
NTIA REPORT 81 ...79

A Critique of Some

Public - Key Cryptosystems

W.J. Hartman

u.s. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

Bernard J. Wunder, Jr., Assistant Secretary

for Communic at ions and Information

August 1981

TABLE OF CONTENTS

LIST OF TABLES .
LIST OF SYMBOLS..
ABSTRACT
1. INTRODUCTION
2. THE LU AND LEE PKC .
3. THE KNAPSACK PKC . . .•.....
4. THE RSA PKC.
5. REFERENCES
APPENDIX A: FACTORING.
APPENDIX B: EXAMPLES..
APPENDIX C: MULTIPLE PRECISION SUBROUTINES..

iii

Page
iv

v

1

1

4

6

9

15

. . 17

.. 24

31

Table 1.
Table B-1.

Table B-2.

Table B-3.
Table B-4.
Table B-5.
Table B-6.

LIST OF TABLES

Approximate Timing for Multiprecise Arithmetic .
An Example of a Knapsack PKC and One Possible Cryptanalyst
Me thod
Examples of Timing for Finding Primes for Use in the
RSA-PKC. .
An Illustration of One Implementation of the RSA-PKC
An Example of Factoring Using ([IKNJ + j2 =x2 (mod N)
Epacts for 263 and 1019 .
The Continued Fraction Expansion of Ik·267997

iv

Page
11

25

26
27
28

28

29

LIST OF SYMBOLS

dlx: d divides x means, if d and x are integers, there exists an integer k such

that k·d = x.

gcd(x,y): greatest common divisor d of x and y means dlx and diy, and if

klx and klY, then kid.

[x]: The greatest integer in x, also called the integer part of x or int (X).

A(mod b), or X=A(mod b): means that X is such that 0 $ X < bland bl(X-A).

(alP) is the Jacobi Symbol which, for odd P has the following properties:

1.

2.

3.

4.

5.

6.

(alP) (bIP) = (abIP)

ifa=b (mod P), (alP) - (blp)

if gcd (r ,P = 1, (ar2IP) - (a IP))

(-liP) - (1-1) f:l2

2
(2!P) - (-l)(P -1)/8

(PIQ) (QIP) = (-1) (P-l)/2·(Q-l)/2

(for P, Q both odd).

O(n): order of N means, x = O(n) implies that x < c·n for some constant c as

n approaches a limit. In this paper the limit will be 00. Similarly

x = O(f(n)) means that x < c·f(n) as n approaches a limit.

k k 2
Q(n): Euler1s totient function. If n = Pl 1 P2 2 Pk k is the decomposition

111of n into its distinct prime factors, Q(n) = n(l-p-)(l-p-) .•. (l-p-).
1 2 2

v

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

A CRITIQUE OF SOME PUBLIC-KEY CRYPTOSYSTEMS

W.J. Hartman*

Several of the public-key c~yptosystems that received considerable
publicity are examined. The uses, implementation, and potential crypto
analytic attacks are discussed. Since most of the suggested systems
depend on the manipulation of large numbers, special multi precision
computer programs have been developed to demonstrate system imple
mentation and cryptoanalytic attacks. Examples of the use and timing of
these programs are included.
Key words: Public-key; number theory; cryptology; algorithms

1. INTRODUCTION
The opportunities and benefits provided by technological developments in

electronics and computers are being increasingly exploited for the transfer and
processing of information. However these innovative applications also present
a challenge to the user to identify and correct undesirable side effects.

Although a clerk can access files stored in a computer more efficiently
than those stored in a filing cabinet, he can visually monitor those who gain
access to the filing cabinet but not those who gain access to the computer.

A company sending proprietary information across country by mail would know
if the information had been stolen, but one sending information by radio has no
way of knowing if the information is obtained by someone else.

These are examples of problems which we will classify as protection problems.
In this paper, we examine the role that a special class of cryptographic systems
plays in the solution of these problems.

The historical use of cryptography was to protect against information's being
obtained by unauthorized persons. This will be called message protection. More
recent applications of cryptography include electronic signatures, verification,
and protection against message alteration.

An electronic signature is a type of message which serves the same purpose as
an ordinary signature, i.e., it can be generated by only one person, it uniquely
identifies that person, and it can be substantiated legally. See e.g., Rabin (1978),

and Popek and Kline (1978).

*The author is with the Institute for Telecommunication Sciences, National Tele
communications and Information Administration, U.S. Department of Commerce
Boulder, CO 80303

Authentication is similar to signatures, but may identify a group instead
of an individual, and may be only for one-time or short-term use.

Prevention of message alteration is a scheme which mayor may not conceal the
message, but assures that no alteration can take place between the originator and
the intended recipient. The introduction of the idea of Public-key cryptosystems
(PKC) by Diffie and Hellman (1976) was directed at the solution of some of these
non-commentioral cryptologic problems. The idea gained impetus with the publi
cation by Rivest et al (1978) of an algorithm for a PKC which appears quite
secure. This algorithm will be designated the RSA-PKC.
What is a PKC?

In a conventional cryptosystem both the sender and recipient of a message
must have a common secret, usually in the form of a key, in order to communicate.
In a PKC, only the recipient holds the secret (key). This is accomplished through
the use of either one-way or trap-door functions which have the property that,
given the function f, it is easy to calculate the values

y = f(x),

but it is difficult, or impossible to calculate x given y. In the case of the
trap-door functions, knowing the secret key also makes it easy to calculate values
of x = f-l(y).

In order to examine the concepts of PKC in more detail, it is necessary to
establish some notion of computational difficulty. One concept is based on
key length (N bits) and the number of operations a cryptanalyst needs to perform
to obtain the key. If the cryptanalyst requires approximately 2N-l operations
we define this as exhaustive search. Throughout, an operation may be a simple
arithmetic operation such as a multiplication or a complex operation such as a
complete message encryption. The interpretation should be clear in context.

Similarly, we define

Required Operations Name

aN, 1 < a < 2 Exponential

Nf(N), f(N) increases

Iwith N, Mixed

and N
f'(N) < 1 Noga

k fixed PolynomialN,k>l,k

2

in decreasing order of cryptanalytic difficulty.

A second concept is based on the relationship between the number of
operations (N) required by the legitimate recipient of a message to decrypt
and the number of operations required by the cryptanalyst to decrypt the message.
Within this framework it is not necessary that the cryptanalyst obtain the key.
The difficulty is then designated as follows:

Reguired Operations Name

aN, a > 1 Exponential

Nf(N), f(N) increases

with N,

and f(N) < N
logaN

for some a > 1.

Nk, k > 1, k fixed

I Mixed

Polynomial

Some examples follow:
(a) It is estimated that it would require approximately 254 (approximately

1.8 x 1016) operations on the average to find the 56 bit DES (Data Encryption
Standard, 1977) key given both plain text and cipher text. Assuming one operation
each nanosecond (ns), (10-9s), finding one key would take 1.8 x 107 seconds, or 0.6
years. This rate is far above available equipment capabilities which only are in
the range of of one operation every 100 ns. At this speed, it would require 60
years to find the key.

On the other hand, if polynomial time (say N3) were required, it would take
1.7 x 105 operations, which even at today's speed would take less than 1 second.

