mn)2 + (kyb - nn)2JI/2) + Al ([(kxa - mn)2 + (kyb - nn)2]1/2) J

(4-21)

When the coefficientsp and q are specified, (4-12) and (4-21), along withm n
(4-6a) and «4-6b), are the working formulas for evaluating F(S,¢). To calculate

F(O,¢), note from (4-6a) and (4-6b) that k x
then reduces to

k = 0 when e = 0; the formula for S
y ~

S (O,¢)
ron

(4-22)

As a particular ex~~ple, to simulate elliptical aperture antennas in program

FOOTPRINTS, we choose

x(x) = 1. (1 + T) + 1:. (1 - T) cos (TIX) (- a < x < a)
2 a 2 a a

and

(4-23a)

Y(y) (4-23b)

where the prescribed parameters T , T
b

both lie in the interval (0,1). This choice
all

is equivalent, of course, to taking M = 1, P -(1 + T
a

) , PI = -(1 - T ) in
1 1 0 2 2 a

(4-l0a), and N 1, qo = 2(1 + T
b),

ql = 2(1 - T
b)

in (4-l0b). The physical sig-

nificance of T
a,

T
b

is analogous to that of the parameter T for the idealized

circular aperture antenna. That is, since X(O) = yeO) = f(O,O) = 1 and X(± a)

Ta, Y(± b) = T
b,

we see that T
a

and T
b

are the ratios of the illumination amplitude

at the ends of the respective aperture axes to that at the center. Taking TTl
a b

corresponds to a uniformly illuminated elliptical aperture.

When (4-23a) and (4-23b) are used in (4-12), the resulting expression for the

normalized far-field amplitude pattern F(S,¢) can be written as
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A

F(8,<p)

1. l-Ta
+ 4 l+T

a

(4-24)

Note that for the uniformly illuminated aperture, we have T
a

1,

(4-25)

Further, when a (ka sin 8)2, and (4-25) becomes

'"F(8,<p) .1\1 (ka sin 8)

which is, as it should be, the result for a uniformly illuminated circular aperture.

4.4 Footprint Calculations for Elliptical Aperture Antennas

The geometry for describing elliptical aperture antenna patterns (Fig. 4-1) is

related to that used to describe 'the antenna/satellite/earth configuration (Fig. 2-1)

by first identifying the positive z-axis in Figure 4-1 with the positive ~-axis in

Figure 2-1. The antenna's main-beam axis is then directed toward the aim point A.

The orientation of the elliptical aperture about the ma.i.n-be era axis is defined, as

illustrated in Figure 4-2, by specifying the angle S from the positive n-axis to the

major axis of the aperture (i.e., the <p = 0 or positive x-axis in Fig. 4-1). The

angles a, w in section 2 are then related to the angles 8, <p in Figure 4-1 by a = 8

and w = S + <p.

To determine the main-lobe footprint corresponding to a specified constant

value P of normalized power density, we find the smallest (i.e., main-lobe) root
s

a of the equation
s
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A

P(a, w - S)
A

P
s

(4-26)

for each w-value in a suitable representative set spanning the interval (O,2TI). We

assume, of course, that the satellite longitude As and aim point coordinates ~A'

AA are given, as are the wavelength A, the inclination S of the aperture's major

axis, the lengths a, b of the aperture axes, and the aperture illumination functions

X(x) and Y(y). If X(x) and Y(y) are even functions of their respective arguments,

so that the illumination function f(x,y) is symmetric about both major and minor axes

of the aperture, then the number of calculations per footprint can be reduced

appreciably by choosing w-values so as to exploit the resulting symmetry in P (or F)
whereby

A

P(a,¢)
A

P(a, TI - ¢)

s

P(a, TI + ~)
A

P(a, 2TI - ¢) (4-27)

Figure 4-2. Geometry for specifying orientation of elliptical
aperture antennas.

Thus, in such situations, one needs to actually calculate a-values only for a set

of w-values spanning an interval of length TI/4. When w is specified, the numerical

procedures for obtaining a are essentially the same as those already outlined for
s

the idealized circular aperture antenna.
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5. RECTANGULAR APERTURE ANTENNAS

5.1 Introduction

When the elliptical aperture of the idealized antenna model described in

section 4.1 is replaced by one that is rectangular, the resulting model can be used

to simulate the main lobe of far-field patterns of such practical HF transmitting

antennas as rectangular horns and certain cylindrical reflectors. Relevant

geometry is indicated in Figure 5-1; except for the aperture, it is the same as

that in Figure 4-1. Note that the aperture is centered (as before) at the origin

of our right~handed system of coordinates (x,y,z) and consists of the rectangular

region txl < a, Iyl < b in the z = 0 plane. We assume that a » A' and b » A'

(i.e., that the aperture is large, both of its dimensions encompassing several to

many wavelengths); again, for later convenience in specifying the antenna's

orientation, we require that a ~ b. We make the same assumptions about the aperture

field as were made in the elliptical case--the field is linearly polarized, has a

uniform phase, and a separable amplitude distribution f(x,y) of the form (4-2).

