Selective Fading on a Long 8 GHz Line-of-Sight Path in Europe

L.G. Hause

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary

Bernard J. Wunder, Jr., Assistant Secretary for Communications and Information

September 1981

		Page	
ABS	STRACT	1	
1.	INTRODUCTION	1	
2.	PREVIOUS WORK		
3.	INSTRUMENTATION AND TEST OPERATIONS	5	
4.	DATA DIGITIZATION AND ANALYSIS	16	
5.	RESULTS		
	5.1 Heavy Fading Period	19	
	5.2 Moderate Fading Period	21	
	5.3 Light Fading Period	22	
6.	CONCLUSIONS	22	
7.	REFERENCES		

LIST OF FIGURES

			Page
Figure	1.	Line-of-sight microwave links converging at Mt. Corna, Italy.	Ž
Figure	2.	Chronological occurrence of each data category for the path from Mt. Paganella to Mt. Corna.	6
Figure	3.	Chronological occurrence of each data category for the path from Mt. Venda to Mt. Corna.	7
Figure	4.	Chronological occurrence of each data category for the path from Mt. Cimone to Mt. Corna.	8
Figure	5.	Instrumentation used to measure and record selective fading at Mt. Corna.	10
Figure	6.	Fade depth distortion comparison for time period of 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna.	26
Figure	7.	Fade depth distortion comparison for time period of 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna.	27
Figure	8.	Differences between reference sweep and the sweep value from May 29, 02-18-10 to 02-19-20.	28
Figure	9.	Typical analog representation of the IF spectral density function.	29
Figure	10.	Fade Depth Distortion Comparison (Slopes only) for time period of 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna.	30
Figure	11.	Fade Depth Distortion Comparison (Slopes only) for time period of 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna.	31
Figure	12.	Correlation of spectrum amplitude distortion to fade depth for 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna.	32
Figure	13.	Correlation of spectrum amplitude distortion to fade depth for 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna.	33
Figure	14.	Correlation of spectrum amplitude distortion to fade depth for 28-29 May 1980, 2300-0400, Mt. Venda to Mt. Corna.	34
Figure	15.	Correlation of spectrum amplitude distortion (slopes only) to fade depth for 28-29 May 1980. 2300-0400. Mt. Venda to Mt. Corna.	35
Figure	16.	Fade Depth Distortion Comparison (Slopes only) for time period of 13 May 1980, 0100-0200, Mt. Venda to Mt. Corna.	36
Figure	17.	Fade Depth Distortion Comparison (Slopes only) for time period of 13 May 1980, 0200-0300, Mt. Venda to Mt. Corna.	37
Figure	18.	Correlation of spectrum amplitude distortion to fade depth for slopes only, 12-13 May 1980, 2300-0400, Mt. Venda to Mt. Corna.	38
Figure	19.	Correlation of spectrum amplitude distortion to fade depth for 13-14 May 1980, 2200-0300, Mt. Venda to Mt. Corna.	39
Figure	20.	Cumulative distortion distribution (slopes only), Venda-Corna, 28-29 May 1980, 2300-0400 hours.	40

i٧

			Page
Table	1.	Instrumentation Purposes	11
Table	2.	Instrumentation Identification	12
Table	3.	Major Instrumentation Interconnections	13
Table	4.	Spectrum Analyzer Setting for Normal Operations	15
Table	5.	Typical Spectral Density Representation	17
Table	6.	Cumulative Distortion Distribution For 29 May 1980, 2300-0400. Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)	41
Table	7.	Cumulative Distortion Distribution For 28 May 1980, 2300-2400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)	42
Table	8.	Cumulative Distortion Distribution For 29 May 1980, 0000-0100, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)	43
Table	9.	Cumulative Distortion Distribution For 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)	44
Table	10.	Cumulative Distortion Distribution For 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)	45
Table	11.	Cumulative Distortion Distribution For 29 May 1980, 0300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)	56
Table	12.	Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980	47
Table	13.	Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980	51
Table	14.	Cumulative Distortion Distribution (slopes only) For 28-29 May 1980 2300-0400, Mt. Venda to Mt Corna, Standard Spectrum Sweep 1 24 8	54
Table	15.	Cumulative Distortion Distribution (slopes only) For 28 May 1980 2300-2400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8	55
Table	16.	Cumulative Distortion Distribution (slopes only) For 29 May 1980 0000-0100, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8	56
Table	17.	Cumulative Distortion Distribution (slopes only) For 29 May 1980 0100-0200, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8	57
Table	18.	Cumulative Distortion Distribution (slopes only) For 29 May 1980 0200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8	58

LIST OF TABLES (Cont.)

		Page
Table 19.	Cumulative Distortion Distribution (slopes only) For 29 May 1980 0300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8	59
Table 20.	Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Slopes Only	60
Table 21.	Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 24 8, Slopes Only	63
Table 22.	Event Occurrences during the 28-29 May 2300-0400 Data Period	65
Table 23.	Sweeps Showing Distortion Greater than 0.5 dB/MHz on the Primary Receiver	66
Table 24.	Sweeps Showing Distortion Greater than 0.5 dB/MHz on the Diversity Receiver	67
Table 25.	Sweeps Showing Flat Fading Greater than 35 dB	68
Table 26.	Cumulative Distortion Distribution (Slopes only) for 12-13 May 1980, 2300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	69
Table 27.	Cumulative Distortion Distribution (Slopes only) for 12 May 1980, 2300-2400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	70
Table 28.	Cumulative Distortion Distribution (Slopes only) for 13 May 1980, 0000-0100, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	71
Table 29.	Cumulative Distortion Distribution (Slopes only) for 13 May 1980, 0100-0200, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	72
Table 30.	Cumulative Distortion Distribution (Slopes only) for 13 May 1980, 0200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	73
Table 31.	Cumulative Distortion Distribution (Slopes only) for 13 May 1980, 0300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	74
Table 32.	Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep O 1 15, Mt. Venda to Mt. Corna, 12-13 May 1980 (Slopes only)	75
Table 33.	Distribution of Distortion Eyent Durations and Intervals Between Eyents for the Diversity Receiver using Standard Sweep 1 0 15, Mt. Venda to Mt. Corna, 12-13 May 1980 (Slopes only)	77
Table 34.	Event Occurrences during the 12-13 May 2300-0400 Data Period	79

LIST OF TABLES (Cont.)

		Page
Table 35.	Sweep Showing Distortion Greater than 0.5 dB/MHz on the Primary Receiver	80
Table 36.	Sweeps Showing Distortion Greater than 0.5 dB/MHz on the Diversity Receiver	81
Table 37.	Sweeps Showing Flat Fading Greater than 25 dB	82
Table 38.	Cumulative Distortion Distribution for 13-14 May 1980, 2200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 0 0 54 (Distortion Values Include Nulls)	83
Table 39.	Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver, Using Standard Sweep 0 0 54, Mt. Venda to Mt. Corna, 13-14 May 1980	84
Table 40.	Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver, using Standard Sweep 0 0 54, Mt. Venda to Mt. Corna, 13-14 May 1980	85
Table 41.	Event Occurrences during the 13-14 May 2200-0300 Data Period	86

vii

SELECTIVE FADING ON A LONG 8 GHz LINE-OF-SIGHT PATH IN EUROPE

L.G. Hause*

This report presents the description, analysis and results of a set of measurements made on a 90 km line-of-sight path in Italy. The measurements were made during the late spring of 1980 by the National Telecommunications and Information Administration under the sponsorship of the Defense Communication Engineering Center, Reston, VA.

Received signal level and IF spectrum were measured to obtain statistics about the distortion of the frequency spectrum amplitude during periods of multipath fading. Digital format violation and reframe events were monitored to measure the tolerance of the 3-levelpartial-response radios (12.6 Mb/s) to this distortion.

A number of interesting results were observed from the data analysis. Large values of spectrum amplitude distortion, greater than 1 dB/MHz, were observed during multipath fading events due to nulls in the path frequency response. Diversity reception looks very promising for counteracting these larger magnitude distortion effects. Multipath received-signal-level statistics can be used to predict the frequency and severity of in-band-fading distortion on line-of-sight paths. Frequency selective fading develops and subsides at low rates, often over a period longer than one minute. It was found that the 3level-partial-response radios were robust in the presence of amplitude distortion suffering insignificant outage time from this cause.

Key words: digital radio; diversity; microwave radio; multipath distortion; selective fading

1. INTRODUCTION

Multipath fading in line-of-sight (LOS) links is known to cause short-term outages when the signals from both the primary and diversity radio simultaneously fade below the bit error rate threshold. In addition, outages have been observed which occur at relatively high received signal levels. These outages are often attributable to in-band (selective) fading.

To obtain statistics on selective fading and relate them to received-signallevel (RSL) fading information (these terms are defined on page 3), the Defense Communication Engineering Center (DCEC) provided the Institute for Telecommunication Sciences (ITS) with a contract to obtain these statistics. The project consisted of a 2-month test during the spring of 1980 to assist in determining the effect of selective multipath fading on digital line-of-sight microwave links.

The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information Administration, U.S. Department of Commerce, Boulder, Colorado 80303.

Figure 1. Line-of-sight microwave links converging at Mt. Corna, Italy.

Data were collected primarily on the Venda-Corna LOS link of the Digital European Backbone Stage I (DEB I) where ITS had instrumentation installed for another test program (see Figure 1). Results are intended for improving performance and design criteria for wideband, digital LOS links.

The 8.3 GHz, dual space diversity link tested has more than adequate clearance and passes over average terrain. The terrain is moderately rough in north central Italy well inland from the Mediterranean Sea. The elevation of Mt. Venda is 580 m above mean sea level (m.s.l.). Mt. Corna is 195 m above m.s.l. and most of the intervening terrain between the sites is less than 300 m above m.s.l. The data set was recorded on magnetic tape. It was then brought back to the ITS laboratories for digitizing and analysis.

Before discussing the measurements, it is useful to carefully define the parameters. Propagation caused amplitude distortion is defined as the ratio of the difference in loss in dB at two power spectrum frequencies to the frequency difference between them. Selective fading is the variation of the loss across the band of interest. The RSL fade depth is defined as the RSL as determined by integrating across the frequency band and referencing to the long-term signal level. The format violations (forbidden level changes between two adjacent bit intervals), are called 3-level-errors. The 3-level-errors are an indication of the presence of any or all of noise, distortion, interference, and time jitter. A 3-level-error event is a stretched pulse triggered by a 3-level-error. (The pulses had to be stretched for recording purposes.) The stretched pulses were at least 2 ms long. A reframe event occurs whenever the multiplex loses frame synchronization. Reframe events also had an approximate 2 ms period. A receiver switching event occurs when the diversity switch causes either the primary or diversity receiver to switch from one to the other. The identity of the receiver that was on line was continuously recorded. The primary receiver in this system is the one connected to the antenna which performs both a transmitting and receiving function. The diversity receiver antenna performs only a receiving function. On this link, the primary antenna is the lower space diversity antenna on the tower. Antenna spacing is 15.3 m.

Specific purposes of this selective-fading measurements program were to measure the amplitude distortion and other related parameters in order to answer the following questions:

1. How often does the amplitude distortion occur?

2. What is its range of severity?

- 3. What effect does the distortion have in producing errors in the DEB I system, which has a transmitted data rate of 12.6 Mb/s?
- 4. Can the year-long, RSL fading statistics (measured during 1979 for these paths) be quantitatively related to the in-band fading statistics of which amplitude distortion is a measure?

In order to answer these questions, the following tasks were undertaken:

- We conducted a literature survey of previous work accomplished in the area of selective fading on LOS links, including work published by both U.S. and foreign organizations.
- 2. We installed, tested and calibrated an amplitude distortion measurement system at the Mt. Corna site.
- 3. We obtained in-band fading data over a 2-month period on the primary and diversity radio pairs, and measured various signals at selected times during periods of multipath fading. We con to monitor and record the distributions of received signal levels that had been previously monitored on 8 GHz.
- 4. The IF spectrum data, RSL data and event data were analyzed to obtain cumulative distributions of distortion and RSL as well as various data sorts and graphical presentations (Section 4 and 5). All signal digitizing was done at the ITS Boulder Laboratories. The data were analyzed to obtain the following statistical parameters:
 - 4.1 The time distribution of spectrum amplitude distortion observed during periods of significant multipath fading.
 - 4.2 Distributions of selective fade durations.
 - 4.3 Distributions of rate of occurrence of selective fading.
 - 4.4 Correlation of RSL fade depth with the presence of frequency selective fading.
 - 4.5 Correlation of frame loss and format violation events with selective fading events.

2. PREVIOUS WORK

Much work has been done to investigate the effects of selective fading on digital, LOS, microwave systems (Dougherty and Hartman, 1977, Anderson et al., 1978). The effort has resulted in the use of combiners and equalizers which have greatly alleviated the effects of distortion. A brief description of the mechanisms at work on LOS systems is provided by Smith and Osterholz (1979, pp. 15 - 26). This model indicates that the distortion will be particularly bad for long LOS paths for two reasons. The first reason is that the direct-path RSL is faded substantially below the median for a much larger fraction of the time than it is for short LOS paths. The second reason is that the potential for time dispersion between signal components is much greater on long paths than on short ones.

3. INSTRUMENTATION AND TEST OPERATIONS

The purpose of this section is to provide a description of the instrumentation system¹ used to measure and record spectrum amplitude distortion and other related parameters of interest. The mode in which the instrumentation was used is also described.

The three links converging at Mt. Corna (Cimone-Corna, Venda-Corna, and Paganella-Corna) utilize space diversity. All ITS instrumentation was located at Mt. Corna and it had the capability of looking at only the two receivers associated with one of the paths at any given time. The two receivers associated with each path are designated the "A" and "B" receiver. For these paths, the "B" receiver is the primary one. The observations on the Paganella-Corna path were very brief since very little multipath fading is observed on this path relative to the other two paths and for this reason it was abandoned for testing (Figures 2, 3, 4).

The Cimone-Corna path was monitored for approximately 3 weeks (the last part of April and the first part of May 1980). On May 8, 1980, the instrumentation was connected to the Venda receivers. The instrumentation was switched only once instead of frequently between paths (as was originally planned) because of the difficulty in verifying connections as well as the upsetting of communications operations. As seen in Figure 4, there was little fading during the last 2 weeks in April on the Cimone-Corna path. No significant fading data were obtained on the Cimone-Corna path until May 7, 1980. The May 7-8 (2000-0300) data set is available but it was not digitized and analyzed in detail since it consisted of short periods of moderate multipath fading. Also resources of time, money, and special computer system access were exhausted before completing the analysis of all of the Venda-Corna magnetic tapes. Using a storage oscilloscope, visual

¹Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Telecommunications and Information Administration, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

Figure 2. Chronological occurrence of each data category for the path from Mt. Paganella to Mt. Corna.

Figure 3. Chronological occurrence of each data category for the path from Mt. Venda to Mt. Corna.

Figure 4. Chronological occurrence of each data category for the path from Mt. Cimone to Mt. Corna.

observation of the May 7-8 data showed 2 hours of significant multipath amplitude distortion (slopes across the IF band greater than 0.2 dB/MHz). The preponderance of slopes was negative as in the case with the Venda-Corna path (Section 5.1). Maximum multipath fading depth for the period was 30 dB. No diversity switching was observed during the 7-hour period.

The instrumentation is shown by block diagram in Figure 5. The purpose of each major instrumentation module is shown in Table 1; each major item is identified in Table 2. Table 3 lists the major instrumentation interconnections.

The equipment which ITS had been operating for monitoring RSL on the three 8-GHz links during the previous year was kept in operation for the 2-month duration of these tests so that a relationship between the long-term RSL-fading statistics (over a period of 1 year) and the short-term in-band fading statistics (over periods of a few hours) might be established. On May 26, the strip chart recorder used for RSL measurements failed and was not available in June.

The instrumentation system is very simple in its configuration. Over a receiver input dynamic range of 40 dB, an AGC IF amplifier was used to keep power levels constant into the spectrum analyzer in order to prevent rapid RSL fading from appearing as amplitude distortion. A complete sweep through the IF spectrum takes a minimum of 1/2 second if the spectrum adjustments are set so that the spectrum analyzer remains in calibrated operation. The settings used during the distortion measurements are shown in Table 4.

Calibration was done once each day on the channels corresponding to the spectrum analyzer, the normalizer and discrete events. Daily operations were as follows:

- The spectrum analyzer and the normalizer channels were calibrated during a multipath quiet period of the day, usually (1400-1500), and the standard spectral density function envelope was set into the normalizer memory.
- The recordings were started between 1800 and 2000 and the playback output of each channel was checked to see that all channels were recording properly.
- Recordings during the night usually lasted from 2000 until 0400 the following morning. In a few cases, power outages during the night prematurely terminated the recordings.
- 4. In the morning, the previous night's recordings were played back at
 64 times real time to determine maximum distortion on the tape,
 3-level-error or reframe events, and RSL. If the maximum levels

*This diagram shows the instrumentation for the "B" recv. The one for the "A" recv. is the same design,

Figure 5. Instrumentation used to measure and record selective fading at Mt. Corna.