(b) The second concept, comparing the work required by the legitimate
recipient and the cryptanalyst is illustrated by Merkle's (1978) puzzle PKC. It
is estimated that, if it requires N units of work by the legitimate recipient (LR),
it requires N2 units by the cryptanalyst (C). Thus, although N could be made large
enough so that it would be unfeasible for (C) to recover the message in a reason
able time, the work for (LR) would become burdensome. Consequently, although

Merkle's (1978) scheme may have some specialized uses, it will not be considered
further in this paper.

Further examples of these comparisons are given later.

3

Overhead and Message Expansion
In what follows, we will assume that the messages are either all numbers

(such as transmitting keying material) or mixed numbers and letters in which
case we will assume a 64 character set. This may not be efficient in terms
of overhead, but is most convenient for computer implementation. Thus, if one
converts each character of the set into two decimal digits, a message expansion
of 100/64 occurs. On the otherhand, if one does not convert each character to a
decimal marker, but instead uses strings of the binary representating characters
as a single binary number which is less than M, one obtains a message expansion
of M/2k where 2k is the largest power of 2 less than M. For large M, this can
be very close to 1. If, in addition to this, the cryptographic system maps a
subset, S, of numbers less than Minto a subset of the numbers less than N, N > M,
the message expansion becomes N/S(M) where S(M) is the number of elements in S.

The overhead is the amount of work required to establish communications, set
up the cryptosystem, maintain synchronization, etc. The only overhead considered
here will deal with obtaining the necessary parameters to establish a PKC.

2. THE LU AND LEE PKC
Lu and Lee (1979) proposed a PKC based on number theoretic concepts.

The system was immediately shown to be unacceptable from a security standpoint. It
is presented here as an example of a system for which the cryptanalyst need not find
the secret key (and, in fact, may not be able to do so) but can still read the
plain text with only a small increase in work over legitimate decryption.

The public keys are integers Cl, C2 and R, with R the product of two primes
Pl and P2, and Cl and C2 both relatively prime to R with Cl + C2 > R.

The encryption process takes two message segments ml and m2 and forms the
encrypted message X from

The decryption process uses the (secret) knowledge of Pl and P2. The four parameters

(2)

(3)

are calculated.

4

The messages are then obtained by forming Xl =X mod Pl, X2 =X mod P2,
and calculating

Xla 22 - Xla 21
ml = a

l la 22
- a

12a21
(4)

and (5)

To insure unique decryption, it is necessary to limit the size of
the messages by publishing two numbers,

Ml ~ ~- min [a~2 ' a;-J
M2 ~ ~- min [.JL ,

a;2 Ja12

where q = min (Pl,P2), and [yJ denotes the greatest integer in y.
The first to point out the weakness of this PKC were L. Adleman and R. Rivest

of the Massachusetts Institute of Technology who had considered the system and
rejected it. Others who have examined the weaknesses were L.N. Lee (1979),
C. Osgood (1979), and M.J. Kochanski (1980).

The observation central to all of the methods of cryptanalysis is that, because
of the bounds Ml and M2 on the message size, it is possible to reduce the problem
to one of diophantine analysis.

Since g.c.d. (Cl' R) = 1, Cl -l(mod R) can be calculated, and

(-1 -1)ml = Cl x - Cl C2m2 mod R

defines ml in terms of a linear congruence relation in m2, which has a unique
solution in the range a ~ ml ~ Ml, a ~ m2 ~ M2.

We first note that the ai j must be large enough to make the search for k such
that

g.c.d.(C i - k, R) > 1

is impossible, since g.c.d.(Cl - a", R) = Pl

and g.c.d.(Cl - a21, R) = P2
for example.

However, making the ai j large decreases the Mi with a resultant increase
in message expansion. Thus, with the primes about 100 digits and the ai j about 15
digits a 17% expansion occurs.

5

Kochanski (1980) suggests a linear change of variable from Cl, C2 into C" C2,
where C, and C2are such that

ClMl + C2M2 < R

in which case the solution {Ml, M2} is easily obtained, from which the solution
to the original problem can be calculated.

Osgood (1979) defines b~ 0 ~. b ~ r as b ~ c2- l x (mod R), where x is the
encrypted message. He defines d = -clc 2- l (mod R) and notes that the original
messages ml and m2 must be in the set (~, (b + ~d) mod R) with 0 ~ ~ ~ Ml and
o ~ (b + ~d) mod R ~ M2 and, by the uniqueness, there is only one pair
(~, (b + ~d) mod R) in this range. Let II frc(X) II be the smaller of frc(X) and
1 ~ frc(X), where frc(X) is the fractional part of X. Then the equation to be
solved is

This is a nonhomogeneous problem in diophantine approximation. He then approxi
mates d/R by continued fractions and shows that for almost all d/R a solution
to the equation is produced, which in turn produces the messages. Both of these
methods of cryptanalysis can be implemented to run with only a small amount of
increase in work over that required of the legitimate recipient.

Modifications of this method have been proposed, such as using three primes
and three coefficients, but these also appear to have weaknesses.

The general consensus is that this class of PKC's is at best marginal because
of the linearity and other structure present.

3. THE KNAPSACK PKC
Merkle and Hellman (1978) have used the knapsack problem from combinatorics

as a basis for a PKC. The general knapsack problem is known to belong to class
of hard problems called NP-complete, Kays (1972), but the cryptographic knapsack
is not known to belong to this class.
The Al gorithm

Merkle and Hellman (1978) describe an additive and a multiplicative knapsack
PKC. We restrict our attention here to the additive algorithm.

The user A generates a vector {ail such that
i

ai+l > j~laj' i = 1,2,n.

6

n
He then chooses m > Lai and Wwith g.c.d. (W,m) = 1 so that w- l mod m exists.

j=l

He then forms b. :: wa , (mod m) and checks to see that b. 1 Lb. for i = 1,2,n.
, , , jfi J

If this condition is met, he publishes the vector {bi}. He keeps secret {ai},
w, and m. Anyone wishing to send a message to A forms the binary message vector

m
x = {xi}' i = 1,2, ... ,n~ (xi = 0 or 1), calculates y = E xib i and sends y to A.
Then A calculates z = w-ly(mod m) from which he is thenlable to calculate x as

follows: Let Ci <lid mean Ci is the largest element of the set {Ci} which is

1ess than D.

Initialize:
{xk} = {O},

z = zo
repeat:

set xk = 1 if ak <Iz

and set z = z -a k,
(i = i+1)

until: z = O.
This terminates after at most n steps with the message vector X.

Cryptanalysis
It is easily seen that exhaustive search requires approximately 2n- l tests.

The best known algorithm requires 0 (2n/2) steps. Thus n must be sufficiently

large to preclude this attack.
This PKC is susceptible to the "par-tial ly known" plain text attack. If k of

the n bits are kept constant, where n-k is small, finding the additional n-k bits

would be quite easy. As an example, let n = 200, and suppose k = 180 corresponding

to a 30-letter signature. Then at most 210 combinations of the remaining bits would

need to be checked to get the entire message. Even if the k bits were shifted

in the message, an additional work factor of (n-k) would be all that was required
for decryption. Of course, this does not provide decryption for othel· messages.

Herlestrom (1978) has proposed a more general type of attack. He suggests

that the public key set {bi} be transformed by choosing B > Eb
i

and

g.c.d.(B, b,.) = 1 and forming coo:: b:lb.(mod B), i = 1,2, ... ,n; j = 1,2,n.
'J J'

7

If for some j, there exists an i = a, such that

c.> Ic .. ,
aJ ita'J

then the transformed encrypted message

bj1y(mod B)

is reduced to n-1 components. A similar transformation is performed on the
remaining n-1 coefficients, and the process continued until all are reduced. He
claims success in producing such a C j in a small number of B selections.a
However, no upper limit is established on the number of trials before a suitable
B is found. If the process of generating {Ci} from fbi} is random, the probability
of finding a suitable set {Ci} is 1/(n-2)~ at most. Thus, until the method is
tested over large sets (n>200), its effectiveness is dubious.