5.2 Radiation Patterns

On assuming that the illumination distribution f(x,y) vanishes outside the

aperture (equivalent in this case to the conditions X(x) = 0 for Ixl > a and

Y(y) = 0 for Iyl > b), and neglecting edge effects, the normalized far-field amplitude

pattern for the idealized rectangular aperture antenna may be approximated by

IF (8 , q,) I = IF (8 , q,)IF (0, q,) I

where F(8,q,) is given by (4-7) and related formulas, just as in the case of the

elliptical aperture. It is understood, of course, that in the present instance the

integration is to be extended over the surface of the rectangular aperture. We may

now write F(8,q,) as the iterated integral

F(8,q,) (5-1)

which in turn may be written as a product of integrals

F(8,q,) (5-2)
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5.3 Some Special Cases

When a rectangular horn antenna is fed by a rectangular wave guide carrying a

TE
I O

mode, the electric field in the horn aperture is quite uniform along the

direction of the E-plane, but tapers to zero at the aperture edges along the direction

of the H-plane (Kraus, 1950, p. 372). Provided. -t11at the horn flare angles are not

too large, the main beam of such an antenna may be more or less crudely simulated by

choosing

and

x (x) 1 (5-3a)

Y(y) (5-3b)

When these are substituted into (5-2), the resulting integrals are standard forms

which, after a certain amount of manipulation, may be reduced to

and

+a

I
-a

exp(ikx) dx
x

(5-4)

+b
J exp (ikyY) cos G~) dy

-b
1T Z

4

7fb
cos(k b)

y
(5-5)

where k ,k are given by (4-6a) and (4-6b), respectively. Hence, for this model
x y

of the rectangular horn antenna,

(8 ~) - 27fabF ,~ - 2
(k a)[2!..- - (k b) 2J

x 4 y

we then find that

sin(k a) cos(k b)
x y

(5-6)

F(O,¢) (5-7)

so the normalized far-field pattern becomes

[
7f42 _4(k a)

x ]

sin(k a) cos(k b)
(k b)2 x Y

Y
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If we let A = 2a/A and B = 2b/A denote the aperture dimensions expressed in wave­

lengths, then (5-8) may be written in the form

A I sin (1Th
A

) cos (1Th
b)F(8,ep) =

1Th
A

(1 h 2)- 4 b

where

h
A

A sin e cos ep

and

h
B

B sin e sin ep

(5-9)

(5-l0a)

(5-l0b)

Since we" assumed at the outset that a ~ b, what we have just done is to model

the situation where the E-plane is parallel to the long axis of the rectangular

aperture. To get the pattern for the contrary case, where the E-plane is parallel

to the short axis of the aperture, we need to choose

and

X(x) cos G:) (5-lla)

y (y) = 1 (5-llb)

B in (5-9) to get

The resulting pattern can be written down by inspection; simply interchange A and
')

A

F(e,ep) (5-12 )

Another useful representation of the aperture illumination amplitude for an

idealized rectangular antenna consists of the product of the "raised cosine"

functions given by (4-23a) and (4-23b). Because it includes the user-specified

illumination tapers Ta and Tb (the physical significance of these parameters is

pointed out in the discussion following (4-23b», this model of the rectangular

aperture antenna is more widely applicable than that described at the beginning of

this section. The "raised cosine" model is also the one used by program FOOTPRINTS

to simulate rectangular aperture antennas.

Note that (4-23a) and- (4-23b) also can be used to simulate a rectangular horn

antenna fed by a TEl O wavegu1de mode. When the E-plane is parallel to the long

axis of the aperture, choose Ta = l'and T
b

= 0; on the other hand, when the E-plane
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is parallel to the short axis of the aperture, one should choose T
a

= 0 and T
b

= 1.

One ought to expect this model of a rectangular horn to be even cruder than the one

considered earlier, where a somewhat more realistic distribution of aperture il­

lumination was used.

