
NTIA REPORT 81-86

The Attenuation of Electromagnetic Waves

By Multiple Knife-Edge Diffraction

L. E. Vogler

u.s. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

Bernard J. Wunder, Jr., Assistant Secretary

for Communic a tions and Information

October 1981





ABSTRACT

TABLE OF CONTENTS

Page

1

l. INTRODUCTION

2. THE MULTIPLE KNIFE-EDGE ATTENUATION FUNCTION 2

3. EQUATIONS FOR NUMERICAL EVALUATION 9

4. EXAMPLE CALCULATIONS 13

5. SUMt1ARY 18

6. ACKNmILEDG~1ENTS 19

7. REFERENCES 19

iii





THE ATTENUATION OF ELECTROMAGNETIC WAVES BY
MULTIPLE KNIFE-EDGE DIFFRACTION

Lewis E. Vog1er*

Starting from work by Furutsu, a multiple knife-edge attenuation
function is derived. A series representation of the function is de
veloped which is amenable to computer implementation. Comparisons of
computer-generated numerical values with known results are presented
and discussed.

Key words: attenuation calculations; microwave propagation, multiple
knife-edge diffraction

1. INTRODUCTION
For the propagation of radio signals over irregular terrain at microwave fre

quencies, it appears reasonable to assume that the terrain obstacles along the path

are approximately equivalent to knife-edge obstacles because of the short wave
lengths involved. In fact this has been suggested as a possible propagation mech
anism by many authors. Unless the path contains large portions of calm water, the
terrain features of.an actual path arE! very seldom smooth rounded obstacles at .
microwave frequencies.

Single knife-edge diffraction theory has been found to give good agreement
with observed measurements of propagation over paths consisting of essentially one
isolated hill (Kirby et a1., 1955). Similarly, a double knife-edge theory has
been developed and shows excellent agreement with recent test measurements (Ott,
1979). Multiple knife-edge theory for more than two knife-edges has not been
available up to now, although recently suggested approximations have been compared
with observed data (Meeks and Reed, 1981).

It is the purpose of this paper to derive an expression for the multiple knife
edge attenuation function. This equation, in the form of a multiple integral, is
then developed into a series which is amenable to computer implementation. Compu
ter generated numerical values are compared with known results as a means of com
putational verification.

The derivation starts from some basic results pertaining to propagation over

irregular terrain obtained by Furutsu (1963). The expression from which the work

*The author is with the Institute for Telecommunication Sciences, National Telecom
munications and Information Administration, U. S. Department of Commerce, Boulder~

Colorado 80303.



in the present paper proceeds is a generalized residue series formulation for the
propagation of radio signals over smooth, rounded obstacles. No attempt is made
here to describe the work leading up to this expression because the details are
given by Furutsu (1956, 1963).

2. THE MULTIPLE KNIFE-EDGE ATTENUATION FUNCTION
In the derivation of the attenuation function for propagation over irregular

terrain, Furutsu (1963; p. 55) assumes a path profile consisting of a series of
rounded obstacles as shown in Figure 1. The obstacles are characterized by radii
of curvature, a , diffraction angles, e , electromagnetic parameters, q , andm m m
separation distances, rm. The quantity, qm' is a function of the radius and elec-
trical ground constants of the mth obstacle, and the wavelength A and polarization
of the wave.

For a path having Nobstacles and for both transmitting and receiving antennas
well away from any diffracting surface, the attenuation of the field strength rela
tive to free-space, A, over a total path distance, r T, is given by equation (3.1)

of the Furutsu paper:

(1)

where

]
1/2

• r ••• r )
2 N+1 (2) .

and ~ = (ka /2)1/3 e
m m m (5)

with k = 2n/A denoting the wave number.
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Figure 1. Representative path p~ofi1e and geometry for
equation (1).
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The symbol tm is here used as shorthand notation for the set of roots of the
equation

W(t) - qm W(t) = 0 (6)

where W(t) is the Airy function as defined in equation (1.2) of Furutsu (1963).
Thus, a summation over t should be interpreted as a summation over all the rootsm
of (6). Also, to and t N+l as they enter in (4) are defined to be identically
zero.