Another method which has been suggested is to pick numbers Pi' i = 1,2, ... n+k
and wi for i = 1,2, ... ,n+k, P1 = 1, w1 = 1 and form n+k equations in n unknowns as
foll ows:

w.b .
Let C.. = int (-l-p'), J .

J

w.y
and Yj = int (~.), j = 1,2, ... ,n+k.

J

Pick the equation with j = 1, and any n-1 equations from the n+k-1 remaining
e~uations and solve. For small n the method produces frequent solutions. Additional
testing for larger n is necessary before the feasibility can be established. In any
case, the method greatly increases the work factor.
Implementation

Merkle and Hellman (1978) suggest the following implementation for n = 100.
For larger n, the extension is clear. Choose ai randomly from the interval

Choose m in the interval (2201+1,2202+1) and w in the interval (2, m-2). Check to

insure that g.c.d. (w,m) = 1. Using these values, there is a slightly greater than
2 to 1 message expansion.

8

When the set bi =wai(mod m) is formed, it should be checked for possible
weakness such as having one number larger than the sum of the others, or having
possible geometric progressions between elements. Note that the published key for
this example has approximately 6100 decimal digits.

4. THE RSA PKC
In contrast to the Lu and Lee system, the RSA system has withstood attempts at

systematic cryptanalysis. However, the work toward breaking the system has been
fragmented leaving the question of the security of the system open. In the later
parts of this section we give suggested methods of attack and, in some cases, the
probability of success of the attack.
The System

If two users, A and B, wish to communicate using the RSA algorithm they
would do the following.

User A would choose two large primes PA and qA and form rA = PAqA' He
would then form ¢(rA) = (PA-l) (qA-l) and choose sA such that (sA' ¢(mA)) = 1.

He would then find t A such that sAtA = l(mod ¢(mA)). This is done using the
extended version of Euclid's algorithm (Knuth, 1969) which finds x and y such
that

x2 + Y Q (m) =1.
If x is positive, tA = x, otherwise

t A = Q (m) + x.

He would then tell B the values rA and sA'
Similarly, B would choose two large primes PB' qB and tell A the values rB and

A would block his message into groups of numbers XAi with XAi < rB and
transmit

sB _
XAi = VAi (mod rB).

t~
B would receive VAi and calculate VA; = XAi (mod rB) to obtain the message set
XAi . Similarly, B would transmit

sA _
XBi = VBi (mod rA)

9

to A, and A would recover the message XBi, calculating

t A_
YBi =XBi (mod r B).

It is important for A to keep PA' qA and tA secret and for B to keep PB' qB
and t B secret.

Since the encrypted messages and the messages are the same length «r), it is
apparent that only a small amount of message expansion is involved in this use of
the algorithm.
Implementing the Algorithm

The first step in implementing the algorithm is to find two primes Pl and P2'
The size of the primes determines the relative security of the algorithm, and for
minimal security 50 digit primes are suggested. Other restrictions on these primes
will be added in later sections discussing the cryptanalysis. The second step is
to select the encryption exponent, s , where s is relatively prime' to Pl-l and P2-1
and sufficiently large so that 2s > P1P2. Although any s satisfying these two
conditions is adequate, selecting s to be of the form 2k + 1 allows very efficient
encryption, (k + 1) multiplication and modulus reductions. For any s < P1P2, at
most 2 {1092P1P2} + 1 multiplication and reductions are needed. Additional restric
tions may be placed on s as will be seen later.

Since all of the arithmetic operations are multiple precision, it is necessary
to design efficient programs for the basic operations of addition, subtraction,
multiplication and division. Such routines have been developed under contract
for the Institute for Telecommunications Sciences (ITS) for use on COC-6600 seriesl,

or COC-750 series computers. Table 1 gives approximate timing for the operations
on the COC-6600.

lllCertain commercial equipment, instruments, or materials are identified in this
paper to specify adequately the experimental procedure. In no case does such
identification imply recommendation or endorsement by the National Telecommuni
cations and Information Administration, nor does it imply that the material or
equipment identified is necessarily the best available for the purpose. II

10

Table 1.

Operations/Second
Decimal
Di gits

200
1000

ADD
22,000
8,500

SUB
21,000
7,600

MULT
3,600

180

DIV
1,200

75

Thus, with a 200-decimal-digit modulus, it will be possible to encode or decode
one block (200 digits) in less than 2s. See Appendix B for some actual timings.
This equates to approximately 330 bits/s, which is slow for many applications.
As will be seen, certain applications will require double encryption and decryption
entailing further reductions in communication rates.

The same precautions that are observed when using a conventional crypto
system should be observed when using a PKC. For example, if the RSA-PKC is used
in the block mode, a few random bits should be used to pad each message segment
to avoid the possibility that an often-repeated segment can be obtained in plain
text through indirect means.

Two methods of distributing key systems for PKC·s have been proposed. The
first, a published directory, and the second, by key exchange through the informa
tion transmission medium. If active wiretapping is a possibility, the second
method negates any security inherent in the PKC. One possible solution to this
problem is to have a key verification center (Michelman, 1979). In what follows,
we will not consider this problem further, restricting our attention to
passive intercept.
Us ing the PKC IS

One of the most important applications of PKCls is for the distribution of
conventional keying material. This is so because of the combination of the
desirable feature of very high encryption and decryption rates achieved by the
conventional systems as compared to the PKCls and the undesirable problems asso
ciated with the key management for the conventional systems. User A wishes to
communicate with User B using DES with no prior DES key exchange. User A calls
user B and, using user Bls public key set, encrypts the information concerning the
use of the DES. This information would include a randomly generated number of at
least 64 bits for key use, and might contain information on the mode of DES
operation such as cipher-feedback, etc., and a seed variable, if applicable.

11

Users A and B are then able to use DES encryption for the further exchange of
information.

For protecting messages against possible changes and for providing some
authentication, the following procedures are recommended. Users A and B deter
mine which keying variable rA or r B is smaller, say, rA. User A sends message X

t
to user B by first encrypting X using his secret exponent t A to form X A = Z(mod rA)s
and then forming Z B= Y(mod rB) , a double encryption. User B decrypts using

t B sA
first Y = Z(mod rB) and then Z = X(mod rA). As long as user A1s secret keys
are known only to him, he would be the only one who could send this message, if
some precautions, such as numbering the messages are observed. Note that someone
intercepting the message could retransmit it later and have it accepted as
genuine if duplicate messages were allowed.

This scheme has been proposed by Simmons (1979) for use in transmitting
information from sensors used to monitor nuclear detonations. These sensors
would be installed in a foreign country, and the scheme would be used to insure
that the foreign country was not sending spurious information, while at the same
time allowing the foreign country to monitor the transmissions to insure that
the transmissions were not being used to convey information of a different
nature.

factoring the
been considered a
construction of

of cryptanalysis of an RSA-PKC is
knowledge that factoring has long
the considerations leading to the

Although at present it is thought extremely unlikely that the secret keys
can be obtained by cryptanalysis, the minute chance of success casts some doubt
on the acceptance of the above authentication method, even with modifications,
as a method for digital signatures. The fact that digital signatures, like
actual signatures, must be able to withstand legal tests as well as expert
scrutiny for long periods into the future makes quick adaptation unlikely,
except for special purposes.