Block Diagram No.	Name	Purpose
1	Radio Receiver	Provide long-path radio signal parameters during multipath conditions
2	40 dB Linear Amplifier	Increase the IF level obtained from the sampling point
3	IF Amplifier with AGC	Normalize the spectral density function
4	Sp ec trum Analyzer	Provide frequency reference (saw-tooth) and the spectral density function envelope
5	20 dB Attenuator	Provide isolation between the Spectrum Analyzers
6	Normalizer	Provide a tool for data checking and editing in the field on the basis of distortion level
7	Marker Signal Generator	Provide a frequency marker for data pro- cessing use
8	Potentiometers	Condition signals for compatibility with the magnetic tape recorder
9	DC Amplifier and Zero Offset	Condition signals for compatibility with the magnetic tape recorder
10	Analog Magnetic Tape Recorder	Record the IF Spectrum Envelopes and the various signals associated with amplitude distortion of the spectrum
11 ·	Time Code Generator and Reader	Record "Z" time, for data analysis, checking, and editing purposes
12	Storage Scope	Provide a tool for data checking and editing in the field
13	Pulse Multiplexer	Condition signals for efficient tape channel use
14	Pulse Stretcher	Condition 3-level-error and reframe signals for recording system requirements
15	8-Port Mux	Provide 3-level-error and reframe indicator signals

Table 1. Instrumentation Purposes

No.	Name	Mfg. and Model No.	Serial No. "A" "B"	
1	Radio Receiver	Collins	MTC 019A PAG 010A	
		AN/FRC-165(V)	MTE 011A	
2	40 dB Linear Amplifier	Avantek UT8-2211M	12 13	
3	IF Amplifier with AGC	Collins 22E4G-MW	741 750	
4	Spectrum Display Analyzer IF Sec. RF Sec.	H-P 141T 8552B 8553B	1337A- 1320A- 08018 05582	
5	20 dB Attenuator	Narda		
6	Normalizer	H-P 8750A	946A- 2005A 02316 02356	
7	Marker Signal Generator	H-P 8640B	1431A02425 (common to A and B)	
8	Potentiometers	NTIA/ITS		
9	DC Amplifiers and Zero Offset	NTIA/ITS		
10	Analog Magnetic Tape Recorders	Honeywell 5600C	102347- 102358- FA77 FA77	
11	Time Code Gen. and Reader	Datametrics SP-425-A/B	760 (Common to A and B)	
12	Storage Scope	H-P 1744A	1926A00937 (Common to A and B)	
13	Pulse Multiplexer	NTIA/ITS		
14	Pulse Stretcher	NTIA/ITS		
15	8-Port Mux	VICOM		
		AN/FCC-97		

Table 2. Instrumentation Identification

Name of Signal	Direct- tion	Device	Access Point	Type of Signal	Level Range
70 MHz IF	Output from	"A" or "B" Recv.	22 E4C-MW, IF Amp, 70 MHz Test Jack	IF Spectrum	-40 to -100 dBm
Recv- On-Line	Output from	Recv.	S/L/S Unit, 23P2A-MW, XA2, On Pin 4 ref. to 3	Digital	OVDC - "A" on-line -36VDC - "B" on-line
Recv-	Output	"A" Recv	S/L/S Unit, 23P2A-MW,	Analog	-1 VDC90 dBm
Level	from		XA2, On Pin 9 ref. to Grd.		-7 VDC30 dBm
Recv-	Output	"B" Recv	S/L/S Unit, 23P2A-MW	Analog	-1 VDC90 dBm
Signal Level	from		XA4, On Pin 9 ref. to Grd.		-7 VDC30 dBm
3-level- errors	Output from	8-Port Mux	4029 Recv Input at error Jack ref. to Grd.	Digital	Event is indicated by a +1.75 VDC Pulse
Main Refram e	Output from	8-Port Mux	4010 PWR & Alarm Unit J9, Pin 7A ref. to Grd.	Digital	Event is indicated by +5VDC Pulse
IF Spec. density Envelope	Output from	Frequency Analyzer	Vertical Output	Envelope of the spectral density function	Approx. O to 1 Volt peak to peak Period is 1 second
Saw Tooth	Output from	Frequency Analyzer	scan. In/Out	Ramp 1 Hz	+5 to -5 volts peak-to-peak
70 MHz IF Spec.	Input to	Frequency Analyzer	RF Input	IF Spectrum	Approx40 dBm
65 MHz Marker	Input to	Frequency Analyzer	RF Input	65 MHz Sin Wave	-60 dBm
Amplitude Distortion	Output from	Storage Normalizer	X-Y Ploter Y Output	dB difference Between Std. Spec. & Cur. Spec.	6 dB/VDC Period is 1 min.

Table 3. Major Instrumentation Interconnections

Name of Signal	Direct- tion	Device	Access Point	Type of Signal	Level Range
RSL	Output	Таре	Playback Ch 1	Slowly varying Analog Signal	20 dB/Volt, -2.5 VDC = -30 dBm
	from	Recorder		Linear in dB	Range = -30 to -90 dBm
Amplitude	Output	Таре	Playback Ch 2	Slowly varying Analog Signal	l volt change = 15 dB distortion
Distortion	from	Recorder		Linear in dB	Period = 1 minute*
3-level errors & Reframe	Output	Таре	Playback Ch 3	Discrete Voltage levels (Min. Duration 1 ms)	-1 VDC = no event -0.5 VDC = 3 -level +0.4 VDC = Reframe
Events	from	Recorder			+1.0 VDC = Both
Spectrum Analyzer	Output	Таре	Playback Ch 4	Saw Tooth	-1 to +1 volt peak to peak
Saw-Tooth	from	Recorder			period = 1s*
Spectral Density	Output	Таре	Playback Ch 5	Envelope of the Spectral Density	0 to 1 volt peak to peak
Envelop e	from	Recorder		function	period is 1s*
Time	Output	Таре	Playback Ch 6	IRIG B	Same level as the
Code	from	Recorder			time code gen.
Receiver- On-Line	Outp u t from	Tape Recorder	Playback Ch 7	Two discrete levels	OVDC - "A" on line -1/2 VDC - "B" on line

Table 3. Major Instrumentation Interconnections (continued)

*Period values for the tape recorder outputs are for 15/16 in/s tape speed.

Table 4. Spectrum Analyzer Setting for Normal Operations

Name of Setting	Value
Frequency	70 MHz
Bandwidth	300 kHz
Scan Width	2 MHz/Div
Input Attenuation	10 dB
Base Clipper "O"	0
Scan Time	0.1 s/Div
Log Ref. Level	-40 dBm
Log Linear Select Switch	-6 dB
Video Filter	100 Hz
Scan Mode	Internal
Scan Trigger	Auto
Writing Speed	Standard

of distortion observed were of the same order as routine spectrum variations observed in the communications system (less than 0.2 dB/MHz), the information was noted in the log book and the tapes were erased and reused. If the distortion was more significant, the reels were labeled and kept.

The distortion recording channel (derived from the normalizer) was used only for field data editing and was not used in the digitized data analysis except as a comparative check.

4. DATA DIGITIZATION AND ANALYSIS

The analog tape recorded data were sampled and digitized at 200 samples per second per data channel. Each IF spectral density sweep (Table 5) was given a number consisting of the hour, the minute and the sweep within the minute, for example 1 0 34. A number of average values of spectral density corresponding to discrete frequencies within the IF band were calculated for each spectral density sweep (see Table 5). This table shows values before normalizing them by subtracting them from standard sweep values. In order to calculate distortion values from the data, it was necessary to determine a set of points representing a standard spectral density function. This standard was usually selected by printing out the sets of points representing the sweeps from the first minute of each hour. From these values a set of points representing the standard sweep was derived for each day's data. All spectral density values were obtained by averaging samples in the neighborhoods corresponding to the various frequencies. Of the 200 samples per second digitized from the spectrum sweep channel, 100 were ignored due to the 1/2 second interval between sweeps through the spectrum. Of the remaining 100, only the even numbered samples were saved (to conserve data storage capacity and decrease processing time) leaving 50. The first 9 and the last 9 of these samples were ignored in order that the analysis would be made on the more slowly changing part of the spectral density function. The remaining 32 samples were grouped into sets of 4 which were averaged (suppressing the effects of noise) to provide 8 points corresponding to each spectral density function sweep.

The selection of the points representing the standard sweep was found to have a pronounced influence on the distortion values calculated. If a standard sweep had a slope bias, of course all the distortion values were biased by that amount. More importantly, however, the noise on the standard sweep adds substantially to the range of apparent distortion. This effect was investigated by obtaining time distributions of distortion using several sweep value sets as standards. One effect

Table 5. Typical Spectral Density Representation

<th begin="" by="" f<="" first="" th="" the=""><th></th></th>	<th></th>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	
Sweep No. 67.7 68.5 69.3 70.0 70.7 71.4 72.2 72.9RSL Event Event Line67.7 68.5 69.3 70.0 70.7 71.4 72.2 72.9RSL10292.33.34.24.64.73.82.0 -54.1 00D.22.13.34.75.35.34.52.9 -50.1 10392.33.34.24.64.73.82.0 -54.1 00D.32.13.64.55.45.45.44.62.8 -49.6 10492.23.24.24.64.73.82.0 -55.0 00D.32.13.64.65.25.44.62.8 -49.6 106.82.13.24.14.74.73.72.1 -55.4 00D.32.13.64.65.55.44.62.9 -50.2 106.82.13.24.14.74.63.81.9 -55.4 00D.42.23.64.65.35.44.52.8 -49.6 1077.2.03.14.24.64.73.72.1 -55.4 00D.42.23.64.65.35.44.52.8 -50.6 10851.93.24.04.7	L	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ľ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	j	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	
1 0 10 1.3 1.9 3.1 9 4.5 4.3 3.5 1.6 -57.3 0 0 D .3 2.3 3.6 4.7 5.3 5.4 4.7 2.9 -48.9 1 0 12 .4 2.0 3.0 4.0 4.5 4.4 3.6 1.8 -57.7 0 0 D .4 2.2 3.6 4.5 5.3 5.3 4.5 2.8 -49.1 1 0 13 2 1.8 3.1 4.0 4.4 4.4 3.6 1.9 -57.7 0 0 D .4 2.2 3.6 4.5 5.3 5.3 4.5 2.8 -49.1 1 0 13 2 1.8 3.1 4.0 4.4 4.4 3.6 1.9 -57.7 0 0 D .3 2.2 3.6 4.6 5.4 4.5 2.8 -48.4 1 0 14 .4 2.0 3.5 1.7 -57.7 0 0		
1 0 12 .4 2.0 3.0 4.0 4.5 4.4 3.6 1.8 -57.7 0 0 D .4 2.2 3.6 4.5 5.3 5.3 4.5 2.8 -49.1 1 0 13 .2 1.8 3.1 4.0 4.4 4.4 3.6 1.9 -57.7 0 0 D .3 2.2 3.6 4.6 5.4 5.3 4.5 2.8 -48.4 1 0 14 .4 2.0 3.1 3.8 4.4 4.5 3.5 1.7 -57.7 0 0 D .4 2.3 3.4 4.7 5.3 5.1 4.4 2.8 -48.4 1 0 15 .2 1.9 3.0 3.7 4.4 4.2 3.6 1.7 -58.6 0 0 D .4 2.3 3.6 4.7 5.2 5.3 4.6 2.6 -48.4 1 0 16 .3 1.9 3.1 3.9 4.4 4.5 </td <td>į.</td>	į.	
1 0 13 .2 1.8 3.1 4.0 4.4 4.4 3.6 1.9 -57.7 0 0 D .3 2.2 3.6 4.6 5.4 5.3 4.5 2.8 -48.4 1 0 14 .4 2.0 3.1 3.8 4.4 4.5 3.5 1.7 -57.7 0 0 D .4 2.3 3.4 4.7 5.3 5.1 4.4 2.8 -48.4 1 0 15 .2 1.9 3.0 3.7 4.4 4.2 3.6 1.7 -58.6 0 0 D .4 2.3 3.6 4.7 5.2 5.3 4.6 2.6 -48.4 1 0 16 .3 1.9 3.1 3.9 4.4 4.5 3.5 1.8 -57.7 0 0 D .3 2.2 3.6 4.4 5.3 5.4 4.6 2.8 -48.7 1 0 16 .3 1.9 3.1 3.9 4.4 4.5 </td <td></td>		
1 0 14 .4 2.0 3.1 3.8 4.4 4.5 3.5 1.7 -57.7 0 0 D .4 2.3 3.4 4.7 5.3 5.1 4.4 2.8 -48.4 1 0 15 .2 1.9 3.0 3.7 4.4 4.2 3.6 1.7 -58.6 0 0 D .4 2.3 3.6 4.7 5.2 5.3 4.6 2.6 -48.2 1 0 16 .3 1.9 3.1 3.9 4.4 4.5 3.5 1.8 -57.7 0 0 D .3 2.2 3.6 4.4 5.3 5.4 4.6 2.8 -48.7		
1 0 15 .2 1.9 3.0 3.7 4.4 4.2 3.6 1.7 -58.6 0 0 D .4 2.3 3.6 4.7 5.2 5.3 4.6 2.6 -48.7 1 0 16 .3 1.9 3.1 3.9 4.4 4.5 3.5 1.8 -57.7 0 0 D .3 2.2 3.6 4.4 5.3 5.4 4.6 2.8 -48.7		
1 0 16 .3 1.9 3.1 3.9 4.4 4.5 3.5 1.8 -57.7 0 0 D .3 2.2 3.6 4.4 5.3 5.4 4.6 2.8 -48.5		
1 0 17 4 2.1 3.1 4.0 4.6 4.4 3.5 1.7 -58.2 U U U U U . 6 2.4 3.6 4.7 5.1 5.1 4.6 2.7 -40.5 1.0 5.2 5.2 5.4 4.5 2.8 -48.5 1.0 5.2 5.2 5.4 4.5 2.8 -48.5 1.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	,	
1 0 18 .5 1.6 3.1 4.0 4.6 4.6 3.7 1.8 - 57.3 0 0 D 4 2.1 3.5 4.7 5.4 5.3 4.5 2.9 -48.4		
1 0 19 2.1 3.0 4.0 4.0 3.5 1.9 -57.3 0 0 D .4 2.2 3.4 4.5 5.1 5.3 4.5 2.9 -48.7		
1 0 21 7 2.2 3.2 4.1 4.5 4.6 3.6 1.9 -57.3 0 0 D .4 2.3 3.5 4.6 5.2 5.4 4.5 2.7 -48.0		
1 0 22 .5 2.3 3.1 4.2 4.6 4.4 3.7 1.7 -57.3 0 0 D .6 2.3 3.7 4.5 5.3 5.6 4.4 2.9 -47.8		
1 0 23 .8 2.0 3.1 4.1 4.6 4.4 3.6 1.8 -56.4 0 0 D .5 2.2 3.6 4.4 5.4 5.4 4.6 2.9 -47.8		
1 0 24 .5 1.9 3.2 4.0 4.6 4.4 3.7 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 4.6 2.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 4.6 2.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 4.6 2.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 4.6 2.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 4.6 2.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 4.6 2.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 5.4 5.8 - 47.5 1.9 - 56.4 0 0 D .5 2.4 3.6 4.6 5.3 5.4 5.4 5.8 - 47.5 1.9 - 56.4 0 D .5 2.4 5.4 5.8 - 57.5 1.9 - 56.4 0 D .5 2.4 5.6 1.9 - 56.4 0 D .5 2.4 5.8 - 57.5 1.9 - 56.4 0 D .5 2.4 5.8 - 57.5 1.9 - 56.4 0 D .5 2.4 5.8 - 57.5 1.9 - 56.4 0 D .5 2.4 5.8 - 57.5 1.9 - 56.5 1.9 - 57.5 1.9 - 56.5 1.9 - 57.5	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1 0 26 .8 2.3 3.3 4.1 4.8 4.6 3.7 1.8 -55.4 0 0 D .4 2.2 5.0 4.0 5.5 5.2 4.5 2.7 -47.7 10 -56.4 0 D -4 2.4 3.6 4.6 5.1 5.5 4.4 2.8 -47.7 10 -56.4 0 D -4 2.4 3.6 4.6 5.1 5.5 4.4 2.8 -47.7 10 -56.4 0 D -4 2.4 3.6 4.6 5.1 5.5 4.4 2.8 -47.7 10 -56.4 0 D -4 2.4 3.6 4.6 5.1 5.5 4.4 2.8 -47.7 10 -56.4 0 D -57.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5		
1 0 27 17 2.1 5.2 4.0 4.0 4.0 5.4 1.5 - 50.4 0 0 0 0 5.2 4 3.5 4.6 5.2 5.3 4.6 2.6 -47.5	,	
1 0 29 .7 2.2 3.1 4.1 4.6 4.4 3.4 1.5 -56.8 0 0 D .5 2.4 3.5 4.5 5.2 5.3 4.5 2.9 -47.3	,	
1 0 30 .7 2.0 3.0 4.0 4.4 4.3 3.6 1.6 -56.8 0 0 D .5 2.4 3.6 4.6 5.3 5.3 4.5 2.8 -46.8		
1 0 31 .7 2.2 3.1 3.9 4.4 4.4 3.6 1.8 -56.8 0 0 D .4 2.3 3.7 4.6 5.2 5.4 4.4 2.7 -47.1		
1 0 32 .9 2.3 3.1 4.1 4.6 4.5 3.6 1.9 -56.4 0 0 D .3 2.2 3.4 4.5 5.4 5.2 4.5 2.8 -47.3		
1 0 33 .7 2.3 3.3 4.1 4.7 4.5 3.4 2.1 - 56.4 0 0 D .6 2.3 3.6 4.6 5.2 5.4 4.8 2.8 - 47.3		
1 0 34 .8 2.2 3.3 4.3 4.8 4.8 3.7 1.9 - 55.4 0 0 D .3 2.2 3.5 4.6 5.4 5.3 4.5 2.8 -47.1		
1 0 35 .8 2.2 3.5 4.1 4.7 4.5 3.8 2.1 -54.1 U U D .4 2.5 3.5 4.0 5.5 5.5 4.6 2.8 -46.6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1 0 38 9 2 5 3 5 4 3 4 9 4 8 3 8 2 0 -53 2 0 0 D .5 2 5 3 6 4 6 5 3 5 2 4 4 2 9 +46 8		
1 0 39 9 2.4 3.4 4.3 4.9 4.8 3.7 2.0 -52.7 0 0 D .4 2.3 3.5 4.6 5.3 5.4 4.3 2.8 -46.6		
1 0 4 0 9 2.3 3.4 4.2 4.8 4.6 3.9 2.2 -51.8 0 0 D .4 2.4 3.7 4.5 5.4 5.3 4.4 2.8 -46.4		
1 0 41 1.3 2.5 3.4 4.2 4.9 4.6 3.8 2.3 -52.3 0 0 D .5 2.4 3.6 4.6 5.4 5.2 4.4 2.8 -46.2		
1 0 4 2 1.2 2.5 3.5 4.3 4.6 4.7 3.8 2.2 -51.8 0 0 D .7 2.3 3.5 4.6 5.2 5.3 4.5 2.9 -45.7		
1 0 43 1.0 2.4 3.6 4.2 4.8 4.5 3.8 2.0 -51.3 0 0 D .6 2.3 3.6 4.6 5.3 5.4 4.4 2.5 -45.5		
1 0 44 1.0 2.4 3.4 4.2 5.0 4.8 3.8 2.0 -51.3 0 0 D .6 2.2 3.5 4.7 5.2 5.4 4.6 2.8 -45.0		
1 0 45 1.1 2.6 3.3 4.3 5.0 4.7 3.8 2.2 - 51.8 U U D .6 2.4 3.5 4.6 5.1 5.4 4.3 2.9 - 44.8 0 U D .6 2.4 3.5 4.6 5.1 5.4 4.3 2.9 - 44.8 0 0 D A 2.5 2.4 7 5.8 0 0 D A 2.5 2.5 4.7 5.2 5.4 7 5.5 4.7 5.5 5.5 4.7 5.5 5.5 4.7 5.5 5.5 4.7 5.5 5.5 4.7 5.5 5.5 4.7 5.5 5.5 4.7 5.5 5.5 4.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5		
L U 40 L.5 Z.0 5.4 4.Z 4.7 4.8 4.0 Z.1 ~ 30.4 U U D .4 Z.5 S.5 4.7 S.5 5.5 4.5 Z.0 ~ 44.0	,	
1 0 47 1.5 2.0 5.4 4.4 4.0 4.7 5.9 2.2 -43.5 0 0 0 0 .7 2.4 5.7 4.4 5.5 5.2 4.4 2.0 43.5 1 0 43.5 1		