The functlon, f(t ), in (3) ism

where the approximation is obtained by taking the first term of the asymptotic

expansion of W(tm), valid for 0 < arg tm < 4n/3 (Furry and Arnold, 1945).
Equation (1) can be put into a more convenient form if we define the param

eters

(7)

n =m [

2(r + r )] 1/2
(ka /2)1/3 m m+l

m krmrm+l
(8)

y = (ka /2)1/3 (ka /2)1/3/(kr )
m m m+l m+l

Then

(9)

(10)

(11 )

and

A = (n/2)N/2 e- iNn/ 4 C' L· .. L{ ~ (ka /2)1/3 t -1/2}e- FN (12)
N t t m=l m m

1 N
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(13 )

As long as the obstacle radii, am(m = 1, ... , N), are not too small, only the
first few terms in the summations of.(12) are required in order to compute the
attenuation. However, if the obstacles are to represent knife-edges. which is our
present concern, the am must decrease to zero. In this case the series converges
very slowly and many terms must be calculated.

In the usual approach the summations are transformed into integrals which, it
is hoped, are more amenable to computation. And in fact for the case of one knife
edge, the transformation results in the well-known Fresnel knife-edge diffraction
function. A rigorous derivation of the transformation has been discussed by many
authors, e.g., Bremmer (1949), Wait (1961), Furutsu (1963). In the present paper
a less rigorous but quicker method will be used which leads to the same result.

The parameter, qm' appearing in (6) is proportional to am
l/3 and, consequently,

tends to zero as the radius becomes very small. It is known that a good approxima
tion to the roots for the case of q = 0 is given by (Bremmer, 1949):

t s = {(3n/2)(S + 1/4)} 2/3 e- in/3 , s = 0,1,2, ...

Thus, for a given function ¢, we have

(14 )

00 00

~ f ¢(t)ds ~ f (ds/dt) ¢(t)dt
o 0

where, in the integral expressions, t and s are now considered to be continuous
variables related by

(15 )

t ={ (3nI2)( s + 114) } ,2 I
3

e- i n/3

dS = (lin) ein/2 t l/2 dt

5
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With the definitions

t
m

= {(3n/2)(Sm + 1/4)} 2/3 e- in/3

(ds /dt ) = (l/n) ein/ 2 t 1/2
m m m

the attenuation as given by (12) becomes

(17)

(18a)

(18b)

= (2n)-N/2 eiNn/ 4 C' {~ (ka /2) 1/3} J. ..; e-FN dt1 ... dt
N

' (19)
N m=l moo

where FN and CNare defined in (13) and (2), respectively.
We now introduce the change of variable

[
2krr J1/2

dt = (2/n )e- in/ 4 de = (ka /2)-1/3 m m+1 e- in/ 4 de
m m m m rm + rm+1 m

and define

(20a)

(20b)

(21 )

(22)

where
[

Ok J1
/

2
_ ' 1 rmrm+1

13m - 8m 2(r + r) , m = 1, ... , N,
m m+1
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1/2

am "[ (rm+rm:~;(;:+l +rm~] ,m" 1, ... , N- 1

The attenuation, A, in (19) now takes the form

co co-F
A = (1/'IT)N/2 CN f· .. f I:! N dT l '" dT

N
'

o 0

(24)

(25)

where

, N = 1

(26)

(27a)

CN=

, N > 2 (27b)

(28)

Finally, with x = T + 6 and dT = dx , the attenuation function for a pathm m m m m
consisting of N knife-edges may be expressed as

o co
A = ( 1/ 'IT) N/ 2 C e N f .

N 6
1

co F

f - Ne dX l
6N

N 0~, fl fco(1/2 ) C
N

e .i (2//iT) , •
61

2 2
co 2f -(xl + ... + xN )
fee dXl ••• dX

N
,

6N

where 0 N = 1,
f =

N-l
L a (x - 6m)(xm+l - 6m+l ), N > 2
m=l m m

o = 6 2 + ... + 6 2 .N 1 N

(29)

(30a)

(30b)

(31 )

The quantities CN' am' and Bm are defined in (27), (24), and (23), respectively.
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Notice that for N = 1, (29) becomes the well-known single knife-edge diffrac
tion function (Baker and Copson, 1950; Wait and Conda, 1959)

S 2 <Xl 2
A(N = 1) = (1/2 ) e 1 (2/ ITI) f e-x dx

Sl

[Ok f/2
S =

1 r l r2
1 81 2(rl + r2)

(32)

(33)

For N = 2 the equivalent of (29) is given by Furutsu (1956). In that paper
the equation is transformed into yet another form from which series expansions are
developed to compute double knife-edge attenuation (see Furutsu, 1963). The devel
opment is quite different from the one used in the present paper and serves as an

excellent check. A similar formulation for the double knife-edge case based on
repeated Kirchhoff integrals at each knife-edge aperture has also been derived by
Millington et al., (1962).