For certain applications such as encrypting data for storage on tapes,
where there is no need to disclose any of the keying variables, much smaller
values can be used for the primes, allowing more rapid transmission rates. In
general, this application would be most appropriate for individuals or organizations
with infrequent encryption requirements.
Cryptanalysis

The most obvious method
public key component r. The
difficult problem was one of

12

the RSA-PKC. Appendix A gives an overview of factoring methods. It is shown
there that choosing primes p such that p ± have many small factors leads to more
rapid factoring algorithms. Consequently, in choosing the primes for the RSA
PKC, care must be exercised. Later in this chapter a method for choosing primes
is detailed.

The two primes chosen should be sufficiently different so that the differences
of-squares method of factoring does not work quickly.

With these precautions in selecting primes, none of the methods of factoring
r = P1 P2 given in Appendix A appears feasible for factoring an r of 200
decimal digits. However, as Guy (1975) points out, factoring large numbers is
like gambling, with the odds of success extremely small, but, with a lucky
guess, such as choosing the "right" k in the Morrison and Brillhart (1975)
method, success can be achieved by the cryptanalyst.

A second type of attack has been suggested by Simmons and Norris (1977)
with extensions by Her1estram (1978). The attack is as follows: For 1 < x < r-l,
define

E~(X) = XS mod r = Y1

E~(X) = (xs)s mod r = y~ mod r = Y2

n sn
Es(x) = x mod r

and for any polynomial P(t) = I aiti we have XP(s)
i=O

k .
= IT Es'(xai) (mod r).

i=l
Now, if

for some encryption exponent g, xg =y mod r and some polynomial P(t),

yp(g) =y (mod r), then we can find the original message, and in fact, with the
suggested selection of primes, we can factor r (Blakley and Blakley, 1978; 1979(a);
1979(b); Williams and Schmid, 1979). However, the selected primes insure that the
probability of a decryption by this method is extremely small.

The cryptanalyst knowing rand s has the potential for cataloging plain text
ciphertext pairs within practical storage limitations. Thus, if the message set

is limited, he has the potential for decrypting many of these messages without
attempting factoring or the other analysis methods discussed above. However, few
restrictions are placed on the choice of the encryption exponent s, and the calcu
lation of the decrypting exponent t involves about the same amount of work as

13

encrypting or decrypting a message making it possible to change s frequently. This
would require the recalculation of the entire catalogue that the cryptoanalyst had
stored each time s was changed.

Each of the above methods has a small chance of succeeding in a reasonable
amount of time. However, on the whole, the estimate of Rivest, et al (1978) of
the time required, 3.8xl09 years, to factor N of 200 digits, appears reasonable
within a factor of 10 or 102, which clearly places it in the unfeasible category.
Detailed Implementation of the Algorithm

In order to reduce the probability of success of the methods of attack formu
lated in the last section it is desirable to have a prime p such that p = 2pl+l
Where pI is prime and such that p + 1 has a large prime factor. First select two
random primes, a, S, of about 50 digits. Find ¢ such that

¢S == -1 (mod a) o < ¢ < a, and form

k(2aS) + 2¢S + 1 = x(k) and

k(4aS) + 4¢S + 3 = x2(k) = 2x l + 1

and increase k until xl and x2 are both primes, xl(k) = pI and x2(k) = P. If no
such primes are found before k reaches a previously set limit, L, return to the
first step and find more (one or two) primes and repeat.

To test whether xl(k) and x2(k) are primes, first sieve the pairs xl(k) and
x2(k) using the 167 odd primes less than 1000. For the remaining pairs find those
that satisfy

and

x (k)-l
3 1 == l(mod xl(k))

xl(k)
3 == 1(mod x2(k)).

Since xl(k) - 1 = 2S(ka+w), we need
the methods in Appendix A. Note

It is then sufficient to prove xl(k) prime.
only to factor ka+w, or prove it prime using
that ka+w is approximately 50 digits.

We have placed only limited restrictions on the choice of the encryption
exponent. Williams and Schmid (1979) give a method for calculating a "good"
exponent, but the selection of the primes makes the probability of finding a "bad"
exponent extremely small so we shall not present the details here.

When encoding or decoding, the input data need to be arranged into blocks.
If only numerical information is transmitted, the block length can be either the

14

length of the number string or the length of r. For the 64 character set, it
may be convenient to block in 90-character strings corresponding to a typical
typed line length. This would be 540 bits or 163 digits, resulting in a message
expansion of about 23%. The user must determine the convenience and economy
tradeoffs.

The calculations of mS(mod r) are done (using multiple precision operations)
using the standard power raising techniques given in Rivest, et al (1978) and
Knuth (1969) among others.

5. REFERENCES
Blakley, B., and G.R. Blakley (1978), Security of number theoretic public key crypto

systems against random attack, I, Cryptologia 2(4), pp. 305-321.
Blakley, B., and G.R. Blakley (1979a), Security of number theoretic public key crypto

systems against random attack, II, Cryptologia 3(1), pp. 29-42.
Blakley, B., and G.R. Blakley (1979b), Security of number theoretic public key crypto

systems against random attack, III, Cryptologia 3(2), pp. 105-118.
Data Encryption Standard, (1977), National Bureau of Standards, Federal Information

Processing Standard Publication No. 46.
Diffie, W., and M.E. Hellman (1976), New directions in cryptography, IEEE Trans.

Inform. Theory, Vol. IT-22, Nov., pp. 644-654.
Guy, R.K. (1975), How to factor a number, Congressus Numerantium XVI, Proceedings

Fifth Manitoba Conference on Numerical Mathematics, Winnipeg, pp. 49-89.
Herlestrom, Tore (1978), Critical remarks on some public-key cryptosystems, BIT,

18, pp. 493-496.
Karp, R.M., (1972), Reducibility among combinatorial problems, in complexity of

computer computations, R.E. Miller and J.W. Thatcher (Eds.), New York,
Plenum, pp. 85-104.

Knuth, D.E. (1969), The Art of Computer Programming, Vol. II, Seminumerical
Algorithm, Addison-Wesley (Reading, MA).

Kochanski, M.J. (1980), Remarks on Lu and Lee's proposal for a public-key crypto
system, Cryptologic, Vol. 4, #4, October, pp. 204-207.

Lee, L.N. (1979), Note on cryptosystems Comsat Technical Review, Vol. 9, #2B,
Fall, pp. 717-721.

Lu, S.C., and L.N. Lee, (1979), A simple and effective Public-key crypto
system, Comsat Technical Review, Vol. 9, #1, pp. 15-24.

Merkle, R. (1978), Secure communication over insecure channels, Commun. ACM, Apr.,
pp. 294-299.

15

Merkle, R., and M.E. Hellman (1978), Hiding information and signatures in trap door
knapsacks, IEEE Trans. Inform. Theory, Vol. IT-24, Sept., pp. 525-530.

Michelman, E.H. (1979), The design and operation of public-key cryptosystems,
National Computer Conference, pp. 305-310.

Morrison, M.A., and J. Brillhart (1975), A method of factoring and the factorization
of F7, Math. Comp., 29~ pp. 183-205.

Osgood, C.F. (1979), Breaking a public key code using diophantine approximation,
Presented at the 1979 West Coast Number Theory Conference.