observed was the creation of a narrow vacant zone of distortion values that appears at times in the correlation plots. Similar vacant zones were also caused by digitizing status programming error (initiating the status signal caused a timing error). Each sweep was normalized by subtracting it from the standard sweep. From this set of differences, a minimum value was selected from the differences corresponding to the two edge frequencies (67.7 and 72.9 MHz). A maximum value was obtained from the other difference values for the sweep. The difference between maximum and minimum was then divided by the corresponding differences in frequencies to yield the distortion in dB/MHz.

Minimum values of RSL (Table 5) were collected during each spectral density sweep period. In order to convert RSL into fade depth below the long-term median, each RSL value was subtracted from the long-term median RSL value.

If 3-level error events (format violations) or reframe events occurred during a sweep period, the events were counted and stored in correspondence with the sweep. The receiver-on-line status (primary or diversity receiver) was also stored with each sweep. The status at the end of the sweep was stored as being the receiver-on-line. From these values of distortion, fade depth, 3-level-error events, and reframe events, the distributions and correlation functions were obtained which are presented in Section 5.

5. RESULTS

Approximately 50 hours of recordings were returned to the ITS Boulder laboratories for analysis. Of the 50 hours, approximately half were for quiet hours showing no significant distortion or fading. Since careful editing of each channel was necessary after digitizing the data in order to eliminate data anomalies caused by software and hardware, 15 hours of data analysis are presented here. These data include the hours of deepest RSL fading observed during the 2-month period. The results are presented in terms of time distributions of amplitude distortion, RSL fading, distortion event durations and intervals between events. Four hours of the RSL fading and amplitude distortion are presented as time functions. Correlation plots of RSL fading and amplitude distortion are also presented. All of this information is presented in Figures 6 through 41.

The results are presented in three sections. Each section represents 5 hours of data. The first section is for a period of heavy fading (May 28-29, 2300-0400); the second section is for a period of moderate fading (May 12-13, 2300-0400) the third is for a period of light fading (May 13-14, 2200-0300). One part of the data is in terms of amplitude distortion slope across the band (67.7

to 72.9 MHz). The slopes were calculated by obtaining the difference of spectral density amplitude corresponding to the two end points of the IF band and dividing that difference by the difference in the corresponding IF frequencies. This analysis shows most of the distortion (null information is lost) while eliminating much of the test instrumentation noise from the data. For this reason, the heavy-fading data are presented in both ways (maximum distortion measured during a sweep and distortion measured across the band).

5.1 Heavy Fading Period

The first results presented are the time functions of RSL fading and distortion obtained for early morning hours from the Venda-Corna receivers (Figures 6 and 7). From these figures, it appears that nulls in the frequency spectrum often correspond to the RSL fading nulls since the slope of the distortion in dB/MHz often changes sign at the sample corresponding to the RSL fading null (Figures 6, 7 and 8). Figure 8 shows a detailed example of this change in sign. The null passed through the band, however, between sweeps.

An important observation obtained from these functions is that while some of the distortion seems to be of a continuous nature, another component seems to be discontinuous (at least on a second-by-second basis). This characteristic, as well as the fact that the selected sample sweep affects the average amplitude of this "discontinuous" distortion, leads one to suspect that the more slowly varying short-term average better represents the amplitude distortion characteristic of the path as a function of time. A large number of analog sample playbacks of the recorded envelopes of the IF spectral density functions show noise on these functions (Figure 9). For this reason, the data were reanalyzed (ignoring nulls) measuring only slopes across the IF band. As seen from Figures 10 and 11, a function is obtained which is very much like the short-term average of distortion values based on maximum slopes (Figures 6 and 7).

From Figures 6, 7, 10, and 11, it becomes clear that diversity combining (Figure 10, samples 1300-2100) has the potential for being very effective in counteracting the effect of slope distortion as well as nulls. Therefore, it is very important that the switching threshold power ratio of the diversity switch be kept small and that switching be permitted at relatively high levels of received signal level which is not now the case for the DEB receivers. Table 6, 14, 26, and 38 show quantitatively the amount by which the DEB I diversity system reduced the distortion of the receiver-on-line compared to the distortion from a single receiver. This reduction can best be observed by comparing the distortion

distributions for the primary and diversity receivers with the one for the receiveron-line (especially the column for number of samples greater than or equal to the particular absolute value of distortion). This comparison shows that the DEB I diversity system provides fairly good protection against large values of distortion but very little protection against the smaller values of distortion.

Using information from the radio manuals, the DEB I diversity system using the FRC-162 radios has the following characteristics:

- 1. The switching threshold power ratio (hysteresis) = 5 dB.
- 2. The system will not switch radios until the receiver-on-line fades down to approximately -65 dBm (about 30 dB below the median level) and then only if the receiver-off-line is at a 5 dB higher level.
- 3. The switch response time (the period between an event which will cause switching and the time until the switch starts to react) is approximately 2 milliseconds. (This information was obtained from Mr. James Hefner of Rockwell-Collins Corporation.)

Fade levels corresponding to the various switching events in Table 22 confirm operation roughly consistent with the combiner characteristics given in 1 and 2 above. Consideration of the combiner properties and careful observation of Figures 10 and 11, using a straight edge to line up concurrent fading and distortion events, shows how little of the potential diversity improvement of on-line-receiver distortion avoidance is presently being realized. It must be stated here, however, that for this system (12.6 Mb/s) the additional distortion avoidance hardly seems needed considering the very few frame loss events shown in Table 22. Figures 10 and 11 show that the distortion occurs in events (similar to fades). If the combiner switches in a manner such that the receiver-on-line is always the one with the greatest RSL, the effect on traffic of many of the distortion events will be eliminated entirely and at least parts of the others will be reduced in magnitude. If the receiver-on-line is to be the one with the greatest RSL, certain conditions are necessary: switching must not be disabled at high RSL levels, the switching threshold power ratio must be close to 0 dB, and the switch response time must be very short (a few milliseconds).

Figures 12, 13 and 14 are plots of distortion values at the fade depth at which they occurred. These three figures include large distortion values associated with in-band nulls and noise with a small band of points at relatively high signal levels that lie above a small "vacant" zone. The points that lie above the "vacant" zone and at high RSLs were introduced by a digitizing error introduced by an optional audio signal used by the digitizer operator to determine that data

were being digitized. These figures as well as Table 25 show that the largest values of distortion are associated with the deep RSL fading nulls. Figure 15 is the same type of diagram as Figures 12, 13, and 14, but shows slopes only. It is clear from Figure 15 that the distribution of distortion amplitudes widens rapidly for decreasing signal levels. It is also clear that for this 5-hour period the distortion slopes are primarily negative and generally increase in amplitude as signal level decreases. The reason for the preponderance of negative slopes is not clear. We are confident that it is a measured effect on this path and not the result of a bias introduced by test equipment operation or the digitization of the analog data. A preferred atmospheric structure seems to exist during multipath conditions causing a preferred range of amplitudes and rf phase delays.

The data set for May 28, 1980, 2300 hours to May 29, 1980, 0400 hours is also presented in terms of cumulative distributions of distortion values, fade depths, distortion durations, and intervals between distortion events. Tables 6 through 13 present these distributions with noise and null effects. Tables 14 through 21 present the data for slopes only.

Selected sets of values for this period are presented in terms of maximum distortion. The first set (Table 22) lists the sweeps during which events occur. The event types are a change of receiver-on-line status, a reframe event, or a 3-level-error event. A 3-level-error event was recorded only if a minimum of 0.002 seconds had passed since the start of the previous one. The pulse had to be stretched to this length so that the recording electronics would be able to detect it. The same conditions applied to reframe events. The second set of values (Tables 23 and 24) list the sweeps during which distortion exceeded 0.5 dB/MHz. The third set of values (Table 25) is a presentation of sweeps during which RSL fading exceeded 35 dB.

5.2 Moderate Fading Period

Much the same type of results presentation is made for the moderate fading period (May 12, 1980, 2300 hours, to May 13, 1980, 0400 hours) as was made for the heavy fading period. Two hours of time functions of flat fading and distortion are presented (Figures 16 and 17). These figures present distortion in terms of slope across the IF band. The same is true for Figure 18 which is a correlation plot of distortion in terms of RSL fading. These three figures are consistent with the heavy fading results. Distortion is somewhat less because there is less RSL fading. These three figures show that the RSL fading channels of the recording

system become unstable at high signal levels (Figure 16, samples 0-800). This is particularly apparent in the plots for the diversity receiver in Figures 16 and 18. The narrow vertical strips in Figure 18 are caused by the RSL fading digitizing granularity (rounding error). These strips also appear on the other correlation plots and they vary in width somewhat depending on the slope of the particular calibration.

Tables 26 through 33 are time distributions of event durations, distortion values, and fade depths. In the distributions related to distortion, distortion is calculated in terms of slope across the IF band. Tables 34 through 37 are selected sets of values for the moderate fading period and are presented in terms of maximum distortion. The data set types are the same as those described in the heavy fading section.

5.3 Light Fading Period

The light fading period was from 13 May 1980, 2000 hours, to 14 May 1980, 0300 hours. The results for this period are presented in terms of maximum distortion within the band instead of slope of distortion across the band. The manner in which the distortion is presented makes little difference since very little distortion was observed. Figure 19 is a correlation plot of distortion and RSL fading depth. As was the case for the heavy and moderate fading periods, distortion slopes were predominately negative and the distribution of distortion values widens as RSL fading depth becomes greater. Tables 38, 39, and 40 are the time distributions of distortion values, RSL fade depths and event durations. Table 41 indicates that there were no 3-level-errors or reframe events during this period but that there were receiver switching events.

6. CONCLUSIONS

1. Consideration of the 15 hours of data in Figures 15, 18, and 19 shows a consistent statistical relationship between the depth of RSL fades and the amount of amplitude distortion. This relationship is one in which the probability of large distortion values increases with increasing fading depth. This is of particular interest since the data in Figure 15 show depressed median signal levels (approximately 6 to 10 dB) on both primary and diversity receivers. (See Figures 10 and 11.) This consistency leads one to conclude that a useful relationship between calculated or measured estimates of the time distributions of multipath fading and distributions of amplitude distortion can be made. This conclusion holds for relatively narrow-band systems (up to approximately 50 MHz) since ultimately, for very wideband systems, there will not be any significant RSL

multipath fading because integration across the band will include lobes as well as nulls. This relationship should contain the same type of occurrence factor as is used in the multipath fading prediction models. The nature of the distribution within a multipath fading period for the 8 GHz band and for distortion slopes less than 0.6 dB/MHz is considered to be log linear (see Table 14 and Figure 20). On this basis, an empirically derived relationship is:

$$P_{\rm m} = Q(\frac{f}{4})^{1.2} (d^{3.5}) \ 10^{-5\delta}.$$
 (1)

This expression uses the occurrence factor suggested by Morita (1970, p. 810) and adopted by CCIR (1978). The distortion parameter is shown below. The occurrence factor is less than 1, such that:

$$Q(\frac{f}{4})^{1.2}(d^{3.5}) < 1.$$
 (2)

 P_m = the fraction of time that the distortion is greater than a given value of δ during the worst fading season

- δ = the distortion in dB/MHz. (0 < δ < 0.6)
- d = the path length in km. (d > 50)
- f = the frequency in GHz. (1 < f < 50)
- $Q = 2 \times 10^{-9}$ over mountains
- $Q = 5.1 \times 10^{-9}$ average terrain

 $Q = 3.7 \times 10^{-7} (1/h)^{0.5}$ over water and coastal areas

h = average path height above ground in meters.

An estimated occurrence factor value for a path may be derived from the distribution of RSL fading data obtained during the worst fading month. The estimate is obtained by observing the fraction of time that RSL fading exceeds 20 dB during the worst fading month and then dividing that value by 0.0069 (Hause and Wortendyke 1979, p. 36, eq. 4-3). The slope of the log linear distribution, $10^{-5\delta}$, whose probability of occurrence is predicted by the Morita model, was selected from the distortion (slope) distributions in Table 14 corresponding to the heavy fading period. The fraction of time during which greater than a given absolute value of distortion was observed is plotted for both the diversity and primary receivers (Figure 20). The data population used for selecting this distribution is small. A much larger data base is required to make an estimate of the distribution characteristics in which one can legitimately place a high degree of confidence. With these qualifications in mind, application of the distortion prediction equation to the Venda-Corna path on 8.3 GHz for the worst month estimates the single-receiver probability of distortion greater than 0.2 dB/MHz to be:

$$P_{\rm m} = 5.1(10)^{-9} \left(\frac{8.3}{4}\right)^{1.2} (90.2)^{3.5} 10^{-5(0.2)}.$$
(3)

 P_m = .0085 of the worst month, but without diversity improvement as mentioned above (Figure 20, theoretical curve).

<u>2</u>. We conclude that for DEB I, amplitude distortion for this narrow-band (approximately 14 MHz) system is not a significant factor in its performance. (See Tables 22, 34, and 41.)

Out of 15 hours of data, six reframe events are recorded (much less than 12 milliseconds outage time). The multiplex has a reframe recovery time less than 0.5 millisecond. All six of these reframe events occurred when the receiver-online indicated a distortion value equal to or less than 0.25 dB/MHz and four of them occurred when the distortion value was equal to or less than 0.1 dB/MHz, which indicates that these events may not be related to the distortion level at the time of the event since higher distortion levels are observed when no reframe or 3-level-error events occur (Tables 23 and 24).

<u>3</u>. Diversity combining is a very effective way of reducing the effects of amplitude distortion (Section 5.1). IF combiners have been demonstrated very effective (Anderson et al., 1978). Figures 6, 7, 10, 11, 16, and 17 show how effective diversity can be if 1) the switch controller is properly aligned; 2) the switching threshold differential is low enough (<3 dB) and, 3) the switch is set to operate at high as well as at low signal levels. Diversity switching is especially useful in reducing the effects of distortion nulls since these nulls correspond strongly to the RSL fading nulls. See Figures 6, 7, 10, and 11. On some paths, investigators have found evidence of in-band-fading in which nulls pass quickly through the rf band. They are often narrow enough not to significantly affect RSL as they appear in or pass through the band for bandwidths on the order of 10 MHz or greater (Hubbard, 1979). This effect was not observed during these tests on the Venda-Corna path.

 $\underline{4}$. The distortion changes at a slow enough rate so that the combiner response time presently available is sufficient (Section 5.1).

5. Future testing needs to be done to advance development of performance prediction models. In order to carry out this testing and development, several things should be done.

a) Obtain a large population of differential distortion values so that a better estimate of the characteristics of the short-term time distribution which pertain to multipath fading periods, can be obtained.

Some of the things which can be done to maximize the amount of these data while minimizing the test duration are:

- Obtain data using a radio with a wide frequency spectrum that is fairly flat across the band.
- 2) Measure long links (80 km or greater) with sufficient terrain clearance in reasonably warm, humid climates where the difference in antenna heights above mean sea level at each end of the path is small enough such that the absolute value of the antenna elevation angle is less than 0.8° at each end of the path (Hause, 1981).
- 3) Measure the amplitude of the whole spectral density function or many discrete values between the edges of the spectrum (not just the edge values).
- 4) Measure both the primary and diversity receiver spectral density function envelopes.

b) Obtain data that will result in a prediction method for estimating the reduction of receiver-on-line distortion by diversity performance.

