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AN EXPERIMENTAL STUDY OF MONTE CARLO
FACTORING TECHNIQUES

W. J.Hartman*

Pollard (1975) describes a "Monte Carlo" factoring algorithm
based on iterating some specific quadratic polynomials. In this
paper different polynomials are tested in the algorithm to see if
a more efficient factoring can be obtained. The results are
inconclusive.

Key words: Monte Carlo factoring

1. INTRODUCTION
Pollard (1975) has suggested using the functions X ~ f(X 1) (mod N),

2 2 n n-
with f(X) = X + 1 or f(X) = X - 1 and Xo = 2, as a method of factoring N,
assuming N is known to be composite. (X ~ Y(mod N) means 0 < X~ Nand N
divides Y - X, abbreviated NIY - X). Here we consider N to be of the
form p.q = N where p and q are primes, where p = 2p· + 1, q = 2q' + 1 where
pi and q' are primes. In this paper, we examine two questions: (1) Is
there an a, b, Xo such that f(X) = (X-a)(X-b) produces a faster factoring
than Pollard's function and (2) is there a way of selecting a polynomial
form of f(X) which produces faster factoring.

The results obtained here are negative in the sense that no substantial
improvement in Pollard's original method is obtained. However, these results
do not imply that such improvement is impossible.

2. BACKGROUND
Pollard (1975) notes that since the equation is reduced (modN) at

most N values of X will be generated. Similarly, if p is a prime divisor
of N, at most p values (mod p) will be generated. Therefore, the recursion
will becoml~ periodic eventually. If we begin with Xo and plot the successive
points

*The author is with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce,
Boulder, CO 80303



Figure 1. A directed graph showing two tails and a periodic part.

we obtain a directed graph as in fig. 1. The portion from Xo to X3 we

call theta tail and the portion including the points from X3 to X3+6 the
periodic part. There may be more than one tail as shown going to the right
in fig. 1, and some points may have more than one predecessor. We will call
the graph including all of the connected points a section. A given function f
and a given prime p may produce several sections.

A section may have a periodic part consisting of a single point as
illustrated in fig. 2 (a) and (b).

(0 )

C)
(b)

Figure 2. Two directed graphs with one-cycles (a), with tails (b) without tails.
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We define the epact E, for a specific function f, a starting value
Xo and a prime p as the number of points, n, between X and the first Xn
which is a repetition of a previous Xi' i.e., n is the number of points in

the tail plus the number of points in the periodic part starting at XO'
We are interested in finding functions f and starting values Xo which

have small epacts.

3. POLLARDIS METHOD FOR DIFFERENT QUADRATIC f(X)
Rather than look at the factoring problem directly we consider instead

the substantially equivalent form of the problem as follows.
For p prime, and

find the smallest j andk such that

Xj +k = Xj (mod p).

The number j+k is called the epact. This is guaranteed to occur since
this recursion generates at most p - 1 distinct numbers. The algorithm used
for determining j and k is that of Brent (1980).

If, for some j and k, the greatest common divisor of (Xj +k - Xj ) and
N is different from 1 and N, (l < g.c.d. (X j +k - Xj ' N) < N) then a divisor
of N has been found.

For the two functional forms

f(X) =X2 + a and f(X) =x2 - a,

I investigated a large number of aLs with the following properties.

(1) a is an ,Q,th power, ,Q, = 2, 3, 4, 7, 11

(2) a is square free and highly composite
(3) a is prime.

Since the largest epacts for
2 2f{X) = X - 1,f(X) = X + 1, Xo = 2

are known for primes less than 106 (Guy, 1975), a set of 10 primes p of the
form p = 2p' + 1, pi a prime were used to eliminate those combinations of a's
and XO's which had epacts on the order of the maximum epacts for X2 -1,

2 _
X + 1, Xo - 2.
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For those (a, XO) pairs not eliminated by this original screening 50
primes less than 106 were used for an additional screening. The first
screening eliminated approximately 50 percent of the approximately 10,000
(X O' a) pairs, and the second screening eliminated approximately 75 percent
of the remainder leaving 1239 (XO' a) pairs. These were tested on the
primes just larger than 106 until each was eliminated. All were eliminated
before 1000 primes were used.

It is concluded that no choice of (XO' a) pairs is consistently better
than the (2, 1) or (2, -1) pairs.

Since it was not feasible to print most of the results, a few (XO' a)
pairs were selected to see if the average epacts were smaller than those
for the (2, 1) and (2, -1) pairs. These pairs were chosen at random from
the original set. Two pairs showed a better average when averaged over the
first 50 primes greater than lOb, but were approximately the same when
averaged over the first 1000 primes> 106.