Popek, G.J., and C.S. Kline (1978), Encryption protocols, public-key algorithms.
and digital signatures in computer networks, Foundations of Secure
Computation, Section II, pp. 133-153.

Rabin, M.O. (1978), Digitalized signatures, Foundations of Secure Computation,
Section II, Academic Press, Inc., pp. 155-168.

Rivest, R.L., A. Shamir, and L. Adleman (1978), On digital signatures and public
key cryptosystems, Commun. ACM, Vol. 21, No.2, Feb., pp. 120-126.

Simmons, G.J. (1979), Message authentication without secrecy: A secure communi
cations problem uniquely solvable by asymmetric encryption techniques,
IEEE Publication 79CH 1476-1AES.

Simmons, G.J., and M.J. Norris (1977), Preliminary comments on the MIT public key
cryptosystems, Cryptologia, Vol. I, Oct., pp. 406-414.

Solovay, R. and V. Srassen (1977), A fast Monte Carlo test for primality, SIAM J.
of Computing, 6, pp. 84-85.

Williams, H.C., and B. Schmid (1979), Some remarks concerning the M.I.T. public
key crypto systems, BIT 19, pp. 525-538.

16

APPENDIX A. FACTORING

R.K. Guy (1975) has written an excellent summary of factoring methods. In
this appendix we concentrate on a few of these that appear most appropriate for
our application.

Traditionally the most difficult factoring problem is one where the number to
be factored has only a few large prime factors. In the present case we are most
concerned with numbers which are the product of two distinct prime factors, even
though other cases arise in proving a number to be prime.

Most factoring methods begin with instructions to test first whether any
primes Pi<b, where b is some preselected factorbound, divide the number N to be
factored. Since we know that N is a product of two large primes, this step is
eliminated. However, for other purposes, a factor base is useful, and should be
available. For a small bound on the factors, a simple sieve determined by a set of
arithmetic progressions is useful. The general form is given by (Lehmer, 1953) the
set of numbers Nsatisfying all of the relations

P.. (x) = m.x + a .. {~= 11,22,···k }
lJ 1 lJ J= " •.. ni

where the mi are relatively prime in pairs. One very useful case is sieving out
multiples of 2 and 3 by examining only those numbers of the form 6k~1. As an
example, this gives a set of 333 numbers less than 1000. Approximately half of
this set (167) are odd primes. Large numbers of such relations lead to very
complicated functions for programming on a general-purpose computer although
efficient special purpose equipment (Lehmer, 1966) has been constructed.

Squares play an important role in many factoring methods. If one can find
two numbers x and y with x2_y2=N and x-y~l, then N={x-y){x+y) and N is factored.
Similarly, if

and

i :: y2 (mod N)

1 < gcd{x-y,N) < (**)

then N is factored. Thus, many of the methods are designed to find x and y
satisfying (**).

The simplest method is to begin with [~J+l=A, and form [A2J-N=B and increase B
by consecutive odd increments (2A+2k+l) until B is a perfect square. In our
case, N=pq, q>p and the number of steps required is O{p) which is not feasible.
Even with sieving and computational shortcuts (Guy, 1975), it is not suitable
for p, q~lOO digits. The use of multipliers does offer the possibility of some

17

improvement. If q is approximately kP, or more generally if iq~kp, then kiN may
be rapidly factored into the factors kP and iq. Specifically, let i=1,2, ... and
j=1,2, ... [1092N]. Form iN and check if ([/iN]+j)2_ i N is a perfect square. If
[q/p] is not too large, we might expect success with reasonable sized i. However,
one can estimate the size of the i needed by considering the kt h convergent,
Ak/Bk in the continued fraction expansion of q/p; then i=AkoBk for some k, and i
is probably large. The best systematic attack of this type is described by
Lehman (1974) and requires O(Nl/3) steps.

A number of methods have developed around the idea of finding a sufficient
number of quadratic residues so that a perfect square can be formed. Thus, one
finds

x. 2
== a. (mod N), ,

until some set s of ai is such that

ITa. = B2 and,
a·ES,

1 < gcd (ITX i - B, N) < N
a. ES,

Morrison and Brillhart (1975) use the continued fraction expansion for /kN to
find the x. and a.. They only consider a,' that have prime factors belonging to, ,
a predetermined factor base, A. The exponents for each prime in A are calculated
modulo 2, forming a set of binary vectors which are used to determine the set of
ai whose product forms a square. This method is the fastest known general
factoring method and runs in O(iIl09N109109N) operations. The method appears to

be slowest when N is the product of two primes, and it seems to make little
difference in running time whether the two primes are close together or not.
The choice of the multiplier k is usually made by examining a number (~5000) of
Qm for each k and choosing that k which produces the largest number of factored
QI S • No a priori method of choosing k is known and a breakthrough in this area
might provide a much faster factoring algorithm. A considerable amount of work
has been done toward choosing appropriate factor bases, but this does not appear
to be promising for obtaining large reductions in the number of required operations.

18

Miller (1975) proposes using a set of small primes {Pi} i=1,2, ... k
and finding representations of N of the form

a.· e. B·.
N = TIP. 1J + (1) J TIP. 1J

1 1

If enough such representations can be found, a set of simultaneous equations can be
solved. Let Xo be the variable associated with -1, and Xi the variable
associated
with Pi. Then the sets of equations are of the form

k k
I a· .x. = e.X + I B· .X.•

;:::1 lJ 1 J 0 i=l lJ 1

j = 1,2,m,

with m~k+l. Usually a number of additional equations are needed since some of
those found may not be linearly independent. Once a solution is found, Nmay be
factored using the relation between the solution and ¢(N). The biggest drawback to
this method is the lack of a systematic way of finding the representations of N.
Further work on this method may produce surprising results.

Pollard (1975) describes what he calls a "Monte Carlo" method. The name came
from the (hoped-for) similarity of the functions to random-number generating
functions. Let

Then there exists m such that

Xn+m = Xm for all n > no'

If pis the smallest prime divi di ng N and if f is "suffi ci ently random, II then for
some m, g.c.d.(X2m-Xm, N) > 1. If g.c.d.(X2m-Xm, N) t N'la divisor of N has been found.
Under certain assumptions Pollard (1975) shows that m=O(p /2). The least number m
that yields a divisor consists of two parts, a tail and a periodic part. Certain
functions are known to be "bad" for this factoring algorithm since they have a
maximum length period. The two functions Xm+l=(X~±l) with Xo=2 as a starting value
have been the most thoroughly investigated. Guy (1975) gives tables showing the

largest m for primes up to 106 and these are approximately equal to Ip~np. However,

in this context, it should be noted that it is seldom the case that m is this large
for both f(x)=X 2+1 and f(x)=X 2-1 even when X =2 is used, and for some values of Xo 0

19

it can be very small, for example if one is lucky enough to choose Xo~± mod p or
Xo~±l mod q. However, the probability of this happening is extremely small for
large p and q. Brent (1980) has described a new cycle finding algorithm which
reduces the constant in Pollard's algorithm and uses higher order polynomials for
some special cases. However, the use of higher order polynomials for f(x), which
offers the potential of much smaller m, has usually been rejected because of the
increased number of operations required to calculate each Xi' which offsets any
benefit of short cycles. The special cases Brent (1980) considers are for numbers
for which it is known that the prime satisfies p=l (mod m) and then the function
f(x)=xm-l is used. For the cases we are interested in, no such relation is known,
and is prohibited if the primes are chosen as suggested. Brent1s cycle finding
routine is

y. x
o;

r := 1;

q 1;

repeat
x := y;

for i := 1 to r do y. f(y);
k := 0;

repeat
ys := y;
for i := 1 to min (m, r-k) do

begin
y. f(y);

q := q Ix"yl mod N
end;

G := GCD(q,N);
k := k+m

unti 1 (k ~ r) or (G > 1);

r := 2xr
until G > 1;

if G = N then
repeat

ys :=f(ys);

G := GCD(lx-ys! ,N)
until G > 1;

if G = N then {failure} else {success}.
20

In the section on the RSA PKC, a method of attack [proposed by Simmons and
Norris (1977) and Herlestrom (1978)J which could lead to factoring was given
with a method of selecting primes which makes the probability of success of
such an attack small. This requires a proof that the numbers selected are primes.
Two methods of doing this are described here.