To achieve this end, the following steps are recommended:

- Obtain time-corresponding values of fade depth and distortion on primary and diversity receivers.
- Monitor both receivers on a path configured with a typical space diversity system.
- 3) After digitizing the various data and time channels, use computer programs to obtain distributions of distortion for the receiver-on-line for various values of diversity switching threshold differential.
- c) Determine the sensitivity of the radio system to distortion, by monitoring receiver switching, frame errors and format violations or events.

Figure 6. Fade depth distortion comparison for time period of 29 May 1980, 2100-0200, Mt. Venda to Mt. Corna. (Heavy Fading)

- \ me

igure 7. Fade depth distortion comparison for time period of 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna. (Heavy Fading)

Figure 8. Differences between reference sweep and the sweep value from May 29, 02-18-10 to 02-19-20.

Figure 10. Fade Depth Distortion Comparison (Slopes only) for time period of 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna. (Heavy Fading)

Figure 11. Fade Depth Distortion Comparison (Slopes only) for time period of 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna. (Heavy Fading)

Figure 12. Correlation of spectrum amplitude distortion to fade depth for 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna. (Heavy Fading)

Figure 13. Correlation of spectrum amplitude distortion to fade depth for 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna. (Heavy Fading)

Figure 15. Correlation of spectrum amplitude distortion (slopes only) to fade depth for 28-29 May 1980. 2300-0400. Mt. Venda to Mt. Corna. (Heavy Fading)

Figure 16. Fade Depth Distortion Comparison (Slopes only) for time period of 13 May 1980, 0100-0200, Mt. Venda to Mt. Corna. (Moderate Fading)

ř.

¢

igure 17. Fade Depth Distortion Comparison (Slopes only) for time period of 13 May 1980, 0200-0300, Mt. Venda to Mt. Corna. (Moderate Fading)

Figure 18. Correlation of spectrum amplitude distortion to fade depth for slopes only, 12-13 May 1980, 2300-0400, Mt. Venda to Mt. Corna. (Moderate Fading)

Figure 19. Correlation of spectrum amplitude distortion to fade depth for 13-14 May 1980, 2200-0300, Mt. Venda to Mt. Corna. (Light Fading)

Figure 20. Cumulative distortion distribution (slopes only), Venda-Corna, 28-29 May 1980, 2300-0400 hours.

Table 6. Cumulative Distortion Distribution For 28-29 May 1980, 2300-0400. Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)

·*_>

¥6...

1

Roce i ver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth	
Diversity									
	.2	116	261	377	.0228	5	8725	.5288	1
	.4	39	26	65	.0039	10	5248	.3181	
	.6	26	9	35	.0021	15	2938	,1781	
	.8	22	3	25	.0015	20	1503	.0911	
	1.0	12	1	13	.0008	25	477	.0289	
	1.2			0	0.0000	30	159	.0096	
	1.4			.0	0.0000	35	42	.0025	
	1.6			0	0.0000	40	21	.0013	
	1.8			0	0.0000	45	2	0.0000	
	2.0			0	0.0000	50	1	U .0000	
Primary	•		6 00 <i>i</i>	4080	0.170	-	0.420	E700	
	.2	84	3994	9078	.2472	5	9436	.0720	
		12	113	125	.0076	10	4040	.2014	
	.0	6	26	32	.0019	10	1885	.1142	
		5	12	11	.0010	20	290	.0179	
	1.0	3	9	12	.0007	20	99	.0000	
	1.2		5	0	.0003	30	29 2	.0010	
	1.4		*	7	.0002	33	0	0001	
	1.0		2	2	.0001	45	1	0 0000	
	1.0				0001	50		0.0000 0.0000	
Boox son line	2.0		1	-	.0001	ųv		v. 0000	
necv. ou line	. 2	9	625	628	0381	5	2458	. 1490	
	.4	•	27	27	0016	10	1560	.0945	
	.6		4		. 0002	15	613	.0372	ł
	.8			ā	ด.ดดดดด	20	97	.0059	
	1.0			Ă	0,0000	25	16	.0010	
	1.2			ŏ	0.0000	30		0.0000	
	1.4			õ -	0.0000	35		0.0000	
	1.6			õ	0.0000	40		0.0000	
	1.8			ō	0.0000	45		0.0000	
	2.0			0	0.0000	50		0.0000	

£....

4-7

Table 7. Cumulative Distortion Distribution For 28 May 1980, 2300-2400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)

Kecelver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity	_							
	.2	67	46	113	.0342	5	1852	.5612
	.4	17	4	21	.0064	10	1056	.3200
	.6	5	1	6	.0018	15	483	.1464
	.8	4		4	.0012	20	233	0706
	1.0	1		1	.0003	25	68	.0206
	1.2			0	0.0000	30	18	.0055
	1.4			0	0.0000	35	5	.0015
	1.6			0	0.0000	40	1	.0003
	1.8			0	0.0000	45		0.0000
	2.0			Ø	0.0000	50	-	0.0000
Primary								
	.2	14	537	551	. 1670	5	1970	.5970
	.4	1	3	4	.0012	10	830	.2515
	. 6			Ø	0.0000	15	204	.0618
	.8			Ø	0.0000	20	5	.0015
	1.0			0	0.0000	25	1	.0003
	1.2			Ø	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000
RecvOn line								
	.2	3	325	328	.0994	5	1178	.3570
	.4			0	0.0000	10	610	. 1848
	.6			ø	0.0000	15	173	.0524
	.8			0	0.0000	20	1	.0003
	1.0			ø	0.0000	25		0.0000
	1.2			ø	0.0000	30		0.0000
	1.4			õ	0.0000	35		0.0000
	1.6			Ō	0.0000	40		0.0000
	1.8			õ	0.0000	45		0.0000
	2.0			Ø	0.0000	50		0.0000
				-				

اكتفعته

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortión	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >≖ Fade Depth	Fraction of Time>= Fade Depth
Diversity						_		· · · · ·
	.2	7	37	44	.0133	5	2234	.6770
	.4	1	5	6	.0018	10	1348	.4085
	.6			0	0.0000	15	605	. 1833
				6	0.0000	20	200	.0(12
	1.0			0	0.0000	20	40	0010
	1.2			0	0.0000	95	Ŭ	0 0000
	1.4			0	0.0000	40		0.0000
	1.0			Å	0.0000 0 0000	45		0.0000
	2.0			Ä	0.0000	50		0.0000
Primary				•		•••		
•	.2	4	783	787	.2385	5	2164	.6558
	.4		59	59	.0179	10	1224	.3709
	. 6		15	15	.0045	15	465	.1409
	.8		6	6	.0018	20	55	.0167
	1.0		3	3	.0009	25	18	.0055
	1.2		2	2	.0006	30	5	.0015
	1.4		2	2	.0006	35		0.0000
	1.6		1	1 .	.0003	40		0.0000
	1.8		1	1	.0003	40		0.0000
Bases - On 11-	2.0			0	0.0000	30		0.0000
AccvUn III	1e 2		186	106	0221	R	615	. 1864
	. 4		100	7	0021	10	490	. 1485
	. 6			3	. 0009	15	207	.0627
	. š		•	ă	0.0000	20	22	.0067
	1.0			õ	0.0000	25	2	.0306
	1.2			Ő	0.0000	30		0.0000
	1.4			Ó	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Cumulative Distortion Distribution For 29 May 1980, 0000-0100, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls) Table 8.

Table 9. Cumulative Distortion Distribution For 29 May 1980, 0100-0200, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)

Keceiver	Absolute Distortion in dB/MIz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Føde Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity					DIGTOLLION			
	.2	16	71	87	.0264	5	1618	.4903
	.4	7	15	22	.0067	10	1037	.3142
	.6	7	7	14	.0042	15	753	.2282
	.8	5	3	8	.0024	20	515	.1561
	1.0	2	1	3	.0009	25	235	.0712
	1.2			Ō	0.0000	30	107	,0324
	1.4			Ō	0.0000	35	20	.0061
	1.6			Ø	0.0000	40	5	.0015
	1.8			0	0.0000	45	1	.0003
	2.0			Ø	0.0000	50	1	.0003
Primary	_							
	. 2	9	988	997	.3021	5	2259	.6845
	.4	4	18	22	.0067	10	1300	.3939
	.6	2	4	6	.0018	15	628	. 1903
	.8	2	2	4	.0012	20	156	.0473
	1.0	1	2	3	.0009	25	52	.0158
	1.2		1	1	.0003	30	13	.0039
	1.4		1	1	.0003	35	5	.0015
	1.6			0	0.0000	40	1	.0003
	1.8			0	0.0000	45		0.0000
n	2.0			0	0.0000	50		0.0000
RecvUn line	_							
	.2		133	133	.0403	5	307	. 0930
	.4		9	9	.0027	10	235	.0712
	.6			Ø	0.0000	15	158	.0479
	.8			0	0.0000	20	65	.0197
	1.0			0	0.0000	25	13	.0039
	1.2			0	0.0000	30		0.0000
	1.4			. 0	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Table 10. Cumulative Distortion Distribution For 29 May 1980, 0200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 24 8 (Distortion Values Include Nulls)

Rece i ver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>≍ Fade Depth
Diversity	-					-	1450	4409
	.2	17	50	67	.0203	0 10	1400	9599
	.4	14	2	10	.0048	10	722	2101
	.0	14	i	15	.0040	10	994	1164
	.8	13		13	.0039	20	110	0333
	1.0	. 9		9	.0027	20	28	0085
	1.2			v	0.0000	30	17	0052
	1.4			v	0.0000	40	15	0045
	1.6			v	0.0000	40	10	00010
	1.8			V	0.0000	70		6 6666
	2.0			0	0.0000	00		0.0000
Primary	•	0.1	0.07	000	9500	5	1665	5045
	.2	21	007	020	.2009	10	1061	.3215
		1 1	47	11	0033	15	544	. 1648
	.0	7		11	0000	20	80	. 0242
	.0		4		0018	25	28	.0085
	1.0	4	4 0	0	.0010	30	11	. 0033
	1.4		4	1	0000	35	1	.0003
	1.4			1	0000	40	• •	0.0000
	1.0		1	1	0000	45		0.0000
	1.0		1	1	.0000	50		0.0000
R	2.0		1		.0000	00		010000
heevon lin	e 0		61	61	0185	5	358	. 1085
	. 4		11	11	0033	10	225	.0682
			1	- î	0003	15	75	.0227
	.0		•	â	0,0000	20	9	.0027
	1 0			ě	0,0000	25	i	.0003
	1.0			ő	0,0000	30		0.0000
	1.4			ŏ	õ. 0000	35		0.0000
	1.6			ŏ	0.0000	40		0.0000
	1.8			ŏ	0.0000	45		0.0000
	2.0			õ	0.0000	50		0.0000

Table 11.	Cumulative Distortion Distribution For 29 May 1980,
	0300-0400, Mt. Venda to Mt. Corna, Standard Spectrum
	Sweep No. 1 24 8 (Distortion Values Include Nulls)

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity					Distortion			
211013119	.2	9	57	66	6266	5	1568	4759
	.4	-		ă	0.0000	10	641	1942
	.6			ŏ	0.0000	15	374	. 1133
	.8			õ	0.0000	20	136	.0412
	1.0			õ	0.0000	25	21	0064
	1.2			õ	0.0000	30		0,0000
	1.4			ŏ	0.0000	35		0.0000
	1.6			Ō	0.0000	40		0.0000
	1.8			ō	0.0000	45		0.0000
_	2.0			0	0.0000	50		0.0000
Primary								
	.2	36	879	915	.2773	5	1380	.4182
	.4		9	9	.0027	10	228	.0591
	.6			0	0.0000	15	44	.0133
	.8			0	0.0000	20		0.0000
	1.0			0	0.0000	25		0.0000
	1.2			0	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000
RecvOn 11;	no							
	.2			0	0.0000	5		0.0000
	.4			0	0.0000	10		0.0000
	.6			0	0.0000	15		0.0000
	.8			Ø	0.0000	20		0.0000
	1.0			. 0	0.0000	25		0.0000
	1.2			0	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			Ø	0.0000	50		0.0000

Table 12. Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300- 400							
	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2388 627 214 64 33 17 6 3	1.0000 .2626 .0896 .0268 .0138 .0071 .0025 .0013	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2391 1756 1359 839 396 124 29 2	1.0000 .7344 .5684 .3509 .1656 .0519 .0121 .0008
2300-							
400	.4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	39 16 12 8 5	1.0000 .4103 .3077 .2051 .1282	0 1 2 4 8 16 32 64 128 256 512 1024 2048	39 37 35 33 32 31 27 27 24 16 9 4 2	1.0000 .9487 .8974 .8462 .8205 .7949 .6923 .6923 .6154 .4103 .2308 .1026 .0513

and	Durations	Event	ion E	Distor	ibution o) Distr	(Cont.)	12.	Table
ceiver	Primary Re	r the	s for	en Even	vals Betwe	Inter			
:. Corna,	Venda to M	, Mt.	24 8,	Sweep 1	Standard	using 28-20			
	Jenda co i	9 14.0.	_, 0,		May 1980	28-29			

Hour 2300-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
400							
	.6	0 1 2 4 8 16 32 .64 128 256 512 1024 2048	9 5 3 1	1.0000 .5556 .5556 .3333 .1111	0 1 2 4 8 16 32 64 128 256 512 1024 2048	9 9 8 8 8 8 7 7 6 5 5 4 3	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ .8889\\ .8889\\ .8889\\ .7778\\ .7778\\ .7778\\ .6667\\ .5556\\ .5556\\ .4444\\ .3333\end{array}$
2300-							
400	•8	0 1 2	6 4 4	1.0000 .6667 .6667	0 1 2	6 6 6	1.0000 1.0000 1.0000
		4	1	. 1667	4	6	1.0000
		8 16			8	6	1.0000
		32			32	5	.8333
		64			64	5	.8333
		128			128	4	.6667
		256			256	3	.5000
		512			512	3	.5000
		2048			1024 2048	3 2	. 3333
		au Tu			avtu	~	+0000

Table 12. (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 3, Mt. Venda to Mt. Corna, 28-29 May 1980

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300-							
100	1.0	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	5 4 3	1.0000 .8000 .6000	0 1 2 4 8 16 32 64 128 256 512 1024 2048	555554443332	1.0000 1.0000 1.0000 1.0000 1.0000 .0000 .8000 .8000 .6000 .6000 .6000 .4000
2300- 400							
	1.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	4 1	1.0000 .2500	0 1 2 4 8 16 32 64 128 256 512 1024 2048	44444443332	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .7500 .7500 .7500 .5000

Table 12 (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980

Hour 2300-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
400	1 4	0		1 0000			
	1.5	1 2 4 8 16 32 64 128 256 512 1024 2048	31	1.0000 .3333	0 1 2 4 8 16 32 64 128 256 512 1024 2048	3 3 3 3 3 3 3 3 3 3 3 3 2 2	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2300-							
400	1.6	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2	1.0000	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2024\\ \end{array}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 13.	Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard
	Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980

2300-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
400	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	125 44 31 23 10 4	1.0000 .3520 .2480 .1840 .0800 .0320	0 1 2 4 8 16 32 64 128 256 512 1024 2048	$ \begin{array}{r} 125 \\ 103 \\ 91 \\ 80 \\ 72 \\ 64 \\ 58 \\ 55 \\ 40 \\ 24 \\ 9 \end{array} $	1.0000 .8240 .7283 .6400 .5760 .5120 .4640 .4400 .3200 .1920 .0720
2300- 400	. 4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	20 11 7 3 2	1.0000 .5500 .3500 .1500 .1000	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	20 16 16 16 14 14 14 14 13 11 8 3 1	1.0000.8000.8000.7000.7000.7000.7000.6500.5500.4000.1500.0300

Table 13. (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980

2300-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
400	. 6	0 1 2 4 8 16 32 64 128 256 512 1024 2048	9 6 5 2 1	1.0000 .6667 .5556 .2222 .1111	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	9 9 8 8 8 8 8 8 7 7 3 1	1.0000 1.0000 .8889 .8889 .8889 .8889 .8889 .8889 .8889 .889 .889 .889 .889 .8333 .7778 .3333 .1111
2300-							
404	. 8	0 1 2 4 8 16 32 64 128 256 512 1024 2048	8 7 3 2	1.0000 .8750 .3750 .2500	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	8 6 6 6 6 6 6 6 5 5 3 1	1.0000.7500.7500.7500.7500.7500.7500.7500.7500.6250.6250.3750.1250

Table 13. (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 24 8, Mt. Venda to Mt. Corna, 28-29 May 1980

2300-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
400	1.0	0 1 2 4 8 16 32 64 128 256 512 1024 2048	7 4 2	1.0000 .5714 .2857	0 1 2 4 8 16 32 64 128 256 512 1024 2048	744444444	1.0000 $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.5714$ $.2857$ $.1429$
2300- 400	1.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048			0 1 2 4 8 16 32 64 128 256 512 1024 2048		