As far as the author is aware, no explicit formulation of the knife-edge atten
uation function for N~ 3 has been published previously. Very general discussions
indicating possible approaches to the problem have appeared, but detailed analyses

are lacking. Approximate solutions based on linear combinations of the single

knife-edge function have been developed by Deygout (1966) and by Meeks and Reed
(1981). Furthermore, an unpublished computer program to compute triple knife-edge
attenuation based on an extension of Furutsu's approach to the" double knife-edge
case is available. This latter program has been used to check the validity of the
results of the present paper.

In order to evaluate the attenuation function as given by (29), a number of
approaches were tried including a straightforward numerical integration of the
expression as it stands. However, once past the double knife-edge case, the com
plexity of the solutions increases greatly. Finally, an approach was adopted
which made use of repeated integrals of the error function. The latter have been
thoroughly studied, and a number of computational algorithms are available. The
following section discusses the derivation of the equations used for numerical

evaluation of the multiple knife-edge attenuation function, (29).
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3. EQUATIONS FOR NUMERICAL EVALUATION
As a first step in obtaining a computation formula for (29), the factor,

exp(2f), in the integrand is expanded in series:

00

e2f
= I: (2m1m! )fm .

m=O

Equation (29) may then be written as

(34 )

(35)

2.•. + x
N

)
dXl ... dX

N
, (36)

N-l
f = I: ao(x. - S.)(x o+l - 13 0 +1) , N > 2

j=l J J J J J -

For notational convenience, we now define

Then for N~ 3, it can be shown that the expansion of fm appearing in (36) is
expressible as

(37)

(38)

m
~ = m! I:

m =01

. . . mn-3 N.[ mi -l-mi n. ]I: IT a. (x. - 13.) '/(m o 1 - m,o)! ,
O . l' ",-mN- 2= , =

(39)

i = 1 (40a)

no = (m. 2 - m.), ,- , 2<i<N-l

i = N

(40b)

(40c)

The next step is to introduce the functions known as repeated integrals of the
error function, Inerfc(z), defined by the relationship (Abramowitz and Stegun, 1964,
p. 299)
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00 2
(2/1iT) /(x - S)n e-x dx = nllnerfc(B) - n!I(n, S)

B
(41)

In the equations that follow, the inconvenient notation, lnerfc(z), has been re
placed by the symbol, I(n, z), as indicated in (41).

Now with the use of (39) and (41), (36) can be written as

N {(mi - l - mi+l )!} mi_l-mi
IT ( )1 a. I(n," 13,')' N > 3

i=l mi mi+l · ,
(42a)

where ni is given by (40) and the definitions of (38) are assumed. Notice that for
N = 2, f as defined in (37) contains only one term and 1m in this case is simply

(42b)

Thus, the equation for the multiple knife-edge attenuation function, A(N ~ 2), is
given by (35), where I is computed from (42a) or (42b).m

It would appear, at first, that the series in (35) might be rather restricted
in its range of application because of convergence difficulties. In fact, it pro
vides a suitable means of computation over a wide range of the input parameters,
a. and B.. This arises from two circumstances: (1) a. always lies between zero, , ,
and unity, and (2) the magnitude of the function, I(n, B), becomes very small as n
increases and as long as 13 is not too large a negative number. Fortunately, a
negative B occurs only when the knife-edge with which it is associated becomes of
less and less significance in the overall diffraction problem. Eventually, the
attenuation is computed as if that particular knife-edge were absent altogether.
It turns out, as will be shown in the example computations, that the series in
(35) is suitable for SiS just negative enough to approach the correct attenuation
value, i.e., the value obtained with one less knife-edge.

The repeated integrals of the error function, I(n, B), require different com
putational algorithms for different ranges of the variables, nand S, in order to
achieve sufficient numerical accuracy. The range limits of nand B will vary some
what for different computers because of significant figure and storage capacity con
siderations. The algorithms used in the present study are described in the following
discussion.