The first method (Brillhart et al. 1975) of proving Na prime
is based on a factorizing of N-l. If N is a prime, and l<a<N-l,

aN- l
== 1 (mod N) *

If there is an a that satisfies*, we say N is a pseudo prime to the base a,
abbreviated N is a pspa. If there is an a, l<a<N-l, such that aN- l t 1 mod N,
then N is composite. For most composite numbers this is true.
Step 1 - Factoring N-l a.

We now write N-l=FR, where F is completely factored, F=rrPi' with Pi distinct
primes and g.c.d.(F,R)=l. It is often the case that a number of factors of N-l can
be found easily. If (N/2)1/3/F is small, say less than m, then test to see if kF+l

"

divides N-l, for k=1,2, ... m-l. If so, another factor is obtained and F is
increased. If not, proceed to step 2. If F is not large, it is necessary to
examine R for factors. If R can be proved prime, then N-l is completely factored.
If it proves difficult factoring N-l, use the second method.
Step 2

If N-l is completely factored, or factored as just described, it is sufficient
to find an ai for each Pi which divides F, so that N is a pspai and

9.c.d.(ai(N-l)/Pi-l,N) = 1,

s = 0, or r2 - 8s is
a square, where rand s are defined by (N-l)/F=2Fs+r, l~r<F.

The ai can be found by choosing a so that (aIN)=-l, where (aIN) is the Jacobi
symbol, and checking if

aN- l
== 1 (mod N) (1*)

and a(N-l)/Pi == b. == 1 (moo N). (2*),
If 2* is not satisfied for some Pi' find a new a. Such a's constitute a large
percentage of the numbers l<a<N-l whenever N is a prime.

21

The second method is Rabin1s (1980) modification of the algorithms of Solovay
and Strassen (1977) and Miller (1976). Although no proof exists3 that this method
proves that a number is prime, it may be adequate for this application. The
algorithm follows.
1. Test N for small prime divisors. If none is found go to 2.
2. Choose b randomly from l<b<N.
3. Calculate bn- l (mod N)=C. If Cfl, N is composite. If C=l, go to 4.

4. Calculate N-l=2 km, where m is odd, and
Xo = bm(mod N),

X. ~ x? 1 (mod N), lsisk.
1 1-

If, for some i, Xi_l=N-l, and Xi=l, then N is composite.
5. If N is not shown composite above, return to 2 and choose another b. Repeat

until N is shown composite, or j times. After j repeats, the probability that
choosing N as a prime when actually it is composite is less than 1/22j. Note
that this is not the probability that N is composite since it is either
composite or not. Taking j=50 should usually suffic~.

The effects of implementing the RSA-PKC with two numbers Pl and P2 thought to
be primes, but actually composite, are illustrated by Blakely and Blakely (1979).
In most cases, the error is discovered by encrypting and decrypting several
messages.

The methods given in this appendix portray a difficult, but not impossible,
task for the cryptanalyst.

APPENDIX A. REFERENCES
Blakley, B., and G.R. Blakley (1979b), Security of number theoretic public key crypto

systems against random attack, III, Cryptologia 3(2), pp. 105-118.
Brent, R.P. (1980), An improved Monte Carlo factorization algorithm BIT 20,

pp. 176-184.
Brillhart, J., D.H. Lehmer, and J.L. Selfridge (1975), New primality criteria and

factorization of 2m~1, Math. Comp., 29, pp. 620-647.
Guy, R.K. (1975), How to factor a number, Congressus Numerantium XVI, Proceedings

Fifth Manitoba Conference on Numerical Mathematics, Winnipeg, pp. 49-89.

3It has been reported (Science, 1980) that such a proof has been given, although I
am not aware of its publication as of this date.

22

Herlestrom, Tore (1978), Critical remarks on some public-key cryptosystems, BIT,
18, pp. 493-496.

lehman, S. (1974), Factoring large integers, Math. Comp., 28, pp. 637-646.
lehmer, D.H. (1953), The sieve problem for all-purpose computers, Math. Comp., 7,

pp. 6-14.
lehmer, D.H. (1966), An announcement concerning the delay line sieve, DLS-127,

Math. Comp., 20, pp. 645-646.
Miller, G.l. (1976), Riemann's hypothesis and tests for primality, Jour. Computer

and System Science 13, pp. 300-317.
Miller, J.C.P. (1975), On factorization, with a suggested new approach, Math. Comp.,

29, pp. 155-172.
Morrison, M.A., and J. Brillhart (1975), A method of factoring and the factorization

of F7, Math. Comp., 29, pp. 183-205.
Pollard, J.M. (1975), A Monte Carlo method for factorization, Nordisk Tidski

Informationsbehandling (BIT), 15, pp. 331-334.
Rabin, M.O. (1980), Probabilistic algorithm for testing primality, Journal of

Number Theory, 12, pp. 128-138.
Simmons, G.J., and M.J. Norris (1977), Preliminary comments on the MIT public key

cryptosystems, Cryptologia, Vol. I, Oct., pp. 406-414.
Solovay, R. and V. Strassen (1977), A fast Monte Carlo test for primality, SIAM J.

of Computing, 6, pp. 84-85.

23

APPENDIX B. EXAMPLES

The first example is a small example of the knapsack PKC. The original set
is given by

a~ = 2a. + 3, i = 1,2, ... ,8;
1 1

a, = 2.

Although this is a small set, it will illustrate the method. We form the new set

ai = l019ai (mod 2111)

glvlng the first row in Table B-1. S is the sum of the odd numbered ai. The rows
below 8419 give the values

b.. :: W.a. :: 1 (mod 8419) i = 1,2, ... ,8
" 1 1

b.. :: W.a. (mod 8419) j r ilJ 1 1

Si :: WiS (mod 8419)

following the method of attack suggested by Herelstrom (1978).
17389 give the same reduction using (Modulo 17389). It is seen

b .. > l bk··lJ kri J

The rows below
that none satisfy

A total of 32 different moduli were tested with no success. Other, larger examples
were also tested with an extremely small ratio of successes.
Some Examples of Implementation of the RSA-PKC

Table B-2 gives some examples of primes found using the methods described in
Section 4. Note that the input primes in examples 4 and 5 and those in 6 and 7
are reversed, resulting in greatly different execution times.

Two l20-digit primes were found by using p and q and the reverse pair. The
run times were 243.543 sand 1157.057 s, the longest time required for any run.
The k required was approximately 122000 for this case. Thus, it appears that, if
one pair does not give a prime in a reasonable time, the ~everse pair should be
used.