Diversity 2 2 59 452 511 .0310 5 8725 5288 4 1 41 42 .0025 10 5248 .3181 6 2 2 0001 15 2938 .1781 .8 2 0 0.0000 20 1503 .0911 1.9 0 0.0000 25 477 .0269 1.2 0 0 0.0000 30 159 .0096 1.4 0 0 0.0000 35 42 .0025 1.6 0 0 0.0000 40 21 .0013 0 0 0.0000 40 1 .0001 1.2 2 2 0.001 30 29 .0018 1.4 0 0 0.0000 35 6 .0009 1.2 2 2 0.001 30 29 .0018 1.4 0 0 0.0000 35 6 .0009 1.2 0 0 0.0000 40 1 .0001 1.2 0 0 0 0.0000 40 0 0 0 0 000 Recv0n line 20 0 0.0000 45 0 0.0000 1.4 0 0.0000 45 0 0.0000 1.6 0 0.0000 45 0 0.0000 1.6 0 0.0000 45 0 0.0000 1.6 0 0.0000 45 0 0.0000 1.2 0 0 0.0000 45 0 0.0000 1.4 0 0.0000 45 0 0.0000 1.6 0 0.0000 45 0 0.0000 0 0.0000 45 0 0.0000 2.0 0 0 0.0000 35 0 0.0000 1.6 0 0.0000 25 1 0 0.0000 1.6 0 0.0000 25 1 0 0.0000 0 0.0000 25	Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Deptb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diversity	_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	59	452	511	.0310	5	8725	.5288
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4	1	41	42	.0025	10	5248	.3181
		, 0		2	2	.0001	15	2938	.1781
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0		,	U	0.0000	20	1503	.0911
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0			0	0.0000	25	477	.0289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.4			Ø	0.0000	30	159	,0090
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.7			v	0.0000	30	42	.0020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0			0	0.0000	40	21	0 0013
Primary .2 51 1628 1679 .1018 5 9438 .5720 .4 4 183 187 .0113 10 4643 .2814 .6 1 38 39 .0024 15 1885 .1142 .6 1 38 39 .0024 15 1885 .1142 .8 11 11 .0007 20 296 .00179 1.0 4 4 .0002 25 99 .0018 1.2 2 2 .0001 30 29 .0018 1.4 0 0 0.0000 35 6 .0004 1.6 0 0.0000 45 0.0000 0.0000 2.0 0 0.0000 50 0.0000 0.0000 1.6 14 14 .0025 5 2458 .1490 .4 52 52 .0262 5 2458 .1490 .4 14 14 .0025 10 .0560 .0077		2.0			0	0.0000	40 50		0.0000 0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Primary				v	0.0000			0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	.2	51	1628	1679	. 1018	5	9438	. 5720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4	4	183	187	.0113	10	4643	.2814
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6	1	38	39	.0024	15	1885	.1142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8		11	11	.0007	20	296	.0179
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0		4	4	.0002	25	99	.0060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.2		2	2	.0001	30	29	.0018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.4			0	0.0000	35	6	.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.6			0	0.0000	40	1	.0001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.8			Ø	0.0000	45		0.0000
RecvUn line1431432 $.0262$ 52458 $.1490$.45252 $.0032$ 101560 $.0945$.61414 $.0008$ 15613 $.0372$.833 $.0002$ 2097 $.0059$ 1.00 0.0000 2516 $.0010$ 1.20 0.0000 30 0.0000 1.400 0.0000 35 0.0000 1.500 0.0000 40 0.0000 1.80 0.0000 45 0.0000 2.000 0.0000 50 0.0000	n o 1.	2.0			Ø	0.0000	50		0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RecvUn lin	e o		40.4	(00		_	0.170	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2	1	431	432	.0262	5	2458	.1490
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4		52	52	.0032	10	1360	.0945
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0		14	14	.0008	15	613	.0372
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0		3	3	.0002	20	97	.0039
1.4 0 0.0000 35 0.0000 1.6 0 0.0000 40 0.0000 1.8 0 0.0000 45 0.0000 2.0 0 0.0000 50 0.0000		1.2			U A	0.0000	20	10	0 0000
1.6 0 0.0000 40 0.0000 1.8 0 0.0000 45 0.0000 2.0 0 0 0.0000 50 0.0000		1.4			v A	0.0000	30		0.0000
1.8 0 0.0000 45 0.0000 2.0 0 0.0000 50 0.0000		1.6			Å	0.0000	40		0.0000
		1.8			ŏ	0.0000	45		0.0000
		2.0			ő	0.0000	50		0.0000

Table 14.	Cumulative Distortion Distribution (slopes only) For 28-29
	May 1980 2300-0400, Mt. Venda to Mt. Corna, Standard
	spectrum sweep i 24 8

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No, of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples ≻= Fade Depth	Fraction of Time>= Fade Depth
Diversity								
•	.2	49	80	129	.0391	5	1852	.5612
	.4	1	3	4	.0012	10	1056	.3200
	.6			0	0.0000	15	483	.1464
	.8			0	0.0000	20	233	.0706
	1.0			Ø	0.0000	25	68	.0206
	1.2			0	0.0000	30	18	.0055
	1.4			0	0.0000	35	5	.0015
	1.6			0	0.0000	40	1	.0003
	1.8			0	0.0000	45		0.0000
. .	2.0			9	0.0000	50		0.0000
Primary	•	-	000	010	-0445	-	1070	5070
	.2	5	208	213	.0040	5	1910	0515
	.4	1	9	10	.0030	10	204	.2010
	.0		1	1	00003	20	5	.0015
				v A	0.0000	25	1	6003
	1.0			0	0.0000	20	•	0,0000
	1.2			v	0.0000	95		0.0000
	1.4			0	0.0000	40		0.0000
	1.0			ő	0.0000	45		0.0000
	2.0			Å	0.0000	50		0.0000
Beev -On 11	2.0			v	0.0000			•••••
Incover on all	.2	1	186	187	.0567	5	1178	.3570
	.4	-	5	5	.0015	10	610	. 1848
	. 6		-	õ	0.0000	15	173	.0524
	.8			Ō	0.0000	20	1	.0003
	1.0	*		0	0.0000	25		0.0000
	1.2			0	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0600	45		0.0000
	2.0			Ø	0.0000	50		0.0000

Table 15. Cumulative Distortion Distribution (slopes only) For 28 May 1980 2300-2400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8

Table 16.	Cumulative Distortion Distribtuion (slopes only) For 29 May 1980 0000-0100, Mt. Venda to Mt. Corna,
	Standard Spectrum Sweep 1 24 8

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity					Distortion			
	.2	3	57	60	.0182	5	2234	.6770
	.4		13	13	. 0039	10	1348	4085
	.6			ō	0.0000	15	605	. 1833
	.8			õ	0.0000	20	235	.0712
	1.0			ŏ	0.0000	25	43	.0130
	1.2			Ő	0.0000	30	6	.0018
	1.4			ō	0.0000	35	-	0.0000
	1.6			Ő	0.0000	40		0.0000
	1.8			ø	0.0000	45		0.0000
	2.0			Ō	0.0000	50		0.0000
Primary								
	.2	1	401	402	. 1218	5	2164	.6558
	.4		91	91	.0276	10	1224	.3709
	.6		26	26	.0079	15	465	. 1409
	.8		11	11	.0033	20	55	.0167
	1.0		4	4	.0012	25	18	.0055
	1.2		2	2	.0006	30	5	.0015
	1.4			0	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000
RecvOn lin	ne							
	.2		72	72	.0218	5	615	.1864
	.4		10	10	.0030	10	490	. 1485
	.6		5	5	.0015	15	207	.0627
	•8		3	3	.0009	20	22	.0067
	1.0			Ø	0.0000	25	2	.0006
	1.2			0	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples ≻= Fade Depth	Fraction of Time>= Fade Depth
Diversity								
	.2	4	107	111	.0336	5	1618	.4903
	.4		20	20	.0061	10	1037	,3142
	.6		2	2	.0006	15	753	.2282
	.8			ø	0.0000	20	515	. 1001
	1.0			v	0.0000	25	235	.0712
	1.2			Ø	0.0000	30	107	,0324
	1.4			0	0.0000	35	20	.0001
	1.0			Ø	0.0000	40	5	.0013
	1.0			9	0.0000	40	1	.00000
Destance est	2.0			0	0.0000	50	1	
I T. I III I. A	0	5	650	657	1001	5	2259	6845
	.2	1	51	50	0150	10	1300	3939
	.6	•	3	3	. 0000	15	628	1903
	Ř		v	ŏ	0 0000	20	156	.0473
	1.0			Å	0.0000	25	52	.0158
	1.2			ŏ	0.0000	30	13	.0039
	1.4			ă	0.0000	35	5	.0015
	1.6			ă	0.0000	40	ī	.0003
	1.8			ø	0.0000	45		0.0000
	2.0			õ	0.0000	50		0.0000
RecvOn lin	18							
	.2		130	130	.0394	5	307	.0930
	.4		21	21	.0064	10	235	.0712
	.6		3	3	.0009	15	158	.0479
	.8			0	0.0000	20	65	.0197
	1.0			0	0.0000	25	13	.0039
	1.2			0	0.0000	30		0.0000
	1.4			Ø	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Table 17. Cumulative Distortion Distribution (slopes only) For 29 May 1980 0100-0200, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8

Table	18.	Cumulative Distortion Distribution (slopes only) For
		29 May 1980 0200-0300, Mt. Venda to Mt. Corna,
		Standard Spectrum Sweep 1 24 8

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No, of Samples <= the - Distortion	No, of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples ≻= Fade Depth	Fraction of Time>= Fade Depth
Diversity								
	.2		90	90	.0273	5	1453	.4403
	.4		2	2	.0006	10	1166	.3533
	.6			Ø	0.0000	15	723	.2191
	.8			Ø	0.0000	20	384	.1164
	1.0			Ø	0.0000	25	110	.0333
	1.2			0	0.0000	30	28	.0085
	1,4			0	0.0000	35	17	.0052
	1.0			0	0.0000	40	15	.0040
	1.0			U O	0.0000	45	1	.0003
Primane	2.0			0	0.0000	90		0.0000
i i i i i i i i i i i i i i i i i i i	.2	15	226	241	0790	5	1665	5045
	.4	2	23	25	0076	10	1061	3215
	.6	1	- ă	- Š	.0027	15	544	. 1648
	.8	_	-	ø	0.0000	20	80	.0242
	1.0			Ø	0.0000	25	28	.0085
	1.2			Ø	0.0000	30	11	.0033
	1.4			0	0.0000	35	1	.0003
	1.6			0	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			Ø	0.0000	50		0.0000
RecvOn lin	e					_	0.70	
	.2		43	43	.0130	5	358	. 1985
	• 4		16	16	.0048	10	225	.0682
	.0		6	6	.0018	15	(3	.0227
	.0			U A	0.0000	20	9	.0027
	1.0			0	0.0000	20	I	0 0000
	1.4			0	0.0000	20		6 0000
	1.6			Ä	0.0000	40		0.0000
	1.8			ŏ	0.0000	45		0.0000
	2.0			õ	0.0000	50		0.0000

Table 19. Cumulative Distortion Distribution (slopes only) For 29 May 1980 0300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 24 8

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity				. – .			1	4750
	.2	3	118	121	.0367	5	1568	.4792
	.4		3	3	.0009	10	641	.1942
	.6			U	0.0000	. 15	374	. 1100
	.8			0	0.0000	20	136	.0414
	1.0			ø	0.0000	25	21	.0004
	1.2			ø	0.0000	30		0.0000
	1.4			Ø	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8	•		0	0.0000	45		0.0000
	2.0			Ø	0.0000	50		0.0000
Primary	•				0500	-	1000	4199
	.2	25	141	160	.0503	5	1300	AC01
	.4		9	9	.0027	10	220	.0071
	.6			Ø	0.0000	15	44	0 0000
	.8			Ø	0.0000	20		0.0000
	1.0			v	0.0000	20		0.0000
	1.2			V	0.0000	30		0.0000
	1.4			V	0.0000	30		0.0000 0.0000
	1.0			0	0.0000	45		0.0000
	1.8				0.0000	70		6 6666
B	2.0			0	0.0000	96		0.0000
RecvUn 111	1e .			0	0 0000	5		0.0000
	.2			0	0.0000	10		0,0000
				0	0.0000	15		0.0000
	.0			Ő	0.0000	20		0.0000
	1.0			Å	0.0000	25		0.0000
	1.0			ő	0.0000	30		0.0000
	1 4			ñ	0.0000	35		0.0000
	1.4			ő	0.0000	40		0.0000
	1.8			ă	0.0000	45		0.0000
	2.0			ă	0.0000	50		0.0000
	2.0			•	2.0000			

Hour 2300-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
300	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	359 154 93 55 37 25 10 4 1	1.0000 .4290 .2591 .1532 .1031 .0696 .0279 .0111 .0028	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	361 221 169 118 84 70 54 45 35 18 3 1 1	1.0000 .6122 .4681 .3269 .2327 .1939 .1496 .1247 .0970 .0499 .0083 .0028
2300- 300	. 4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	44 27 18 11 6 3	1.0000 .6136 .4091 .2500 .1364 .0682	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	44 35 33 26 23 20 18 17 15 10 8 6 2	$1.0000 \\ .7955 \\ .7500 \\ .5909 \\ .5227 \\ .4545 \\ .4091 \\ .3864 \\ .3409 \\ .2273 \\ .1818 \\ .1364 \\ .0435$

Table 20. Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Slopes Only

Table 20. (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Slopes Only

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300- 300							
	. 6	0 1 2 4 8 16 32 64 128 256 512 1024 2048	14 5 3 3 1	1.0000 .3571 .2143 .2143 .0714	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	14 11 10 10 10 9 7 7 6 6 6 4 3	$1.0000 \\ .7857 \\ .7857 \\ .7143 \\ .7143 \\ .6429 \\ .5000 \\ .5000 \\ .4286 \\ .4286 \\ .2857 \\ .2143$
2300-							
300	. 8	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	3 2 2 1	1.0000 .6667 .6667 .3333	0 1 2 4 8 16 32 64 128 256 512 1024 2048	3 2 2 2 2 2 2 2 1 1 1 1 1 1	1.0000 .6667 .6667 .6667 .6667 .6667 .6667 .3333 .3333 .3333 .3333 .3333

6]

Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 1 24 8, Slopes Only Table 20. (Cont.)

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300- 300							
	1.0	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2 1 1	1.0000 .5000 .5000	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .5000 .5000 .5000 .5000 .5000 .5000
2300-							
	1.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	1 1	1.0000	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	1 1 1 1 1 1 1 1 1 1	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

62

÷.

Table 21. Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 24 8, Slopes Only

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300-							
300	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	169 73 51 28 12 7	1.0000 .4320 .3018 .1657 .0710 .0414	0 1 2 4 8 16 32 64 128 256 512 1024 2048	169 117 93 69 60 42 37 32 25 18 11 2 1	1.0000 .6923 .5503 .4083 .3550 .2485 .2189 .1893 .1479 .1065 .0651 .0118 .0059
2300-							
300	.4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	15 6 4 2 2	1.0000 .4000 .2667 .1333 .1333	0 1 2 4 8 16 32 64 128 256 512 1024 2048	15 12 12 12 11 11 11 11 10 10 4 2	1.0000 .8000 .8000 .7333 .7333 .7333 .7333 .7333 .7333 .6667 .6667 .2667 .1333

Table 21. (Cont.)	Distribution of Distortion Event Durations and
	Intervals Between Events for the Diversity Receiver
	using Standard Sweep 1 24 8, Slopes Only

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300- 300	.6	0 1 2	2	1.0000	0 1 2	2 2 2	1.0000 1.0000 1.0000
		4 8 16 32 64			4 8 16 32 64	1 1 1 1	.5000 .5000 .5000 .5000 .5000 .5000
		128 256 512 1024 2048			128 256 512 1024 2048	1 1 1 1	.5000 .5000 .5000 .5000 .5000 .5000
						-	
2300- 300	.8	0 1 2			0 1 2		

0
1
2
4
8
16
32
64
128
256
512
1024
2048

Swe
23
23
23
0
0
0
l
1
1
1
1
1
1.
1
1
1
1
2
2
2
2
2
2

Table 22. Event Occurrences during the 28-29 May 2300-0400 Data Period

Table 23. Sweeps Showing Distortion Greater than 0.5 dB/MHz on the Primary Receiver