For small z and n not too large, the power series expansion of I(n, z) was

found to give satisfactory results (Abramowitz and Stegun, 1964, p. 299).
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For Izi < 0.8, n < 10:

00

I(n, z) = L (_l)kzk/(2n- kkl r{l + (n - k)/2})
k=O

00 00

= L T e (n, z) - L Tr
o (n, z)

r=O r r=O

where r(X) denotes the usual Gamma Function and

T e (n, z) -I (2 + n - 2r)z2 !T e (n, z)r - r(2r - 1) r-1

T 0 (n, z) -1 (1 + n - 2r) z2 ! Tr~1 (n, z)r - r(2r + 1)

T e (n, z) = 1/2n r (2 ; n) Too (n, z) = 2z/2 n r (1 + n)
0

, 2 .

For larger n, an equation derived by Miller (1955, p. 66) was used.

For Izi < 0.8, n ~ 10:

I(n, z) 0 [e-
z2/ 2" re;"-)] eV(Z) , Z =z/12 ,

(43)

(44a)

(44b)

(44c)

(45)

where V(Z)
9 k

= -21n + 172 Z + L gk/(2/n + 1(2) ,
k=l

(46)

and gl = _(2/3)Z3 , 92 = _Z2 ,

93 = -Z + (2/5)Z5 , 94 = 2Z4

95 = (16/3)Z3 - (4/7)Z7 , 96 = 9Z2 - (16/3)Z6 ,

97 = (19/2)Z - 26Z5 + (10/9)Z9 ,

99 = -(575/3)Z3 + 120Z7 - (28/ll)Zll

11
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If the exponent range and word size of the computer variables are large enough,
a method of computing I(n, z) has been developed by Gautschi (1961) based on a
technique originated by J. C. P. Miller.

For Izi ~ 0.8, Re z > 0:

2
I(n, z) = (2/1iT) e-z {wn(z)/w_l (z)}, n = 0, 1, ... , M

where the auxiliary functions, w, are recursively defined by

(48)

WjJ(Z) = 2{(jJ + 2) wjJ+2(z) + zWjJ+l(z)}, jJ = v, v-l, ... ,1, 0, -1, (49a)

and a is some (arbitrary) small, positive constant.
Gautschi has provided a means of determining how large v must be as a function

of Min (48) in order to obtain a given accuracy. Thus, if we wish to have

then v .::.lJM + (lnlO)(p + log2)/(2 3/2 Iz !) 1
2

" 1JM + c/1z112

(50)

(51 )

The value of c used in the computer program described later on in Section 4 is
c = 6.758, which corresponds to p = 8. It is obvious, of course, that one of the
factors determining what value of p is chosen is the number of significant figures
available in the computer that is used.

Finally, for larger negative z, the equation used to compute I(n, z) is ob
tainable from relationships given by Abramowitz and Stegun (1964, pp. 300 and 775).

For Izi > 0.8, Re z < 0:

where

I (n, z) = 2An(z) - (-1)n I(n, -z)

[n/2] n-2k
An(z) = L ----,k-z--

k=O 4 k!(n - 2k)!

(52)

(53)

the symbol, [x], in (53) denotes the largest integer ~ x.
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One further modification of the computation formula for the function, 1m,
given by (42a) was made in order to shorten the computation time. When the number
of knife-edges, N, is greater than 4 or 5 and the parameter, m, becomes large,
many terms are required in the computation of I. If (42a) were programmed as itm
stands, a number of sub-calculations entering into I would be completely recal-m
culated when computing Im+l . If enough storage locations are available, these sub-
calculations can be stored for later use, and computation time can be considerably
reduced at the expense of increased storage ,requirements.

Although the algebra is tedious and will not be detailed here, it can be
shown that 1m is expressible in the following form. First, we define the function

Then, with the notation

i = mN_L, j = mN- L-l , k = mN-L-2

2 < L < N - 2 , for N > 4

and the recursive relationship

(54 )

(55a)

(55b)

it can be shown that 1m is given by

(57)

where, as before, mO =m.

4. EXAMPLE CALCULATIONS

A computer program has been written to calculate multiple knife-edge attenuation
over paths consisting of up to a maximum of 10 knife-edges. The input for a particu
lar propagation path of N knife-edges (1 ~ N~ 10) requires the radio frequency, f
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(in MHz), the N + 1 separation distances, r n (in kilometers), n = 1, ... , N+ 1,
and the N + 2 antenna and knife-edge heights, hn (in kilometers above some refer
ence plane), n = 0, ... , N + 1. The symbols r1 and r N+1 denote the distances
from one antenna to the first knife-edge and from the Nth knife~edge to the other
antenna, respectively; ho and hN+1 denote the heights of the antennas. One restric
tion on the separation distances, arising from the derivation of the attenuation
function, is that krn always should be much greater than unity.