When (4-23a) and (4-23b) are substituted into (5-2), the resulting integrals

are again linear combinations of standard froms. After some manipulation, we find

that

+a
J X (x) exp (ik x) dx

x
-a

a(l + T )
a

I-T
a

l+T
a

sin(k a)
x

k a
x

(5-13a)

the analogous result for Y(y), obtained by inspection (replace x and a by y and

b, respectively), is

+b
J Y (y) exp (ik y) dy
-b Y

sin(k b)
y

k b
Y

(5-13b)

When (5-13a) and (5-13b) are substituted into (5-2), we get

F(8,¢)

[

I-T (k b)2 ] sin(k a) s i.n Ik b)
b y x Y

x 1 + l+T
b

TI 2 -(k b)2 k a k b
Y x Y

from which we see that

(5-14)

(5-15 )

Hence, the normalized far-field pattern for the rectangular aperture antenna with

"raised cosine" illumination is \F(8,¢) I, where

[

I-Ta (kxa) 2 ]. [ + I-Tb(kyb) 2 ] sin (kxa) sin (kyb)
~(e~¢) =1 + 2 2 1 2 2l+T TI -(k a) l+T

b
TI -(k b) k a k b

a x y x y
(5-16)

An alternative form of (5-16), in terms of the aperture dimensions A and B intro-

duced earlier, is

A

F(8,¢) (5-17)

where h
A

and h
B

are given by (5-10a) and (5-10b), respectively.
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5.4 Footprint Calculations for Rectangular Aperture Antennas

The geometry used to describe rectangular aperture antenna patterns is fitted

into that used in section 2 to describe the antenna/satellite/earth configuration

in the following way. First, the positive z-axis of Figure 5-1 is identified with

the positive ~-axis of Figure 2-1, so that the antenna's main-beam axis is directed

toward the aim point A. The orientation of the rectangular aperture about the main­

beam axis is then specified in a manner identical to that used earlier for the

elliptical aperture antenna. Thus, as indicated in Figure 5-2, one prescribes the

angle S from the positive n-axis to the long axis of the aperture (i.e., the ¢ = 0

or positive x-axis of Figure 5-1). The angles a, w in section 2 are then related to

the angles e, ¢ in Figure 5-1 by a = e and w = S + ¢.

To determine the main-lobe footprint corresponding to a specified constant
A

value P of normalized power density, we need to find the smallest (i.e., main-lobe)
s

root a of (4-26) for each w-value in a suitable representative set spanning the
s

interval (0, 2TI). The remarks concerning .the solution of (4-26) for the elliptical

aperture apply as well to the rectangular aperture and will not be repeated here.

For the special cases of aperture illumination considered in section 5.3, it

is not necessary to execute a search procedure in order to isolate a in an
s

interval (aL, aRlo Instead, ~hen ¢ = w - ~ is specified, one can calculate the

smallest positive zero 0.
0

of P(a,¢) (or of F(a,¢», then set a
L

= 0 and a
R

= 0.
0

.

For example, if one is using (5-9) to simulate the main beam of a rectangular horn,
A

we see that F(a,¢) = 0 when IhAI = 1, 2, ••• and when IhBI = 3/2, 5/2, ..• (Note

I I A lim [ 2 ]that h
B

= 1/2 does not correspond to F(a,¢) = 0, sincelhBI~ cos(TIhB)/(l - 4hB)
= 1/4.) In particular, if

exceeds unity, then

Max {Alcos¢l, } Blsin¢l}

-1 (lJa = sin -o 1..1

(5-18)

(5-19)

A sufficient condition that ~ > 1 for all ¢ is that A > 1:2 and B > ~ 1:2; this will

be satisfied for large apertures. The corresponding result for (5-12) is

(5-20)

subject, of course, to the requirement that the indicated maximum exceeds unity.
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Figure 5-2. Geometry for specifying orientation of rectangular
aperture antenna.
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\..0

Table 5-1. Formulas for Evaluating ~ in a
O

= sin-l(l/~), the First Null in Far-field Pattern of
an Idealized Rectangular Aperture Antenna with "Raised Cosine" Illumination

o ~ Ta ~ ~ ~ < T < 1 T = 1- a a

~If' ~ = Max{} Alcos ¢I, } Bisin ¢I} {eT r ~ = Max{Alcos¢l, } Blsin¢l}u = Max l+;a- Alcos ¢Ivi
,