	Start tim Path	e – 28 May – Mt Ven	1980 2	300 hr	Sta	andard :	Spectral	l Densit	y Swe	ep No.	1 24	8 8	I.a.
D	iversi	t y	R e c	eiver.	31ev1	Ref-	Rovr 1	noru; D Prim	arv		/rinz r	R A C	eiver
	Dist	ortion	(dB/MHz)		Error	rame	on	D	is t	ort	ion	(dB/MHz)	Ç I V C L
Sweep No.	Minumum	Maximum	Distortion	Fade (dB)	Event	Event	Line	Min	imum	Maxi	imum	Distortion	Fade(dB)
23 13 1	4 67.7	3 70.0	.05	5.5	0	0	D	9	72.9	1.9	67.7	54	18.6
0 12 9	3 72.9	.0 67.7	08	18.3	0	0	P	-1.0	72.9	1.6	67.7	50	20.8
0 12 11	- 1 72.9	.1 0/./	07	19.2	0	0	P	-1.1	72.9	1.9	67.7	56	21.8
0 12 12	- 1 72.9	1 67 7	03	20.5	0	0	5	-1.1	72.9	2.6	67.7	/1	24.9
0 12 14	1 72.9	.1 67.7	03	21.4	0	0	P	0	72 9	2.2	67.7	00	27.2
0 12 15	2 72.9	.0 67.7	05	22.4	n	ñ	'n	0	72.9	2.5	67 7	- 85	20.0
0 12 17	2 72.9	.0 67.7	05	21.4	ŏ	ŏ	D	8	72.9	2.0	67.7	53	29.8
0 12 49	1 67.7	1 72.9	.00	18.7	õ	Ō	D	-1.1	72.9	1.5	67.7	50	20.6
0 13 43	1 67.7	1 72.9	.01	16.4	0	0	D	-1.3	72.9	1.3	67.7	50	18.3
0 14 24	2 72.9	1 67.7	02	16.0	0	0	D	-1.1	72.9	1.6	67.7	52	19.0
0 14 25	3 72.9	3 67.7	00	15.5	0	0	D	-1.1	72.9	1.6	67.7	52	18.8
0 14 26	3 72.9	1 67.7	03	15.5	0	0	D	-1.1	72.9	2.0	67.7	60	19.7
0 14 27	1 6/./	.0 72.2	.04	15.5	0	0	D	-1.3	72.9	1.9	67.7	61	20.2
0 14 26	- 2 72.9	0 0 67 7	05	16.9	0	0	D	-1.2	72.9	2.3	67.7	68	20.6
0 14 30	1 72.9	.0 67.7	- 02	17.3	0	0	ע	-1.3	72.9	2.1	67.7	64	21.3
0 14 31	0 72.9	.1 67.7	02	20.1	0	Ő	n	-1.2	72.9	2.4	67 7	- 77	22.0
0 14 32	0 72.9	.1 67.7	03	20.5	ñ	Ő	n	-1.2	72.9	3.0	67 7	- 81	22.2
0 14 33	1 72.9	.0 67.7	03	20.5	õ	õ	Ď	-1.2	72.9	3.4	67.7	89	25.9
0 14 34	1 72.9	.2 67.7	06	21.4	Ō	Ō	D	-1.4	72.9	3.8	67.7	-1.01	29.8
0 14 35	2 72.9	.2 68.5	10	23.3	0	0	D	-1.3	72.9	5.5	68.5	-1.57	33.4
0 14 36	2 72.9	.3 67.7	11	24.6	0	0	D	1.2	72.9	5.5	70.7	-1.95	31.8
0 14 40	.0 72.9	.3 67.7	06	24.6	0	0	D	8	72.9	1.8	67.7	51	29.1
0 59 20	0 67.7	.1 72.9	.03	7.8	0	0	D	-1.0	72.9	1.7	67.7	51	19.5
0 59 22	1 72.9	.0 69.3	03	8.7	0	0	D	9	72.9	2.0	67.7	54	20.6
0 59 23	1 /2.9	.1 71.4	08	8.7	0	0	D	9	72.9	2.3	67.7	62	19.5
1 22 31	.1 /2.9	.3 6/./	04	/.8	. 0	0	D	6	72.9	.2	71.4	54	10.3
1 55 27	6 72 9	1.5 07.7	- 15	20.5	0	0	P D	4	72.9	2.4	61.1	54	26.3
1 55 28	.4 72.9	1.2 68.5	18	20.0	0	0	P	- 4	72.9	2.3	67 7	52	25.9
1 57 36	1.0 72.9	1.7 67.7	13	31.0	ŏ	ŏ	Ď	1.8	72.9	3.6	70.7	79	32.0
1 57 37	1.1 72.9	1.9 67.7	15	31.9	Ō	Ō	D	2.1	72.9	3.6	70.7	66	35.0
1 57 38	1.2 72.9	1.7 67.7	10	32.4	0	0	D	2.5	72.9	4.9	70.7	-1.03	35.9
1 57 39	.9 72.9	1.8 67.7	17	33.3	0	0	D	2.8	72.9	6.0	70.7	-1.43	38.0
1 57 40	1.1 72.9	1.9 67.7	 15	34.7	0	0	D	4.3	67.7	8.2	71.4	1.06	38.0
1 57 41	1.0 72.9	1.8 67.7	14	32.9	0	0	D	1.8	67.7	4.3	70.7	.81	42.3
1 57 42	1.2 72.9	1.8 67.7	12	32.4	0	0	D	.6	67.7	2.4	70.7	.59	33.2
2 18 32	.1 72.9	.6 68.5	11	10.1	0	0	P	6	72.9	2.2	67.7	54	21.3
2 18 33	.2 /2.9	.3 68.5	03	11.4	0	0	P	4	72.9	2.8	67.7	62	22.9
2 18 35	3 72 9		- 02	11.9	0	0	2	4	72.9	2.1	61.1	58	24.0
2 18 36	.3 67.7	.4 72 9	01	11.9	0	0	P	- 3	72.9	2.0	67 7	57	24.5
2 19 37	4 72.9	.5 68.5	01	11.4	ñ	ñ	p	3	72.9	2.8	67 7	- 59	23.5
2 18 38	.3 67.7	.4 70.0	.03	13.2	Ŏ	ŏ	Ď	2	72.9	3.1	67.7	62	26.8
2 28 5	.8 72.9	1.5 67.7	15	25.1	0	0	D	3.5	72.9	9.0	70.7	-2.47	19.9
2 28 27	.5 72.9	1.0 67.7	10	26.0	0	0	D	1.5	67.7	6.2	72.2	1.05	31.4
2 28 28	.6 72.9	.8 68.5	03	24.6	0	0	D	1.3	67.7	5.0	71.4	1.00	37.1
2 28 29	.6 72.9	.7 67.7	01	24.2	0	0	D	.2	67.7	2.7	70.7	.83	33.4
2 31 34	.4 /2.9	1.6 67.7	23	29.2	0	0	D	1.3	67.7	3.6	71.4	.62	33.2
2 JL .35	.0 /2.9	1.4 58.5	18	26.9	0	U	D A	1.1	12.9	2.6	70.7	/0	31.6
2 31 30 7 1 77	.4 /2.9 5 70 0	1.6 67.7	10	20.5	0	0	D	1.3	12.9	3.8	70.7	-1.10	33.4
2 31 37	4 72 9	8 67 7	08	20.0	0	0	U D	. 9	72 9	4.4	70.0	-1.20	32.0
	• 7 / 4 • 7	.0 0/./	00	23.1	U	U	U	. 7	14.7	7. I	10.1	-1.00	JU . 4

ĺ

Table 24. Sweeps Showing Distortion Greater than 0.5 dB/MHz on the Diversity Receiver

N

		Start time Path	е – 28 – м	May t. Vei	1980 23 nda to Mt. C	l00hr Iorna	Sta Dis	andard S stortion	Spectra Thres	l Densi hold :	ty Swe Div=	ep No. 124 .50 dB/MHz J	4 8 Pri=99.00 dB MM	Iz
	D	iversi	t y		R e c	eiver	3levl	Ref-	Revr	Prim	ar v		R e c	eiver
		Disto	ort.	ion	(dB/MHz)		Error	rame	on	D	ist	ortion	n (dB/MHz)	
Sw€	ep No.	Minumum	Max	imum	Distortion	Fade (dB)	Event	Event	Line	Mi	nimum	Maximum	Distortion	Fade (dB)
23	27 47	4.1 67.7	6.4	71.4	.61	37.0	0	0	P	8	72.9	2 67.7	12	8.9
23	27 48	4.2 67.7	7.2	71.4	.81	39.2	0	0	Р	8	72.9	2 67.7	11	9.4
23	27 49	4.2 67.7	6.8	70.0	1.13	39.7	0	0	Р	6	72.9	2 69.3	11	9.6
23	43 41	2.8 72.9	5.2	69.3	65	26.5	0	0	Ρ	7	72.9	3 70.7	19	3.2
23	59 19	4.2 67.7	6.9	70.7	.91	40.6	0	0	Р	8	72.9	.1 67.7	17	16.5
23	59 20	4.2 67.7	6.8	70.7	. 85	36.5	0	0	P	8	72.9	1 67.7	13	16.5
1	42 11	1.2 72.9	3.9	68.5	60	31.9	Õ	Ō	D	3	72.9	1.3 67.7	29	20.4
1	42 12	1.4 72.9	4.0	68.5	57	33.3	0	0	D	3	72.9	1.2 67.7	30	20.6
1	42 15	1.4 72.9	4.3	68.5	67	33.3	1	0	D	3	72.9	1.2 67.7	29	22.2
1	42 15	1.9 72.9	4.6	68.5	62	33.8	7	0	Ð	3	72.9	1.2 67.7	29	23.8
1	42 17	3.9 72.9	6.8	70.0	98	42.9	0	0	Р	3	72.9	1.7 67.7	38	24.7
1	42 18	4.1 67.7	7.1	70.7	.99	43.8	0	0	Р	4	72.9	1.6 67.7	37	24.9
1	42 19	4.1 67.7	5.6	70.0	.63	39.7	0	0	P	2	72.9	1.5 67.7	32	24.9
1	42 20	4.1 67.7	5.4	69.3	.81	39.2	0	0	Р	3	72.9	1.7 67.7	39	25.4
1	45 16	1.8 72.9	4.7	68.5	64	30.1	0	0	Р	1	72.9	.3 67.7	07	9.2
1	45 17	3.7 72.9	6.7	70.0	-1.03	34.2	1	1	P	1	72.9	.4 70.7	23	10.1
1	45 18	4.0 72.9	6.6	70.0	88	37.4	0	0	Р	2	72.9	.3 70.7	23	9.6
1	55 8	4.1 67.7	7.3	71.4	.86	43.4	0	0	Р	3	72.9	1.1 67.7	28	19.0
1	55 9	4.1 67.7	7.5	70.7	1.12	50.2	0	0	Р	5	72.9	.9 67.7	27	19.2
1	55 10	4.3 67.7	7.3	70.7	1.01	42.9	0	0	Р	3	72.9	1.0 67.7	25	18.6
1	55 11	4.1 67.7	5.5	70.0	.63	33.3	0	0	Р	4	72.9	1.0 67.7	27	18.3
2	12 13	4.1 67.7	7.3	70.7	1.08	40.5	0	0	Р	0	72.9	.6 71.4	40	15.8
2	12 14	4.3 67.7	6.7	70.0	1.07	40.1	0	0	Р	. 2	72.9	.5 67.7	06	16.0
2	12 15	4.2 67.7	6.4	70.0	.94	37.4	0	0	P	0	72.9	.6 67.7	12	15.8
2	12 15	4.2 67.7	7.5	70.7	1.10	41.1	0	0	Р	1	72.9	.5 67.7	13	16.3
2	12 17	4.1 67.7	7.3	70.7	1.07	42.4	0	0	Р	1	72.9	.4 68.5	11	16.3
2	12 18	4.1 67.7	7.4	70.7	1.10	42.0	0	0	Р	1	72.9	.4 67.7	10	16.3
2	12 19	4.3 67.7	6.9	71.4	.72	41.1	0	0	Р	.2	72.9	.3 70.7	08	16.3
2	12 20	4.2 67.7	6.6	70.0	1.05	40.6	0	0	Р	0.0	72.9	.5 67.7	10	16.0
2	12 21	4.2 67.7	7.3	70.7	1.06	40.6	0	0	Р	0.0	72.9	.5 68.5	10	15.8
2	12 22	4.3 67.7	7.5	70.7	1.06	48.4	0	0	p	0	72.9	.5 67.7	11	16.3
2	12 23	4.1 67.7	7.4	71.4	.90	41.5	0	0	Р	1	72.9	.5 67.7	12	15.8
2	12 24	4.2 67.7	7.4	70.7	1.05	43.4	0	0	Р	0	72.9	.6 67.7	12	15.3
2	12 25	4.1 67.7	6.9	70.7	.95	41.5	0	0	Р	1	72.9	.5 67.7	12	15.8
2	12 25	4.1 67.7	7.1	71.4	.80	40.6	0	0	Р	.0	72.9	.4 68.5	03	15.8
2	31 28	3.8 72.9	5.8	70.0	- 69	40.6	0	0	P	- 3	72.9	1.6 67.7	- 36	22.9

Table 25. Sweeps Showing Flat Fading Greater than 35 dB

			St	art ti	me - 2	8 Mav	1980 2	300 hr	Sta	andard s	Spectra	lDensi	ty Sw	een No.	1 24	.8	
		Г) i v e	rsi	t v			ve iver		Pof-	n Thres		D1V=	0.00 dE	S/MHZ P	r1 = 0.00 dB M	łz
			D	ist	or t	: i o n	(dB/MHz)	.eivei	Error	rame	OD	FLI	i a r	$t \circ r t$	ion	(dB/MHz)	eiver
Sw	een	NO.	М	inumum	Ma	ximum	Distortion	Fade(dB)	Event	Event	Line	мі	ຸ 1.00	May	i mum	Distortion	Fade (dB)
23	27	47	4.1	67.7	6.4	71.4	.61	37.0	0	0	p	- 8	72.9	- 2	67.7	- 12	8 9
23	27	48	4.2	67.7	7.2	2 71.4	.81	39.2	ő	ő	p	- 8	72 9	- 2	67 7	- 11	9.1
23	27	49	4.2	67.7	6.8	70.0	1.13	39.7	ň	ň	- -	- 6	72 0	- 2	69.3	_ 11	9.7
23	59	19	4.2	67.7	6.9	70.7	. 91	40.6	ő	õ	p	- 8	72 9	• 1	67 7	- 17	16 5
23	59	20	4.2	67.7	6.8	3 70.7	. 85	36.5	ň	õ	D	- 8	72 0		67 7	- 13	16.5
1	41	24	2.2	67.7	3.2	72.9	.18	36.1	ő	ő	Ď	- 5	72 9	11	677	- 31	21 5
1	41	25	2.2	67.7	2.8	72.9	.12	35.1	ŏ	ñ	Ď	2	72.9	1 0	67 7	- 23	21.5
1	41	26	2.4	67.7	2.7	72.9	. 06	36.1	Ő	ō	n	- 2	72 9	· 1 1	677	- 25	22.7
1	41	39	2.3	67.7	3.5	72.9	.23	35 1	Ő	õ	ñ	- 2	72.9	2.2	67 7	- 46	22.1
ľ	41	40	2.6	67.7	2.7	72 9	02	35 1	1	0	ע ת	2	72.9	2.2	67.7	- 40	22.4
1	41	42	1.7	72.9	2.0	677	- 07	36 1	1	0	5	1	72.9	1 4	67.7	42	22.1
ī	42	17	3.9	72.9	6.8	70.0	- 98	42 9	Ň	õ	5		72.9	1.7	67.7	- 29	22.0
1	42	18	4.1	67.7	7.1	707	- 90	43 8	0	0	r D	3	72.9	1.7	67.7	30	24.7
1	42	19	4 1	67 7	5 6	70 0	63	20.7	0	0	<i>r</i>	4	72.9	1.0	0/./	37	24.9
î	42	20	4 1	67 7	5.7	60.0	.03	39.7	0	0	۲ ۲	2	12.9	1.5	67.7	32	24.9
i	42	21	2 6	72 0	3.0	, <u>,</u> ,,	- 09	37.4	0	0	2	3	12.9	1./	6/./	39	25.4
ī	45	18	4.0	72.9	6.6	700	- 88	33.1	U	Ŭ	P	3	72.9	· 1.5	67.7	35	24.0
-1	45	19	1.9	72.9	3.1	67.7	23	36 1	0	0	P	2	72.9	• • • •	69.2	23	9.6
1	55	7	2.7	67.7	3 6	72 9	14	37 0	2	õ	r	4	72.9	.2	67.3	17	0.9
ī	55	. 8	4 1	67 7	7 7	2 71 4	96	12 4	J	0	, U	3	72.9		67.7	23	17.4
î	55	ä	4 1	67 7	7 6	707	1 12	50 0	0	0	P	2	72.9	1.1	67.7	28	19.0
ĩ	55	10	1 2	67 7	7 2	70.7	1 01	10.2	0	U	P		72.9		6/./	2/	19.2
1	55	11	4.5	67.7	 E E	70.1	1.01	44.9	U	0	P P	3	72.9	1.0	6/./	25	18.6
1	55	12	4.1 2 7	720	 		.03	30.3	0	0	P	4	12.9	1.0	67.7	27	18.3
1	57	27	1 1	72.7	5.3) (7.3	44	30.5	0	0	P	3	12.9	.9	6/./	23	18.1
1	57	20	1.1	72.9	· L. S	, ,,,,	15	31.9	U	U	D	2.1	72.9	3.6	70.7	66	35.0
1	57	22	1.2	72.9	1.1	67.7	10	32.4	0	0	D	2.5	72.9	4.9	70.7	-1.08	35.9
1	57	39		72.9	1.0	5 67.7	1/	33.3	Ű	0	D	2.8	72.9	6.0	70.7	-1.43	38.0
1	57	40	1.1	72.9	1.5	, ,,,	15	34.7	U	U Q	D	4.3	67.7	8.2	71.4	1.06	38.0
1	57	4 I 1 C	1.0	72.9	1.8	5 67.7	14	32.9	0	0	D	1.8	67.7	4.3	70.7	.81	42.3
. 1	12	40	1.9	677	2.1	7 07.7	14	35.0	0	U	D	. 6	12.9	1.0	6/.7	08	31.1
2	12	14	4.1	67.7	2 · · ·	70.7	1.00	40.0	0	0	P	0	14.9	• •	/1.4	40	15.8
2	12	15	4.5	67.7	6.4	70.0	1.07	40.1 27 4	0 .	0	2	• 2	72.9	.5	67.7	06	16.0
2	12	16	4.2	67.7	7 9	70.0	. 24	37.4	U	0	P	0	72.9	.0	6/./	12	15.8
2	12	17	4.2	677	7.3	70.7	1.10	41.1	0	0	P	1	72.9	.5	6/./	13	16.3
2	12	18	4 1	67.7	÷.	70.7	1.07	42.4	0	0	P	1	72.9	• 4	00.5	11	10.3
2	12	10	1 3	67.7	6 0	71 4	1.10	42.0	. 0	0	P	1	72.9	.4	6/./	10	16.3
5	12	20	4.5	67.7	0.5 c c	70.0	. /2	41.1	0	U	P	.2	72.9	د.	/0./	08	16.3
<u>^</u>	12	20	4.2	01.1	0.0	70.0	1.05	40.6	U	0	P	0.0	72.9	• 5	67.7	10	16.0
2	12	21	4.2	6/./	/ • 2	5 70.7	1.06	40.6	0	0	P	0.0	72.9	.5	68.5	10	15.8
4	12	22	4.3	0/./	/.5	70.7	1.06	48.4	0	0	þ	0	72.9	.5	67.7	11	16.3
2	12	23	4.1	6/./	1.4	11.4	.90	41.5	0	0	Р	1	72.9	.5	67.7	12	15.8
2	12	24	4.2	67.7	7.4	70.7	1.05	43.4	0	0	P	0	72.9	.6	67.7	12	15.3
2	12	25	4.1	67.7	6.5	/0.7	.95	41.5	0	0	P	1	72.9	.5	67.7	12	15.8
2	12	26	4.1	67.7	7.1	71.4	.80	40.6	0	0	Р	.0	72.9	.4	68.5	08	15.8
2	12	27	3.9	72.9	5.7	69.3	50	40.6	0	0	Р	1	72.9	• 5	67.7	11	15.8
2	28	28	. .6	72.9	.8	68.5	03	24.6	0	0	D	1.3	67.7	5.0	71.4	1.00	37.1
2	31	27	2.8	72.9	3.0	67.7	04	38.8	1	0	D	2	72.9	1.3	67.7	30	19.7
2	- 31	28	3.8	72.9	5.8	70.0	69	40.6	0	0	Р	3	72.9	1.6	67.7	36	22.9

Heceiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	fraction of Time >= Absolute Distortion	fade Depth (dB)	>= Fade Depth	Fraction of Time>= Fade Depth
Diversity	0	F	150	155	0078	5	5234	.2643
	. 4	· · · · · · · · · · · · · · · · · · ·	26	27	0014	10	1058	.0534
	• 7	1	10	10	0005	15	142	.0072
	. A		1	1	. 0001	20	10	.0005
	1.0		i	i	.0001	25	1	.0001
	1.2		-	Ō	0.0000	30		0.0000
,	1.4			Ø	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000
Primary						_	6000	0045
	.2	7	828	835	.0422	5	6029	.00%0
	.4	3	110	113	.0057	10	2649	. 1338
	. 6	3	20	23	.0012	15	100	.0400
	.8	1	1	2	.0001	20	129	6010
	1.0		1	1	.0001	20	20	0004
	1.2			U A	0.0000	35	i	6661
	1.4			0	0.0000	40	•	0.0000
	1.0			ě.	0.0000	45		0.0000
	1.0			õ	0.0000	50		0.0000
Beer -On 1th	2.0			v	010000	•••		
	.2	2	543	545	.0275	5	3571	. 1804
	.4	-	78	78	.0039	10	1822	.0920
	.6		7	7	.0004	15	613	.0310
	.8			0	0.0000	20	77	.0039
	1.0			0	0.0000	25	2	.0001
	1.2			0	0.0000	30		0.0000
	1.4			Ø	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Table 26. Cumulative Distortion Distribution (Slopes only) for 12-13 May 1980, 2300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15

. .

- -

m

.

Rece iver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity	_	_						
	.2	2	30	32	.0097	5	247	.0748
	.4	1	3	4	.0012	10	22	.0067
	.6		2	2	.0006	15	í.	.0021
	.8			0	0.0000	20	1	.0003
	1.0			0	0.0000	25		0.0000
	1.2			v	0.0000	30		0.0000
	1.4			v	0.0000	. 35		0.0000
	1.0			0	0.0000	40		0.0000
	1.0			U A	0.0000	40		0.0000
Primary	2.0			0	0.0000	50		0.0000
11 that y	9		191	191	0367	5	674	2042
	. 4		121	121	0018	10	177	.0536
	.6		v	ă	0.0000	15	15	.0045
	.8			Å	0,0000	20		0.0000
	1.0			ă	6,0000	25		0.0000
	1.2			ă	0.0000	30		0.0000
	1.4			ŏ	0.0000	35		0.0000
	1.6			ø	0.0000	40		0.0000
	1.8			Ő	0.0000	45		0.0000
	2.0			Ō	0.0000	50		0.0000
RecvOn 11	no							
	.2		53	53	.0161	5	392	. 1188
	.4			0	0.0000	10	115	.0348
	.6			0	0.0000	15	4	.0012
	.8			0	0.0000	20		0.0000
	1.0			0	0.0000	25		0.0000
	1.2			0	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			a	0.0000	50		0.0000

Table 27. Cumulative Distortion Distribution (Slopes only) for 12 May 1980, 2300-2400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15

Rece iver	Absolute Distortion	No. of Samples >= the +	No. of Samples <= the -	No. of Samples >= Absolute	Fraction of	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of
	in dB/MHz	Distortion	Distortion	Distortion	Time >=			Time>=
					Absolute			Fade Depth
					Distortion			
Diversity						_		
	.2		24	24	.0073	5	209	.0633
	.4			Ø	0.0000	10	15	.0045
	.6			Ø	0.0000	15		0.0000
	.8			Ø	0.0000	20		0.0000
	1.0			0	0.0000	25		0.0000
	1.2			Ø	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000
Primary								
	.2		39	39	.0118	5	282	.0855
	.4		4	4	.0012	10	82	.0248
	.6		2	2	.0006	15	8	.0024
	.8		1	1	.0003	20	3	.0009
	1.0		1	1	.0003	25		0.0000
	1.2			0	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000
RecvOn lin	e							
	.2			Ø	0.0000	5		0.0000
	.4			Ø	0.0060	10		0.0000
	.6			Ø	0.0000	15		0.0000
	.8			0	0.0000	20		0.0000
	1.0			Ø	0.0000	25		0.0000
	1.2			Ø	0.0000	30		0.0000
	1.4			Ø	0.0000	35		0.0000
	1.6			0	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Table 28. Cumulative Distortion Distribution (Slopes only) for 13 May 1980, 0000-0100, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15

Table 29. Cumulative Distortion Distribution (Slopes only) for 13 May 1980, 0100-0200, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15

Hece iver	Absolute Distortion in dB/MHz	No, of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Sample s ≻= Fade Depth	Fraction of Time>= Fade Depth
Diversity								
	.2	3	65	68	.0206	5	1509	.4573
	• 4		18	18	.0055	10	625	.1894
	.0		6	6	.0018	15	108	.0327
	.0			Ø	0.0000	20	8	.00.24
	1.0			0	0.0000	20	1	0.0003
	1 4			V	0.0000	30		0.0000
	1.6				0.0000	30		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			ă	0.0000	50		0.0000
Primary				•	0.0000	00		0.0000
•	.2	2	176	178	.0539	5	1693	.5130
	.4		6	6	.0018	10	1026	.3109
	.6			0	0.0000	15	459	.1391
	.8			Ø	0.0000	20	67	.0203
	1.0			0	0.0000	25	8	.0024
	1.2			0	0.0000	30	3	.0009
	1.4			Ø	0.0000	35	1	.0003
	1.6			Ø	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
B	2.0			Ø	0.0000	50		0.0900
NecvUn lin	e 0		-		0000	-		00.10
	.2		79	79	.0239	5	963	.2918
	• 7		3	3	. 0009	10	073	.2100
	.0			v	0.0000	10	210	.0042
	1.0			ě A	0.0000	20		.0113
	1.2			Ŭ	0.0000	20	1	0 0000
	1.4			ă	0.0000	35		0.0000
	1.6			ă	0 0000	40		0.0000
	1.8			ŏ	0.0000	45		0.0000
	2.0			ŏ	ŏ.ŏŏöö	50		0.0000
				•				

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity	_					_	1000	0007
	.2		28	28	.0085	5	1282	, 3885
	.4		5	5	.0015	10	338	. 1924
	.6		2	2	.0006	15	27	.0082
	.8		1	· 1	.0003	20	1	.0003
	1.0		1	1	.0003	20		0.0000
	1.2			v	0.0000	30		0.0000
	1.4			v	0.0000	30		0.0000
	1.6				0.0000	40		0.0000
	1.8			V	0.0000	40		0.0000
Du function	2.0			U	0.0000	30		.0.0000
reimary	2		05	95	0288	5	1242	.3764
	. 5			, <u>,</u>	0.0000	10	586	.1776
				ň	0.0000	15	172	.0521
	.8			ŏ	0.0000	20	5	.0015
	1.0			õ	0.0000	25		0.0000
	1.2			õ	0.0000	30		0.0000
	1.4			ø	0.0000	35		0.0000
	1.6			ō	0.0000	40		0.0000
	1.8			0	0.0000	45		0.0000
	2.0			Ø	0.0000	50		0.0000
RecvOn 11	ne							
	.2		95	95	.0288	5	1242	.3764
	.4			0	0.0000	10	586	. 1776
	.6			Ø	0.0000	15	172	.0521
	.8			0	0.0000	20	5	.0015
	1.0			. 0	0.0000	25		0.0000
	1.2			Ø	0.0000	30		0.0000
	1.4			Ø	0.0000	35	· · · · · · · · · · · · · · · · · · ·	0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0300	45		0.0000
	2.0			0	0.0000	50		0.0000

Table 30. Cumalative Distortion Distribution (Slopes only) for 13 May 1980, 0200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep No. 1 0 15

.

-		
Table 31.	Cumulative Distortion Distribution (Slopes only) fo 13 May 1980, 0300-0400, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 1 0 15	r

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity			_					
Pa facana	.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0		3	3 0 0 0 0 0 0 0 0 0 0 0 0 0	.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	5 10 15 20 25 30 35 40 43 50	1987 58	$\begin{array}{c} .6021 \\ .0176 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \end{array}$
rrimary	.2	5	307	400	1010	F	9199	6470
RecvOn 111	.4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0	3 3 1	94 18	97 21 1 0 0 0 0 0 0	. 0294 . 0064 . 0003 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000	5 15 20 25 30 35 40 45 50	778 209 54 12 4	.0358 .0633 .0164 .0936 .0912 0.0900 0.0000 0.0000 0.0000
	.2	2	316	318	.0964	5	974	.2952
	.4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0		75 7	75 7 0 0 0 0 0 0 0 0	.0227 .0021 0.0090 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	10 15 20 25 30 35 40 45 50	428 159 34 1	.1297 .0482 .0103 0.003 0.0000 0.0000 0.0000 0.0000 0.0000

Table 32. Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 0 1 15, Mt. Venda to Mt. Corna, 12-13 May 1980 (Slopes only)

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300-							
400	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	287 93 49 30 16 7 3 2	1.0000 .3240 .1707 .1045 .0557 .0244 .0105 .0070	0 1 2 4 8 16 32 64 128 256 512 1024 2048	287 215 170 117 91 64 55 42 31 20 9 2	1.0000 .7491 .5923 .4077 .3171 .2230 .1916 .1463 .1080 .0697 .0314 .0070
2300-							
400	. 4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	29 13 7 3 3 3	1.0000 .4483 .2414 .1034 .1034 .1034	0 1 2 4 8 16 32 64 128 256 512 1024 2048	29 25 16 14 12 11 9 9 8 6 4 4 3	$1.0000 \\ .8621 \\ .5517 \\ .4828 \\ .4138 \\ .3793 \\ .3103 \\ .3103 \\ .2759 \\ .2069 \\ .1379 \\ .1379 \\ .1034$

.

Table 32. (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Primary Receiver using Standard Sweep 0 1 15, Mt. Venda to Mt. Corna, 12-13 May 1980 (Slopes only)

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300- 400							
	.6	0 1 2 4 8 16 32 64 128 256 512 1024 2048	9 8 4 1	1.0000 .8889 .4444 .1111	0 1 2 4 8 16 32 64 128 256 512 1024 2048	955333222222	$\begin{array}{c} 1.0000\\ .5556\\ .5556\\ .3333\\ .3333\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\\ .2222\end{array}$
2300-							
400	.8	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2	1.0000	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	222222222222	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 33. Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 0 15, Mt. Venda to Mt. Corna, 12-13 May 1980 (Slopes only)

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300-							
	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	48 25 17 9 4	1.0000 .5208 .3542 .1875 .0833	0 1 2 4 8 16 32 64 128 256 512 1024 2048	48 44 39 31 30 29 29 28 23 16 9 5 1	1.0000 .9167 .8125 .6458 .6250 .6042 .5833 .4792 .3333 .1875 .1042 .0208
2300-							
400	. 4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	11 5 3 2 1	1.0000 .4545 .2727 .1818 .0909	0 1 2 4 8 16 32 64 128 256 512 1024 2048	11 9 9 9 9 9 9 9 9 9 6 4 3 3	1.0000 .8182 .3182 .8182 .8182 .8182 .8182 .8182 .8182 .8182 .5455 .3636 .2727 .2727

77

-

Table 33. (Cont.) Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver using Standard Sweep 1 0 15, Mt. Venda to Mt. Corna, 12-13 May 1980 (Slopes only)

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2300-							
ששיר	.6	0	6	1.0000	Ø	6	1.0000
		1	3	. 5000	1	6	1.0000
		2	1	. 1667	2	6	1.0000
		4			4	б	1.0000
		8			8	6	1.0000
		10			10	6	1.0000
		02 64			32	6	1.0000
		128			128	0	1 0000
		256			256	5	. 8333
		512			512	4	.6667
		1024			1024	3	.5000
		2048			2048	3	.5000
2300-							
400							
	.8	0	1	1.0000	0	1	1.0000
		1			ĩ	ī	1.0000
		2			2	1	1.0000
		4			4	1	1.0000
		8			8	1	1.0000
		16			16	1	1.0000
		02 64			32	1	1.0000
		128			04 100	1	1.0000
		256			256	л 1	1 0000
		512			512	1	1.0000
		1024			1024	î	1.0000
		2048			2048	1	1.0000

Table 34. Event Occurrences during the 12-13 May 2300-0400 Data Period

G	Start time - 12 May 1980 2300 hr Standard Spectral Density Sweep No. 1 0 15 Path - Mt. Venda to Mt. Corna Distortion Threshold : Div= 0.00 dB/MHz Pri= 0.00 dB MHz Diversity																
Swe	eb t	•0•	611 (11)	ព័ណ្ណាលព	Max	1 m um	Distortion	Fade (dB)	Event	Event	Line	Ml	nımum	мах	າພດພ	Distortion	Fade (dB)
23	8	44	3.1	72.9	3.3	67.7	04	15.0	3	0	D	.2	72.9	. 3	67.7	03	5.6
23	9	19	4.4	67.7	5.6	72.9	.24	8.5	ĩ	i	P	.2	72.9	.3	67.7	02	5.8
23	35	11	4.6	67.7	7.0	70.0	1.05	9.8	0	1	P	.1	72.9	.2	67.7	02	.0
23	43	4	. 1	67.7	.1	72.9	.01	-5.1	0	0	D	0	72.9	.5	67.7	10	15.3
1	26	30	3.6	67.7	4.2	72.9	.11	14.2	5	0	P	0.0	72.9	.2	68.5	05	6.6
1	29	33	1	72.9	.2	67.7	06	9.7	0	0	D	.4	72.9	1.3	67.7	17	27.3
1	30	53	2.2	72.9	5.1	68.5	65	20.3	3	0	D	4	72.9	.5	68.5	21	15.2
1	36	7	2.8	67.7	4.7	72.9	. 38	17.5	15	0	D	0	72.9	.3	67.7	06	12.4
1	36	8	5.2	67.7	8.4	70.7	1.08	22.1	0	0	Р	.2	72.9	.3	68.5	03	14.7
1	48	55	5.2	67.7	7.7	71.4	.70	18.6	1	. 1	Р	1	72.9	.3	67.7	09	7.1
2	40	23	4.1	67.7	8.2	70.7	1.35	22.0	1	1	P	2	72.9	.1	69.3	10	9.9
3	26	12	0	67.7	.3	71.4	.08	12.3	0	0	D	9	67.7	3.0	72.9	.74	31.0