As can be seen from (23), the attenuation A is a function of the angles, en'
appearing in the definition of Sn. These angles are approximately related to the
heights and distances, hn and rn, by

(58)

en is in radians and may be either positive or negative. The approximation in (58)
is suitable for small e such that tan e ~ 8.

The actual calculation of A from the equation in (35) must, of course, be
restricted to a finite number of terms. In order to achieve sufficient accuracy
more terms are needed as the number of knife-edges is increased. However, for
N > 3 no previous results are available which can be used to check the answers
obtained from (35). Fortunately, an exact expression can be derived for multiple
knife-edge attenuation as given in the integral form of (29) for the special case
of equal separation distances and en (or Sn) equal to zero. Thus, for

• • • =

h = h =o 1
. . .

rN+1 = constant

= hN+1 = constant

(59a)

(59b)

we have, from (58), (23), and (24),

Sn = 0 (n = 1, ... , N), an = 1/2 (n = 1, .. ', N - 1) (60)

Then it can be shown that the multiple knife-edge attenuation for N knife-edges as
given by (29) is

1
A(N)=N+1

14
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Now, if for practical programming purposes, (35) is approximated by

(62)

equation (61) can be used to estimate the value of Mnecessary to achieve a given
accuracy. Considerations of computer storage limitations and exponent ranges
further limit the choice of Mand, after some experimentation, a maximum value of
M= 160 was selected for the'present program on this particular computer. Compari
sons of results obtained from (62) with the exact value as given by (61) are shown
in Table 1.

Table 1. Comparisons of Multiple Knife-Edge Attenuation,
A, as Obtained from (61) and (62) for Input

Parameters as in (59)

N M Exact A A Time (s)from (61 t from (62)

5 90 0.16 0.166667 1.2

6 100 0.142857 0.142855 2.4

7 160 0.125 0.12499975 12.1

8 160 o.T 0.1111 07 15.4

9 160 0.1 0.0999674 18.8

10 160 0.09 0.0907650 21.2

The column headed IITime li shows the amount of computer time (i n seconds) used in ob-
taining the attenuations of column 4.

As stated previously, the number of terms in (62) necessary to achieve a given
accuracy increases as the number of knife-edges increases. Table 1 shows that for
10 knife-edges and using 161 terms, the result from (62) is barely good to three
figures. In terms of deci be1s the approximate resul t differs by 0.014 dB from the
exact value, and this is sufficiently accurate for measurement purposes. The amount

of computer time used drops dramatically as the number of knife-edges is decreased
(and, consequently, Mmay be chosen smaller). For example, for six knife-edges and
with M= 100, (62) qives A = 0.142855, as against the exact value: A = 0.142857.
The computation time in this case is 2.4 seconds.
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The above discussion is useful in checking the validity of (62) when S > O.m-
The series continues to provide valid results for negative S as long as lsi is
not too large. In complete analogy with the series expansion of exp(-x), the
series is valid but impractical for computation because of the loss of figures
in the addition and subtraction of large numbers.

In the knife-edge diffraction problem a knife-edge has a significant effect
on the signal only when it obstructs or is near the ray path. As it drops lower
and lower below the ray, its effect diminishes. Numerical studies of (62) for
negative SiS show that the series gives satisfactory estimates of the magnitude
of the attenuation to the point where the knife-edge (or knife-edges) can be ne
glected. However, the phase of the attenuation near this changeover point should
not be trusted because of the fact that e becomes (negatively) large and the angle
approximation in (58) is less reliable.

Investigations to ascertain suitable values for the minimum S have shown that
the values depend on the number of knife-edges in the path. Table 2 shows the mini
mum S, BR . , used with each N and also gives comparisons of attenuation when themln
knife-edge height is at the IIchangeover ll value. The input heights and distances
are such that when a particular knife-edge height, hn, is just low enough to be
considered insignificant, the remaining heights and distances give e's equal to
zero and a IS equal to 0.5; thus, the attenuati on is gi ven by (61) for the reduced
number of significant knife-edges. When the knife-edge, hn, is just above the
II changeover ll height, all the input heights are significant, yet the attenuation
s~ill should be approximately equal to that for the reduced case.