Although it is known that the epacts for (2, 1) and, (2, -1) can both

be large for some primes, it is not known whether there are two (XO' a) pairs
such that when one is large the other is "small." Also, it is not known how
small these II sma ll" epacts might be.

4. OTHER POLYNOMIALS
The quadratics used for f(X) in the previous section require only one

multiplication and reduction (mod N) at each step. Therefore, in order that
polynomial forms requiring more multiplication and reductions produce an
improved factoring method, they must result in substantially smaller epacts
for most starting values. It should be noted that a function requiring k
multiplications that results in epacts t as long as the simple quadratics
would show a significant advantage over the quadratic because of the reduction
in the number of g.c.d. calculations required. In the following, the state
ments with Roman numerals are proven, those with an asterisk are not proven,
but appear to be amenable to proof, while those with an exclamation mark
are only supported by some empirical evidence and may not be true.

We first investigate the sets and the size of the sets which are the
range of a given (polynomial) function when the argument is taken over a
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complete Y'esidue system (mod p). The epact will be no larger than the size
of this set.

Throughout the rest of the paper, we will assume primes of the form
p = 2p I + 1 where pi is a prime.

Thus, p ~ 3 (mod 4) and also p ~2 mod 3.

(I) The set {a X+b (modp), X=O, 1, 2, ... p-l, O<a<p} is
the complete set of residues. Hereafter we will call a
complete residue set generated by a function P(X) a permutation,
or call such a function a permutation.

(II) If k is odd and the greatest common divisor of k and p-l is
1, [(k, p~l) = 1], then the set Xk (mod p) X=O, 1,2, p-l,
is a permutation (Small, 1977).

(III) If P(X) (mod p) is a permutation, P(ax+b) (mod p) is a
permutation for rational a and b, with a and b defined
(mod p) and a f 0 (mod p).

(IV) If Pl (X) (mod p) and P2(X) (mod p) are permutations,
Pl (X).P2(X) (mod p) is not a permutation (Chowla, et al.,
1948). That is, Pl (X).P2(X) (mod p) does not generate a
complete residue system. Unfortunately, little is known
about the size of the set generated.

(V) If P(X) (mod p) is a permutation so is (a p(X) + b) (mod p)
for integer a, b, with a t 0 (mod p).

(VI) If P(X) (mod p) generates a set of size n, then so does
(a P(X) + b) (mod p) and P(a X + b) (mod p). (These are
usually not the same sets.) We shall call these sets "size
equivalent."

(VII) P(X) = X2(mod p) generates a set of size p~l. (Therefore
using VI, so do all quadratics.)

Comments: Although IV gives a method for reducing a permutation to a smaller

set, these same operations may not reduce smaller sets. For example, take
o 3

Pl(X) = XL(mod p) P2(X) = X (mod p). Then, Pl (X).P2(X) = X (mod p) which,
for the primes considered, is a permutation. However, see IX.

5



(VIII) The cubic polynomials P(X) = 'lX3 + 3SX2 + 3 oX + y separate
into two size equivalent sets corresponding to the trans
formations of the following.

(1) X3 of size p (132 = 'lo)
3

X + X . n+l 2
(2) X3 _ X of Slze 2 (~-1 (13 ~ 'lo)(Dickson, 1952).

(IX) Pl (P2(X)) generates a set of size less than or equal to
the minimum of the sets generated by either Pl(X) or P2(X).

By iterating a function P(X) until, for some n, the size of p(n)(X) equals
the size of p(n-l)(X), one obtains the number of elements in the cycles of
P(X). However, the number of elements in the cycles gives only a crude
measure of the size of the epact. For example P(X) = xP has size p, but
has an epact of 1 for every starting element, while the function P(X) = X2

.~ E.:l~ .has Slze 2 and an epact of 2 or 2 for most startlng elements. None-
theless, for larger numbers it is easier to examine the size of the
(possibly iterated) function than to obtain the graph of the function.
Thus, numerical results tend to support the following conjectures.

(1*) Let Pl(X) = X3 ~ X and P2(X) = X2. Then the size of P2(Pl (X)) ~ the
size of Pl (P2(X)).

(I~) For Pl and P2 as in (1*), the average epacts for Pl (P2(X)) are smaller
than for P2(P l (X)).

(II~) For Pl(X) a polynomial of odd degree, not a permutation, and
P2(X) = X2, the size of P2(Pl (X)) ~ size of Pl (P2(X)). Also, the
average epact for Pl (P2(X)) is less than the average epact for
P2(Pl (X)).