												^ ' J	NCCC IV									
				Sta	ert.	time		13	May		1980	230	Ohr	C+	andard							
				Pat	:h		-	M	t. Vei	nda	to Mt	. Co	rna	50		spectra	L Densi	ty Swe	ep No.	1 0	15	
		D	1 ·	ve	r s	i t	: y-				P 0			21		n Thres	snorg :	Div=99	.00 de	S/MHz F	ri≃ .50 dB MH	Z
				D	i s	to) r	÷	ion	140	//// ->	сe	rver	JIEVI	Ret-	Rcvr	Prin	nary	/		R e c	eiver
Swe	ep	NO.		Mi	n		·	4-14	1 0 n		/mnz)		-	Error	rame	on	E) i s t	ort	ion	(dB/MHz)	
0	12	27		_ 0		uni T	r	ηαλ. Ο	Turn	51	stortio	n	Fade (dB)	Event	Event	Line	Mi	ກໍາຫານຫ	May	า่ากา	Distortion	Rode (dp)
ň	12	27			01	• 1	•	.0	72.9		.01		1.5	0	0.	D	5	72 9	2 7	67 7	- 62	rade (dB)
1	12	20		Z	6/	• 7	•	, 1	71.4		.07		1.1	0	0	ñ	- 5	72 0	ã ó	67.7	02	21.5
1	29	36		• 2	72	• 9		, 3	71.4		11		14.1	ō	ñ	ñ	1.0	67 7	4.0	71.4	88	21.1
3	25	25		.1	67	.7		. 3	69.3		.12		9.7	ň	õ	5	T.0	72.0	4 . L	/1.4	.64	30.8
3	25	27		1	72	. 9		. 3	71.4		27		110	ň	ő			12.9	2.1	67.7	55	20.4
3	25	28		.1	67	.7		. 3	69.3		. 10		10.9	ň	0	P P	~.8	12.9	2.0	67.7	53	20.6
3	25	32		.1	72	. 9		. 3	69.3		04		10.9	0	0	P	8	72.9	1.9	67.7	51	21.1
3	25	33		1	67	.7		3	70.7		. 12		11 1	ů,	0	P	/	72.9	2.3	67.7	57	21.6
3	25	35		2	72	. 9		4	71 4		- 37		10.1	0	0	P	7	72.9	2.3	67.7	58	22.8
3	26	12		0	67	7		3	71 4				10.1	0	U	P	6	72.9	2.2	67.7	53	21.5
3	26	13		- 0	72	.		2	607		- 00		12.3	U	0	D	9	67.7	3.0	72.9	.74	31.0
3	26	14		2	67	7	•	้จั	71 4		00		13.0	0	0	D	-1.0	67.7	5.1	71.4	1.65	32.7
3	26	15		ĩ	67	·	•	· ·	(0,)		• 14		12.5	0	0	D	.2	67.7	7.8	71.4	2.06	33.5
ž	26	10		- 1		<u>.</u>	. •		09.3		.09		12.5	0	0	D	3	67.7	1.6	71.4	. 52	30 5
5	20	17		-•1	0/	• /	•	1	70.0		.10		10.7	0	0	D	7	72.9	2.4	67 7	_ 59	25.7
2	20	20		. 1	12	. 9	•	. 3	71.4		15		10.9	0	0	D	- 6	72.9	2 6	67 7	- 63	22.1
2	26	21		0.0	72	.9	•	.3	71.4		21		10.9	0	0	- D	- 5	72 9	2.0	67 7	02	20.3
3	26	23		.0	67	.7		. 2 .	72.9		.03		10.6	0	Ō	ñ	- 7	72.0	2.5	67.7	34	25.5
3	26	24		1	67	.7		3	71.4		.09		10 1	õ	õ	5	/	72.9	2.0	0/./	64	25.0
3	26	25		3	67	.7		. 2	72.9		. 10		97	ň	0	U D		12.9	2.3	67.7	54	23.5
3	26	26		2	67	.7		3	72.9		0.8		9.1	ŏ	0	D	/	72.9	2.6	67.7	63	22.7
3	26	27		1	67	.7		3	71.4		.09		0.1	0	U	D	6	72.9	2.2	67.7	54	20.7
3	26	29		.1	67	.7		2	72 9		.03		9.2	U	0	D	7	72.9	2.0	67 .7	53	21.0
3	26	30		ī	67	. 7	•	2	71 1		.02		9.0	U	0	D	6	72.9	2.4	67.7	57	20.6
3	26	31			67	7	•	ົ້	60.7		.07		9.0	U	U	D	8	72.9	2.5	67.7	64	21.2
				• •	0,	• /	•		03.3		. 24		8.7	0	0	D	6	72.9	2.3	67.7	55	20.2

Table 35. Sweep Showing Distortion Greater than 0.5 dB/MHz on the Primary Receiver

•• . ..

Table 36. Sweeps Showing Distortion Greater than 0.5 dB/MHz on the Diversity Receiver

		Start	time -	12 May	1980	2300br	C +		. .						
		Path	-	Mt. Ve	enda to Mt	Corna		andard .	spectra	l Densi	ty Swee	ep No.	1 0	15	
	D	ivers	itv		R A		21011	SCOLEIO	n_Thres	hold :	Div=	.50 dB	/MHz P	ri=999.0 dB M	H Z
		Dis	tor	tion	(dB/MHz)	cerver	STEVI	Re r-	Rcvr	Prin	hary			R e c	eiver
Swe	eo No.	Minum	บเท	1aximum	Distortion		Error	rame	on	Ľ) is t	ort	: i o n	(dB/MHz)	
23	35	-2.3 67	.7	4 69	1 67	rade(dB)	Event	Event	Line	Mi	nimum	Max	imum	Distortion	Fade (dB)
23	9 20	2.3 72	9 5	2 68 9	- 66		U	U	D	1	72.9	.6	67.7	14	1.7
23	35 11	4.6 67	7 7	0 70 0) 1 05	8.9	0	0	P	.2	72.9	.5	68.5	07	4.7
23	35 12	5 2 67	7 7	0 70.0	J 1.05	9.8	0	1	Р	.1	72.9	. 2	67.7	02	. 0
23	35 13	5 2 67	· / /	9 70.7	.91	15.0	0	0	Р	.1	72.9	. 2	71.4	08	2 7
22	35 14	J.2 67	./ 8	5 /1.4	.88	14.6	0	0	Р	1	72.9	. 3	71.4	- 23	2.17
23	35 14	5.3 6/	./ 8	5 71.4	.86	19.0	0	0	Р	0.0	72.9	. 1	67 7	- 05	, , ,
23	35 15	5.3 67	.7 8	5 70.7	1.05	15.8	0	0	P	.1	67.7	• • • •	72 0	.03	1.1 6 0
23	35 16	5.2 67	.7 8	6 71.4	.91	19.8	0	Ô	p		67 7	1	71 4	.03	0.2
23	35 17	5.2 67	.7 7	8 70.0) 1.14	18.9	ñ	ň	, D	1	72 0	• 1	60 C	.01	2.1
23	51 45	1.1 72	.9 3	8 67.7	51	6.5	ň	õ	n I	1	67 7	• *	30.5	10	2.0
1	26 31	2.0 72	.9 6	6 69.	3 -1.26	17.3	ň	0	D	0	72.0	• 2	12.9	.04	-6.2
1	30 53	2.2 72	.9 5	1 68.5	565	20 3	ž	ő	P	• •	72.9	•	6/./	03	6.5
1	30 54	1.6 72	.9 4	8 67.	- 62	20.3	5	0	D	4	12.9	• 5	68.5	21	15.2
1	30 55	1.6 72	.9 4	5 67.7	- 56	10.7	0	0	D .	1	/2.9	• 6	67.7	12	14.7
1	36 8	5.2 67	7 8	4 70 7	1 1 08	20.2	0	0	D	ĭ	72.9	. 4	67.7	10	14.3
1	36 9	5.0 72	9 8	3 70	1 _1 49	22.1	U	U	P	• 2	72.9	.3	68.5	03	14.7
1	36 10	1 3 72	9 4	5 67 5	7 -1.40	20.3	U	U	Р	.1	67.7	. 2	72.9	.00	14.5
ĩ	36 11	1.5 /2 0 72	• · · · ·	5 07.7	01	20.3	0	0	Р	.2	72.9	.4	68.5	04	12.7
ī	10 55	5 2 7 2	· ")		51	17.7	0	0	P	3	72.9	.3	68.5	13	12.9
1	40 1	J.2 0/	. / /	/ /1.4	.70	18.6	1	1	P	1	72.9	.3	67.7	09	7.1
1	49 1	5.2 6/	• 8	2 71.4	.80	20.3	0	0	Р	.1	72.9	. 2	67.7	02	7 1
1	49 Z	5.1 6/	.7 7	5 70.0) 1.04	21.7	0	0	Р	.2	72.9		71 4	- 06	2 6
2	40 23	4.1 67	.7 8	2 70.7	1.35	22.0	1	1	P	_ 2	72 0	• • •	60.2	10	5.0
2	40 24	.7 72	.9 5	9 68.5	5 -1.17	17.4	ñ	ñ	P	0 0	72.0	• 1	60 5	10	9.9
2	40 25	.5 72	.9 3	6 67.7	7 - 60	14 9	0	õ	r D	0.0	74.9	• 2	00.5	04	7.8
			-		100	14.9	v	U	P	• 4	12.9	د.	68.5	03	7.0

Table 37. Sweeps Shi	owing Flat	Fading	Greater	than	25	dB
----------------------	------------	--------	---------	------	----	----

Receiver	Absolute Distortion in dB/MHz	No. of Samples >= the + Distortion	No. of Samples <= the - Distortion	No. of Samples >= Absolute Distortion	Fraction of Time >= Absolute Distortion	Fade Depth (dB)	No. of Samples >= Fade Depth	Fraction of Time>= Fade Depth
Diversity								
	.2	82	83	165	.0100	5	1473	.0893
	.4	1	2	3	.0002	10	341	.0207
	.6			ø	0.0000	10	91	.0000
	.8			ø	0.0000	20	11	.0007
	1.0			v	0.0000	20	1	0.0001
	1.2			0	0.0000	30		0.0000
	1.4			4	0.0000	30		0.0000
	1.6			9	0.0000	40		0.0000
	1.8			V	0.0000	40 50		0.0000
B 1	2.0			0	0.0000	50		0.0000
rrimary	0	10	999	94.1	0146	5	1475	. 0894
	.2	3	10	13	.0140	10	642	.0389
	. 4	š	4	7	0004	15	165	.0100
		1	3	4	.0002	20	28	.0017
	1.0	1	. 0		.0001	25	7	.0004
	1 2	i		i	.0001	30	4	.0002
	1.4	i		i	. 0001	35	-	0.0000
	1.6	ī		ī	. 0001	40		0.0000
	1.8	i		î	. 0001	45		0.0000
	2.0	i .		i	.0001	50		0.0000
BecyOn line		-		-				
	.2	15	176	191	.0116	5	926	.0561
	.4		1	1	.0001	10	343	.0208
	.6		-	ø	0.0000	15	58	.0025
	.8			ø	0.0000	20	5	.0003
	1.0			Ō	0.0000	25		0.0000
	1.2			Ō	0.0000	30		0.0000
	1.4			0	0.0000	35		0.0000
	1.6			Ø	0.0000	40		0.0000
	1.8			Ø	0.0000	45		0.0000
	2.0			0	0.0000	50		0.0000

Table 38. Cumulative Distortion Distribution for 13-14 May 1980, 2200-0300, Mt. Venda to Mt. Corna, Standard Spectrum Sweep 0 0 54 (Distortion Values Include Nulls)

Table 39.	Distribution of Distortion Event Durations and In	itervals
	Between Events for the Primary Receiver, Using St	andard
	Sweep 0 0 54, Mt. Venda to Mt. Corna, 13-14 May 1	980

Hour 2200-	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
300	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	155 13 10 7 3 2	1.0000 .0839 .0645 .0452 .0194 .0129	$\begin{array}{c} 0\\ 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ 256\\ 512\\ 1024\\ 2048 \end{array}$	1551491451411341281077745141	1.0000 .9613 .9355 .9097 .8645 .8258 .6903 .4968 .2903 .0903 .0065
2200- 300	. 4	0	6	1.0000	0	6	1.0000
		$ \begin{array}{r} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \\ 128 \\ 256 \\ 512 \\ 1024 \\ 2048 \\ \end{array} $	3 1 1	.5000 .1667 .1667	1 2 4 8 16 32 64 128 256 512 1024 2048	6 4 3 3 3 3 3 3 1 1 1	$\begin{array}{c} 1.0000\\ .6667\\ .6667\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .667\\ .1667\\ .1667\\ .1667\end{array}$

Table 40. Distribution of Distortion Event Durations and Intervals Between Events for the Diversity Receiver, using Standard Sweep 0 0 54, Mt. Venda to Mt. Corna, 13-14 May 1980

Hour	Distortion Level Exceeded During the Event	Distortion Event Duration (Seconds)	No. of Distortion Events Whose Length Exceeds Duration	Fraction of Distortion Events Whose Length Exceeds Duration	Intervals Between Distortion Events (Seconds)	No. of Intervals that the Duration Was Exceeded	Fraction of Intervals that the Duration Was Exceeded
2200- 300							
	.2	0 1 2 4 8 16 32 64 128 256 512 1024 2048	130 7 6 4 2	1.0000 .0538 .0462 .0308 .0154	0 1 2 4 8 16 32 64 128 256 512 1024 2048	130 125 125 124 119 114 97 75 47 13 5	1.0000 .9615 .9538 .9154 .8769 .7462 .5769 .3615 .1000 .0385
2200-							
300	. 4	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2 1	1.0000 .5000	0 1 2 4 8 16 32 64 128 256 512 1024 2048	2 2 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.0000\\ 1.0000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\\ .5000\end{array}$

....

				Start time - 13 May 1980 2200hr Path - Mt. Venda to Mt. Corna						Standard Spectral Density Sweep No. 0 0 54 Distortion Threshold : Div= 0.00 dB/MHz Pri= 0.00 dB MHz								8 z
		D	i v	е	rsi	t y		R e c	e iver	31e v1	Ref-	Rcvr	Pr'in	ar	у		R e c	eiver
-				D	ist	ort	ion	(dB/MHz)		Error	rame	on	Ľ) i s	tort	ion	(dB/MHz)	
Swe	ep	NO.		MI	numum	Ma	Cimum	Distortion	Fade (dB)	Event	Event	Line	Mi	inimum	Max	inum	Distortion	Fade (dB)
0	10	51	-	.1	72.9	. 3	67.7	08	12.3	0	0	D	1.5	67.7	2.4	71.4	.25	33.7
0	21	48	2	2.9	67.7	4.2	72.2	.28	16.1	0	0	Р	.1	72.9	.3	67.7	04	8.1

Table 41. Event Occurrences during the 13-14 May 2200-0300 Data Period

- Anderson, C.W., S. Barber, and R. Patel (1978), The Effect of Selective Fading on Digital Radio, IEEE International Conference on Communication 78, Toronto, Ont.
- Barber, S., and C.W. Anderson (1977), Modulation Considerations for the RD-3 91 Mb/s Digital Radio, IEEE International Conference on Communications, ICC 77, Chicago, IL.
- CCIR (1978), Propagation data required for line-of-sight radio relay systems, report 338-3, Documents of the XIV Plenary Assembly (ITU, Geneva).
- Dougherty, H.T., and W. Hartman (1977), Performance of a 400 Mb/s System Over a Line-of-Sight Path, IEEE Trans. Comm. COM-25, No. 4.
- Hause, L.G. (1981), Fading on Long 8- and 15-GHz LOS Paths, NTIA-Report (in preparation).
- Hause, L.G., and D.R. Wortendyke (1979), Automated Digital System Engineering Model, NTIA-Report-79-18.
- Hubbard, R.W. (1979), Investigation of digital microwave communications in a strong meteorological ducting environment, NTIA-Report-79-24.
- Morita, K. (1970), Prediction of Rayleigh fading occurrence probability of line-of-sight microwave links, Rev. Elect. Comm. Lab., NTT, Japan, <u>18</u>, 11-12.
- Smith, D.R., and J. Osterholz (1979), Assessment of Frequency Selective Fading on DCS Transmission System Performance, Defense Communications Engineering Center Engineering Publication No. 5-79.

U.S. DEPARTMENT OF COMMERCE NAT'L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO.	2. Gov't Accession No.	3. Recipient's Acc	cession No.							
NTIA Report 81-84										
4. TITLE AND SUBTITLE	5. Publication Date									
SELECTIVE FADING ON A LONG 8 GHZ LINE-OF-	6. Performing Organization Code									
7. AUTHOR(S)	9. Project/Task/W	Vork Unit No.								
8. PERFORMING ORGANIZATION NAME AND ADDRESS	91044	47								
Institute for felecommunication Sciences	10. Contract/Ore	-4 NI-								
Administration	10. Contract/Grai	nt NO.								
U.S. Department of Commerce, Boulder, CO	30303	DCFR 040022								
Defense Communications Agency		12. Type of Repo Technica	rt and Period Covered] Report							
Defense Communications Engineering Center		02/01/80	-30/12/80							
1860 Wiehle Avenue Reston, VA 22090		13.								
14. SUPPLEMENTARY NOTES										
15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)										
This report presents the descri	This report presents the description, analysis and results of a									
set of measurements made on a 90 km	line-of-sight pa	th in Italy	. The							
Telecommunications and Information A	dministration un	der the spo	nsor-							
ship of the Defense Communication Eng	ship of the Defense Communication Engineering Center, Reston, VA.									
Received signal level and IF spe	Received signal level and IF spectrum were measured to obtain									
statistics about the distortion of t	ne frequency spe	ctrum ampli	tude							
during periods of multipath fading.	Digital format	violation a	nd							
retrame events were monitored to measure the tolerance of the 3-level- partial-response radios (12.6 Mb/s) to this distortion.										
CONTIN	JED)									
16. Key Words (Alphabetical order, separated by semicolons)										
Digital radio; diversity; microwave radio; multipath distortion; selective fading										
17. AVAILABILITY STATEMENT	18. Security Class. (This re	eport)	20. Number of pages							
	Unclassified		101							
	19. Security Class. (This p	21. Price:								
FOR OFFICIAL DISTRIBUTION.	Unclassified									
	_									

ABSTRACT (Cont.).

A number of interesting results were observed from the data analysis. Large values of spectrum amplitude distortion, greater than 1 dB/ MHz were observed during multipath fading events due to nulls in the path frequency response. Diversity reception looks very promising for counteracting these larger magnitude distortion effects. Multipath received-signal-level statistics can be used to predict the frequency and severity of in-band-fading distortion on line-of-sight paths. Frequency selective fading develops and subsides at low rates, often over a period longer than one minute. It was found that the 3level-partial-response radios were robust in the presence of amplitude distortion suffering insignificant outage time from this cause.