.c
E-t

vi
} BI sin ¢I }0

u = Max {} AIcos ¢ I {CT J u = Max {AI cos ¢ I~

~ = Max l+~a Alcos ¢Iv
, , ,

..0
~

vi
(2Tb ) ~ . l (2T r } (2Tb )~ }~If' l+T

b
Blsln ¢I j l+~b Bisin ¢I l+T

b
Bisin ¢I

{CT )~1 .
u = Max l'+;a· 2 AIcos ¢ I ~ = Max{Alcos ~l, Bisin ¢I}~ = Max{I Alcos ¢I, Bisin ¢I} ,

r--4

II

.o

Bisin ¢I}
E-t



A similar analysis can be carried out for the pattern (5-17) resulting from the

"raised cosine" aperture illumination, but the details :are more involved, since the

values of Ta and T
b

(as well as those of Alcos ~I and Blsin ~I) influence the out­

come. The results are summarized in Table 5-1.

Once as has been isolated in the interval (0, a
O

) ' one can proceed as described

in section 3.3, by successively applying the bisection method or the modified false

position method to arrive at an estimate of a .
s

6. HELICAL BEAM ANTENNAS

6.1 Introduction

When antennas have the form of a (finite) circular helix that radiates in the

so-called axial mode (Kraus, 1950), the far field has a well-defined main beam

whose maximum is in the direction of the helix axis. Such antennas are known as

helical beam antennas and can be made sufficiently directional that they may, under

certain circumstances, be suitable for use on satellites.

A fairly detailed discussion of the characteristics of helical antennas is

given in the standard text by Kraus (1950, ch. 7); here we simply mention a few

salient features of the helical beam antenna. First, for a helix to radiate in the

axial mode, the helix circumference C must roughly equal the (free space) wavelength

of the operating frequency; in particular, C (when expressed in wavelengths)

should lie in or near the range 3/4 - 4/3. At the same time, the pitch angle of

the axial mode helix should lie in or near the range 100
- 20

0
, the optimum angle

being 12 0
- 150

; the spacing S between turns (expressed in wavelengths) should lie

in or near the range 0.1 - 0.5. Finally, the number n t of turns in a helical beam

antenna should exceed about 3 (for satellite applications, n t will usually be at

least several times this value).

6.2 Radiation Patterns

As indicated in Figure 6-1, an nt-turn circular helix antenna is centered at

the origin of a right-handed system of rectangular coordinates (x,y,z) so that the

helical axis lies along the z-axis. If one represents the pattern of a single turn

by cos e (where, as shown in Figure 6-1, 8 is the angle from the helix axis to the

direction of the observer) and assumes what Kraus (1950, p. 190) calls the "increased

directivity condition" to hold, then the main lobe of the antenna's normalized far­

field pattern can be approximated by IF(8) I, where (Kraus, 1950, p. 202)
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Figure 6-1. Geometry for the helical beam antenna.



A

F (8)
sin(n

t
1JJ/2)

sin (1JJ/2)
cos 8 (6-1)

1/J = 21T [S(l - cos 8) + 2~tJ (6-2)

and (as previously noted) S is the spacing between turns (expressed in wavelengths) .

Note that this pattern has circular symmetry about the helix axis. It also

should be emphasized that the preceding expression for IF(8) I does not reliably

represent the side-lobe pattern of an actual antenna.

6.3 Footprint Calculations for Helical Beam Antennas

To fit the helix geometry of the preceding section into the antenna/satellite/

earth configuration described in section 2, we identify the (positive) z-axis of

Figure 6-1 with the (posLt.Lve) ~-axis of Figure 2-1. The helical axis of the antenna

is then directed at the aim point, and the angle 8 in section 6.2 is identified with

the angle a in section 2. Owing to the pattern's circular symmetry, the relation

of the x and y axes of Figure 6-1 to the n and ~ axes of Figure 2-1 is immaterial.

Because the far-field pattern of our idealized helical beam antenna has circular

symmetry, the procedure for calculating the main-lobe footprint corresponding to a
A

prescribed constant value P
s

of normalized power density is, in principle, exactly

the same as that used for the idealized circular aperture antenna, with the exception

of one important simplifying feature. This simplification consists of not having

to execute a search procedure in order to isolate the desired (main-lobe) root a of
s

A

F(a)
A 1/2
P

s

in an interval (a
L

, a
R

) . Instead, one can easily calculate the smallest (positive)
A

zero a
O

of F(a), then set a
L

= 0 and a
R

= aO. One then preceeds as described in

section 3.3, by successively applying the bisection method or the modified false

position method to arrive at an estimate of a •
s

From (6-1), and (6-2), we see that F(ao) = 0 implies that n t 1/J/2

From this, it follows that

'IT, or

(6-3)

(6-4)
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