It should be realized that (62) was used to calculate both A(N) and A(Neff )
in Table 2. For instance, in the case of five knife-edges, h2 and h4 were input
with values just above the changeover height. Thus, the program considered all
five input heights, hl through h5, as significant and calculated the value IA(5)1 =

0.247253. Next, the program was run with h2 and h4 just below the changeover
height. In this case the program considered only the three heights hl , h3, and h5
as significant and calculated the value !A(3)! = 0.250000. A similar procedure
was used in each of the other entries.

The example with nine knife-edges shows the greatest discrepancy between the
two attenuation values in decibels, i.e., the magnitude of the difference is 0.22
dB. It would be difficult to state an analytical error estimate for (62) because
of the multiple summation form of the 1m functions. A numerical estimate for any
particular set of input parameters can be obtained by comparing Mand M- 1 terms.

16



Table 2. Comparisons of Multiple Knife-Edge Attenuation
at the Changeover Value, ReB = BRmin

N BRmin IA(N) I \A(Neff) I Neff---
2 - 3.0 0.494791 0.500000 1

3 - 3.0 0.333172 0.333333 2

4 1.5 0.248615 0.250000 3

5 - 1.5 0.247253 0.250000 3

6 - 1.2 0.200630 0.200000 4

7 - 1.2 0.201019 0.200000 4

8 - 1.0 0.169766 0.166667 5

9 - 1. 0 0.170914 0.166667 5

10 - 1.0 O. 143-444 0.142857 6

Many combinations of knife-edge heights near their changeover values were
tested other than the ones shown in Table 2. The largest differences occur for
the cases of 8, 9, or 10 knife-edges. In all the tests made, the greatest differ
ence was found for a path with N = 9 in which one of the separation distances was
chosen to be r = 0.01 km, a value that might be considered the minimum allowable.
The dB difference of the answers for A(9) and the reduced case of A(8) was 0.85 dB.
It is believed that the present program will always give estimates of attenuation
good to within 1 dB of the theoretical value.

One additional, but restricted, means of verifying (62) is through comparison
with the results of the double and triple knife-edge computer programs previously
mentioned. These programs, written a number of years ago but never published, use
different series expansions for various ranges of the input parameters and are said
to give attenuation values accurate to eight significant figures. Comparisons of
these two programs with the present program based on (62) always gave answers in
agreement to six or more figures as long as the knife-edge heights were greater
than the "changeover" value and the separation distances were greater than 0.01
km. When comparisons were made using heights near or below the changeover, the
dB difference of the answers never exceeded 0.2 dB. In fact in many cases it was
found that the series in (62) could be used with values of 8 much less than -3.0,
resulting in four- and five-figure agreement in the answers. In other cases the
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addition and subtraction of the series terms resulted in the loss of too many
figures, and it was finally decided that a minimum 6 of -3.0 was best suited for
all cases of double and triple knife-edge diffraction.

5. SUMMARY
A multiple knife-edge diffraction theory has been developed starting from

Furutsu's generalized residue series formulation for the propagation of electro
magnetic waves over a sequence of smooth, rounded obstacles. The resulting expres
sion, in the form ofa multiple integral [see equation (29)J, is transformed into
the series (35) through the use of repeated integrals of the error function. The
terms of the series, I , are defined by (42).m

A computer program has been written to calculate the magnitude of the attenua-
tion relative to free space for propagation over paths containing N knife-edges
(N ~ 10). The program uses equation (62) with 1m given by (57), CN by (27), and
oN by (31). The basic parameters 6. and a. are defined in (23) and (24), respec-, ,
tively.

Comparison of the program with previously written double and triple knife
edge programs shows six significant figure agreement as long a~all 6i ~ -3.0.
In all cases tested the dB difference in answers was always less than 0.2 dB.

Since no previous results exist when the number of knife edges is greater
than three, partial verification of the program was made in two ways.

1. Answers were compared with a closed form expression valid when all
knife-edges are evenly spaced and at equal heights such that all
8i = O. The largest dB difference occurred for the case of N = 10,
this difference being 0.014 dB (see Table 1).

2. Answers were compared with sample paths in which some of the knife
edges were lowered to the point where the attenuation would be that
expected for the path with a reduced number of knife-edges (see Table
2). In general the test case answers agreed to within 0.4 dB. Some
paths containing minimum separation distances of 0.01 km gave larger
discrepancies, but in all cases the answers agreed to within 1 dB.

The multiple knife-edge attenuation function described in this paper should

serve as a useful means of estimating propagation loss for microwave frequency
propagation paths over irregular terrain. Even at lower frequencies the model is
applicable if the terrain features can be characterized as knife-edges.
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