Table B-3 shows an example of encryption and decryption using the RSA-PKC with
a 55-digit modulus. In this example, the message characters are converted to a 2-

digit number and encrypted in blocks of 54 digits. The same message is encoded in

each case, except for an added space at the beginning of the message for each

repeat. Note the difference in the coded output blocks. The computer time required
for this example was 1.529 seconds. Examples with a modulus of 210 digits were

24

Table B-1. An Example of a Knapsack PKC and One Possible Cryptanalysis Method

AI

20:3:=:

A·-·..!.

800

A·.,.,.::;;

435

A4

1816

A5

356

A6

1658

A7

40

A8

1026

s

2869

:::41'~1

1 5916 595:3 2c,5:3 2801 47c,:::: 70:31 4809 7367
4191 1 :352c. 5(:.4:::: 2'r05 4401 421 7852 2624
24E:2 776 1 1088 6407 5481 1::.,774 6215 7245
76::::2 8234 4372 1 1:391 245::: 6305 :3867 2862

526 5205 7829 6:343 1 7525 2365 :3834 2302
7100 1209 2920 2997 1422 1 3849 4855 6872
8049 20 3168 3413 7586 :3830 1 5498 1961::.,
5828 2643 7804 4400 8206 5204 1:395 1 6395

17389
1 c··-:··-··~ 1920 :320 9966 16912 7372 11724 1870'_'._I.Jt:..._,

14305 1 :=::369 9914 :=:6(1:3 10:392 9564 12::::04 6068
15315 12:394 1 3442 60::::7 15514 12792 111::..:35 16756
2778 7::::14 12726 1 2260 13847 1256:3 17064 12938
244·8 7036 5130 7625 1 14756 14263 8502 4453
881~5 420 2402 7909 158::::7 1 21 :3147 9766
7876 20 10875"' 7001 15659 11::..561 1 26:34 17026

121::::7 12068 1780 5:::32 16847 11:3::: 755'7 1 :3545

25

N
0'1

Table B-2. Examples of Timing for Finding Primes for Use in the RSA-PKC

Input Time Output
P pi
Q 2P 1+1

28001 0.673 CP s 40 1125581401
46447 80 2251162803

32609 1. 613 CP s 328 6366585511
48611 657 2733171 023

328 63665 85511 0.527 CP s 47088895 2578307107 2006468109
657 27331 71023 94177790 5156614214 4012936219

40 11255 81401 1.35 CP s 3095749 3247283877 1491251281
80 22511 62803 6191498 6494567754 2982502563

80 22511 62803 14.955 CP s 44492546 9477078230 9790469083
40 11255 81401 88985093 8954156461 9580938167

61 91498 64945 67754 29825 02563 13.844 CP s 15310861 4171742946 0134117505 3359153702 1119121215 0316230689
30 9574932472 83877 14912 51281 30621722 8343485892 0268235010 6718307404 2238242430 0632461379

30 95749 32472 83877 14912 51281 39.505 CP s 47339466 1093353440 2402658255 7268355969 5853426706 9186042569
61 91498 64945 67754 29825 02563 94678932 2186706880 4805316511 4536711939 1706853413 8372085139

3095749 32472 83877 14912 51281 26.351 CP s 196243056 4980088950 6001854158 5602538829 8437364072 4590910843
470 88895 25783 07107 20064 68109 392486112 9960177901 2003708317 1205077659 6874728144 9181821687

Table B-3. An Illustration of One Implementation of the RSA-PKC

BLKSIZE
54.

ENCODING EXPONENT
163819.

DECODING EXPONENT
5924 7541203997 5114808016 8158247361 3334064474 9569121539.

MODULUS
14577 5415696635 2012326857 6183254506 6494747473 7831897629.

INPUT TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE.

CODED BLOCKS
0341869831 4622250089 4123889061 1993100657 7039316148 47840
0319917704 5864601692 4481698538 7419748994 9337933862 88678

DECODED TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE

INPUT TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE.

CODED BLOCKS
0783913903 5985985343 8844379574 5230255343 1160651772 43501
0394977824 5790857971 9330064353 9487972442 2608759355 64592

DECODED TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE

INPUT TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE.

CODED BLOCKS
0819819166 6210244319 0649191255 8791622974 7662566782 18925
0904535100 9514469651 6954870403 7524057453 2423031586 09977
0403096251 6564720351 6140109090 5341670035 5575349323 22997

DECODED TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE

INPUT TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE.

CODED BLOCKS
0865904713 0411130643 7207784950 7199139875 0354315449 68896
0203655645 7888476912 6183150526 2165847252 6985926850 20809
0648393067 0371315329 4275471784 1465460103 3944600613 62429

DECODED TEXT
EACH SUCEEDING MESSAGE WILL START WITH AN EXTRA SPACE

27

run, with an average time of 0.83 s for encoding and decoding the 105-character
message. This would correspond to a bit rate of approximately 759 b/s.
Some Examples of Factoring

We present examples of several of the factoring methods here, using the number
N= 267997 = 263·1019 = PQ.

1. Find ([/kNJ + j)2 =x2 (mod N) such that X2
< N.

Tabl e B-4 lists the k and j, with j < 100 for the first 12 occurrances.

Tabl e B-4. An Example of Factoring Using ([/kN] + j)2 - i (mod N)

k j k j

3 8 20 19
5 10 21 77

7 61 24 61
8 81 27 23

12 15 33 2
16 1 39 6

2. Using Pollard's (1975) Monte Carlo method, the "epact" is listed in
Table 8-5 for several functions and several starting values. Here,
Xm = f(Xm_ l) mod p and the epact is that m such that X2m = Xm.

Table 8-5. Epacts for 263 and 1019

f(x) Xo

2

7

2

7

263

4

11

25
25

1019

39
31

15
7

3. A partial example of the Morrison and Brillhart (1975) method is shown
in Table 8-6. The table consists of three parts, each containing A 1 and Qn- n
needed for the relationship A2 k =X (mod N) and the auxiliary numbers for then- n

28

Table 8-6. The Continued Fraction Expansion Ik·267997
Factored

n g±P Qn s Rn An-l Qnn n
-1 RN 9 0

1 1034 708 1 326 517 22 ·3·59
2 708 327 2 54 518 3·109
3 980 164 5 160 1553 22.41
4 874 857 1 17 8283 857

k ::; 1 5 1017 21 48 9 9836 3·7
6 1025 473 2 79 212414 11·43
7 955 161 5 150 166667 7·23
8 884 828 1 56 241758 22·i.23

9 978 67 14 40 140428 67
10 994 604 1 390 63774 22. 151

1 1792 1175 1 617 896 52.47

2 1175 618 1 '557 897 2·3·103
3 1235 1115 1 120 1793 5·223
4 1672 181 9 43 2690 181

k =: 3 5 1749 422 4 61 26003 2·211
6 1731 253 6 213 106702 11·23

7 1579 1334 1 245 130221 2·23·29

8 1547 285 5 122 236923 5·57
9 1670 719 2 232 242848 719

10 1560 505 3 45 186625 5·101

1 2070 763 2 544 1035 7·109
2 1526 1089 1 437 2071 32.11 2

3 1633 656 2 321 3106 24.41

4 1749 857 2 35 8283 857

k ::: 4 5 2035 84 24 19 19672 22 ·3· 7

6 2051 473 4 159 212414 11·43

7 1911 644 2 623 65337 22 ·7·23

8 1447 1401 1 46 75091 3·467

9 2024 67 30 14 140428 67
10 441 267976 32.7 2

29

continued fraction expansion of kN, for k = 1,3,4. The numbers are computed
from the relations

[AN] = 9

9 + Pn = snQn + Rn

9 + Pn+l = 2g - Rn

Qn+l = Qn-l + sn(Rn-Rn_ l)

An = snAn_l + An-2 (mod N)

with the initial values

A_ 2 = 0, A_ l = 1, Q-l = kn, R_ l = g, Po = 0, and Qo = 1.