Notet: Although the size of P(X) = X2 + X and every transformation of P(X) as in
V and/or VI is the same, the average epacts may differ. Table 1 gives the
values of several polynomials for p = 47. The interested reader may easily
construct the graphs for various polynomial iterations from this table in order
to obtain support for the above conjectures. For example, using the notation of

the table, P3(Pl (5)) = P3(25) = 46, and Pl (P3(5)) = Pl (36) = 27.
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Table 1. Values of Various Polynomials (mod 47}.

Pl(x) P2(x) P3(x) P4(x) P5(x) P3(P3(x)) P4(P4(x)) P4(P3(x))

2 x3 x3+x 3 x5+xx x x -x

0 0 0 0 0 0 0 0 0
1 1 1 2 0 2 10 0 6
2 4 8 10 6 34 23 22 3
3 9 27 30 24 1'1 5 29 39
4 16 17 21 13 4'1 23 22 28
5 25 31 36 26 28 21 19 43
6 36 28 34 22 27 46 4 25
7 2 14 21 7 35 23 7 28
8 17 42 3 34 17 30 25 24
9 34 24 33 15 26 15 23 43

10 6 13 23 3 41 17 24 18
11 27 15 26 4 40 24 13 19
12 3 36 1 24 26 2 29 0
13 28 35 1 22 6 2 4 0
14 8 18 32 4 17 41 13 24
15 37 38 6 23 11 34 18 22
16 21 7 23 38 22 17 32 18
17 7 25 42 8 4 11 34 21
18 42 4 22 33 45 1 43 4
19 32 44 16 25 17 23 43 38
20 24 10 30 37 25 5 44 39
21 18 2 23 28 10 T7 22 18
22 14 26 1 4 10 2 13 0
23 12 41 17 18 45 42 33 8
24 12 6 30 29 2 5 14 39
25 14 21 46 43 37 45 34 0
26 18 45 24 19 37 30 25 29
27 24 37 17 10 22 42 3 8
28 32 3 31 22 30 24 4 9
29 42 43 25 14 2 46 4 43
30 7 22 5 39 43 36 13 26
31 21 40 24 9 25 30 15 29
32 37 9 41 24 36 13 29 25
33 8 29 15 43 30 6 34 23
34 28 12 46 25 41 45 43 0
35 3 11 46 23 21 45 18 0
36 27 32 21 43 7 23 34 28
37 6 34 24 44 6 30 23 29
38 34 23 14 32 21 32 24 4
39 17 5 44 13 30 17 22 23
40 2 33 26 40 12 24 40 19
41 36 19 13 25 20 1 43 22
42 25 16 11 21 19 26 28 4
43 16 30 26 34 6 24 25 19
44 9 20 17 23 36 42 18 8
45 4 39 37 41 13 24 25 44
46 1 46 45 0 45 37 0 41
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(X) Given the sets {Xi}, {Yi} i = 0, 1, 2, ... k such that P(Xi )
= Yi i = 0, 1, 2, ... k, one may determine a polynomial
of degree k by using an interpolation formula (Newton1s
formula is recommended if the degree of the polynomial is
not predetermined; see Kopal, 1955). Thus one may set up
cycles of arbitrary lengths.

One such function which was tried was P7(X), obtained from the points

Xi = (i + 1) 2 i = 0, 1, ... 7,

{Yi} = {Xi' X2, XO' X4, X5, X6, X7, X3}

and the polynomial to be iterated was P7(X2) which contains one cycle of
length 3 and one cycle of length 5. The evaluation of this polynomial at each
point requires at most 21 multiplications. A program was written for a desk top
calculator for counting cycles. Unfortunately, due to storage limitations, no
more than 5 cycles could be counted. For primes near 1000, P7(X 2) produced a
minimum of 5 cycles. And for several primes near 106, P7(X 2) produced a minimum
of 5 cycles. For two 12 digit primes, 8 different starting values gave a maximum
epact of 3.8 x 105. (The minimum epact was 7).

A second polynomial similar to P7(X) was constructed with three cycles of
length 3. The numerical results were similar to those for P7' except that ,the
maximum epact for the two 12 digit primes and 8 starting values was 1827.

The evidence is too weak to support any conclusion or even conjectures
regarding the merits of polynomials constructed to produce cycles. Because
of the unreliability of numerical results for small primes as predictors for
results for large primes, and the cost of obtaining results for large primes,
this portion of the work was terminated.

5. PROGNOSIS
A very desirable function would be one which produced binary trees for the

primes. However, such a function is highly unlikely. Therefore, an alternative
might be a function which has many small cycles, no long cycles and no long
tails. This also appears difficult to attain. If the function has one large
cycle, the probability that a starting value leads to this cycle is also large,

so the hope of obtaining a good function and a good starting value is small.
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6. CONCLUSIONS
The conclusion of this study is that we did not find any functions demon

strably better than Pollard's functions. This does not imply that none are
available, only that their discovery is difficult.
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