For each k, values of An and Qn were calculated up to n = 20. For k = 1 and 3,

no set of factored QI S satisfied
1 < g. c. d (ITA. 1 ± rrrQ., N) < n.1- v ll '{ ,

However, for k = 4, we find, for n = 2, Ai-JO; = 2·1019 which factors N.
This is fortuitous, and hence does not require keeping the factors table

/ which is usually required (see Morrison and Brillhart, (1975), for details). How
ever, it does illustrate what a lucky choice of k can produce.

APPENDIX B. REFERENCES
Herlestrom, Tore (1978), Critical remarks on some public-key cryptosystems, BIT,

18, pp. 493-496.
Morrison, M.A., and J. Brillhart (1975), A method of factoring and the factorization

of F7, Math. Comp., 29, pp. 183-205.
Pollard, J.M. (1975), A Monte Carlo method for factorization, Nordisk Tidski

Informationsbehandling (BIT), 15, pp. 331-334.

30

APPENDIX C. MULTIPLE PRECISION SUBROUTINES

Initializes the dynamic storage parameters and the reserve MP array.
Necessarily, it must be the first MP routine called.
Initializes an MP number to a desired value in the rangeMPSET

The package of 31 subroutines described below was written in Compass and
Fortran extended for use on the CDC 6600, CDC 7600, and CYBER 71/170 series
computers. It was designed and written for speed and ease of use. All subroutines
are Fortran callable.

The subroutines permit the user to work with integer variables and integer con
stants of arbitrary size (limited only by the the available memory). These multi
precision (MP) integers are represented by regular Fortran integer variables,
thereby freeing the user from concerns such as storage space and internal structures.
The only special requirement is for a reserved MP array (defined once in the main
program) where all MP numbers can reside.

This section will identify all 31 subroutines, the category to which each
belongs, and the basic operation or function performed by each.
INITIALIZATION

MPINIT

-(2**59 - 1) to 2**59 - 1.

MPOUT

INPUT/OUTPUT
MPIN Reads an arbitrarily large integer from logical unit 5 and sets a

specific MP number to this value.
Outputs a specific MP number of arbitrary length to logical unit 6,
while allowing control over which columns are to contain the output
digits. A 10-character identifier may also be printed.

STANDARD ARITHMETIC
MPADD Places the sum of two MP numbers in a third MP number.
MPSUB Places the difference of two MP numbers in a third MP number
MPMULT Places the product of two MP numbers in a third MP number
MPDIV Determines both the quotient and the remainder resulting from

the division of two MP numbers.
MODULAR ARITHMETIC

For all of the routines in this category, it is necessary to provide a non-zero
MP number Nas modulus.
MPMODAD Places the sum (modulo N) of two MP numbers in a third MP number.
MPMODSB Places the difference (modulo N) of two MP numbers in a third MP

number.

MPMODML Places the product (modulo N) of two MP numbers in a third MP number.

31

MPMODDV Determines whether the quotient (modulo N) of two MP numbers exists,
and if it does, places the quotient in a third MP number

MPMODPW Determines the result of raising (modulo N) one MP number to a power
represented by another MP number. The result is placed in a third
MP number.

NUMBER MANIPULATION
MPMOVE Sets one MP number equal to another MP number.
MPSWAP Interchanges the values of two MP numbers.
MPSHFTL Multiplies one MP number by a given integer power of 2 and places

the result in a second MP number (Thus performing a left shift for
positive powers).

MPSHFTR Divides one MP number by a given integer power of 2 and places the
quotient in a second MP number (thus performing a right shift for
positive powers).

MPCMP Compares the values of two MP numbers and returns the result
(<, =, or >) in a regular (non-MP) integer variable.

MPLEN Returns (in two regular integer variables) the current length in
words and the physical length in words of a given MP number.

MPGETWD Returns in a regular integer variable the value of a specific word
of a given MP number.

SIGN MANIPULATION
MPSIGN Returns in a regular integer variable the sign (either -1, 0, or 1)

of a given MP number.
MPABS Changes (if necessary) the sign of a given MP number to yield a

positive number (thus an absolute value routine).
MPCHGS Changes the sign of a given MP number.

SPECIAL FUNCTIONS
MPSQRT Places the square root of a given MP number in a second MP number.
MPGCD Places the greatest common divisor (g.c.d.) of two MP numbers in a

third MP number.
MPGCDXY Places the g.c.d. of two MP numbers (say A and B) into a third MP

number (say C). In addition, it returns two MP numbers Xand Y
with the property that A*X + B*Y = C.

STORAGE AND ERROR MANIPULATION
There should be little need for the user to call the routines listed under this
category, since they are all called automatically when needed.

32

MPALLOC

MPFREE
MPPACK

MPSQEEZ

MPERROR

Establishes a contiguous block in the reserved MP array for storage
of a given MP number.
Releases the assignment of a block in the reserved MP array.
Repositions within the reserved MP array all currently assigned
blocks so that they are contiguous.
Reduces the space allocated to each MP number so that its physical
length is only 1 more than its current length. After this it
repacks the reserved MP array.
Outputs error messages to logical unit 6 and then either returns
control to the calling subroutine or halts execution of the main
program.

33

FORM NTIA-29 U.S. DEPARTMENT OF COMMERCE
(4-80) NAT"L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO. 2. Gov't Accession No. 3. Recipient's Accession No.

NTIA Report 81-79
4. TITLE AND SUBTITLE 5. Publication Date

A CRITIQUE OF SOME PUBLIC-KEY CRYPTOSYSTEMS August 1981
6. Performing Organization Code

7. AUTHOR(S) 9. Project/Task/Work Unit No.

Wi 11 i am J. Hartman
8. PERFORMING ORGANIZATION NAME AND ADDRESS

U.S. Department of Commerce
National Telecommunications and Information Admin. 10. Contract/Grant No.

Institute for Telecommunication Sciences
325 Broadwav Boulder. Colorado 8030
11. Sponsoring Organization Name and Address 12. Type of Report and Period Covered

NTIAjITS
325 Broadway
Boulder, CO 80303 13.

14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature
survey, mention it here.)

Severa1 of the public-key cryptosystems that received considerable
publicity are examined. The uses, implementation, and potential crypto-
analytic attacks are discussed. Since most of the suggested systems depend
on the manipulation of large numbers, special multi precision computer pro-
grams have been developed to demonstrate system implementation and crypt-
analytic attacks. Examples of the use and timing of these programs are
included.

16. Key Words (Alphabetical order, separated by semicolons}

Public-key; number theory; cryptology; algorithms

17. AVAILABILITY STATEMENT 18. Security Class. (This report) 20. Number of pages

~ UNLIMITED. Unclassified 45
19. Security Class. (This page) 21. Price:

0 FOR OFFICIAL DISTRIBUTION.

Unclassified

*u.s.Government Printing Office: 1980-678·495/529

