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SOME FURTHER ASPECTS OF THE INFLUENCE
OF RAINDROP-SIZE DISTRIBUTIONS
ON MILLIMETER-WAVE PROPAGATION

E. J. Dutton and F. K. Steele*

In the presence of rain, millimeter-wave propagation is acutely
sensitive to the distribution of raindrop sizes along a given propa
gation link. This report analyzes the variability of rain attenua
tion prediction at microwave/millimeter wave frequenc~es caused from
the variation of measured raindrop-size distribution data. The
results show a considerable need for better and more extensive
dropsize distribution data, both in time and geography.

After searching for potential solutions, the report discusses
the historical development of raindrop distribution measurement
methodology, including direct measurement techniques, but with
emphasis on indirect, or remote sensing, multiple frequency tech
niques. These latter techniques are carefully scrutinized, with
the conclusion that some information derived separately from the
techniques is usually necessary to successful usage of the
techniques. Some concluding observations are then made for the
selection of an appropriate remote-sensing technique for the
improved determination of path-averaged raindrop-size distributions.

Key words: annual variability; attenuation coefficients; millimeter waves;
multiple frequency techniques; prediction variability;
~aindrop-size distributions

1. INTRODUCTION AND BACKGROUND

The distribution of raindrop sizes in a given volume of the atmosphere is not

an easy quantity to measure or determine. This is primarily because this distribu

tion is representative of a highly dynamic, nonstationary process. Raindrops pass
in and out of the volume rapidly, some growing, some colliding with and absorbing

other drops, and some breaking into many smaller drops because they are physically

too large to withstand atmospheric stresses. In this scenario it is difficult to

imagine the ability to obtain exact knowledge of the raindrop-size distribution per

unit volume at any given time as ever being realizable. Atmospheric scientists

have resorted to various dropsize counting schemes (Dutton et al., 1983) to obtain

raindrop-size distributions with, as might be expected, a potpourri of results.
Like almost everything else in atmospheric processes, raindrop-size distributions

exhibit a general deterministic trend, but with a large random component.
Raindrop-size distributions have been of concern to varied groups for a long

time. Early in the century, dropsizes were of interest to meteorologists and

*The authors are with the Institute for Tel~communication Sciences, National Tele
communications and Information Administration, U. S. Department of Commerce,
Boulder, Colorado 80303.



agriculturists. Later, Ryde (1946) identified the significance of raindrops in the

attenuation and backscatter of radar waves. It is now known (Kobayashi, 1980) that

rain is of primary importance in millimeter or microwave propagation. Figure 1

shows the relative attenuating characteristics of rain as it impacted a 30.3 GHz,

27.2 km-1ink bit error rate (BER) measured by Espeland et al. (1984). Figure 1

clearly indicates the dominance of the rain effect when it occurred. At frequencies

below 10 GHz or so, large drops tend to be responsible for absorption, scattering,
and depolarization. At the higher frequencies, drop sizes are more comparable to

wavelengths and the small drops increase in significance. There has been a recent

increase in the use of millimeter waves and a resulting greater need for specific

information about rain rates, drop sizes and effects on telecommunication.

Notwithstanding all the difficulties in determining raindrop-size distributions

is the fact that much of the developed theory of rain attenuation is directly

dependent upon knowledge of raindrop-size distributions. This creates a very inaus

picious situation with respect to the need for valid drop-size distributions

vis-a-vis the existing information on such drop-size distributions. Complicating

matters even further is the high degree of sensitivity to drop-size distribution

of rain attenuation evaluated from theory at millimeter wave frequencies
(Dutton et a1., 1983). Now the need for valid drop-size distribution mat~ria1 be

comes even more acute, but, alas, the information base remains the same. In

Dutton et a1. (1983) an attempt was made to glean rain attenuation prediction coeffi

cients, az and bz ' by the use of linear and nonlinear least-squares techniques, in
four general worldwide climatic zone types. This procedure subdivided 226 world

wide-measured drop-size distributions into four distinct climatological zones;

whence, four relationships of the form

= (1 )

were predicted by least-squares techniques. In (1), (10910Q',z(f,R) gives a
value, Q',z(f,R) for specific attenuation (attenuation in decibels per kilometer), R

is the rain rate in millimeters per hour, and az(f) and bz(f) are frequency, f,

dependent coefficients for the zone, z. The analysis of prediction errors associa

ted with this process may be partially representative of unknown measurement errors

of the individual drop-size distributions. This analysis will be considered in

Section 2 of this report.

As will be seen in Section 2, inclusion of prediction errors gives such a

broad range of possibilities for rain attenuation along a terrestrial link that it

in no way clarifies the critical situation at millimeter-wave frequencies. Thus,
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Figure 1. Cumulative distribution of BER and the portion of the distribution
contributed under each meteorological classification as recorded during
March 1983 on a 30.3 GHz 27.2 km path.
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we must seek other means of determining raindrop-size distributions, most likely

involving new experimental procedures. The leading candidate in new experimental

procedures for determining drop-size distribution is the II pass ive probe ll approach;

i.e., indirectly measuring path-averaged raindrop-size distributions by measuring

path attenuation at a number of desired frequencies. This has the advantage over

direct measurements in that it covers an entire path and places the emphasis on

measuring the desired output phenomenon (attenuation) rather than on the inter

mediate phenomenon (drop-size distribution). As will be seen in Section 5 of this

report, however, these indirect measurement procedures are prone to ambiguities

just as were the direct measurement procedures.

2. COMBINED YEAR-TO-YEAR AND PREDICTION VARIABILITIES
In every least-squares fitting procedure, there is a deviation, 0, of the true

value from the estimated value. This deviation can be expressed as

o = l:; + E, (2 )

where l:; represents contributions to 0 because of the difference between the expected

population fit and the sample regression fit, and E represents the difference

between an actual value and the population fit. If we use a sample regression fit

of the form of (1), which is essentially a linear regression, we can use the basic
concept (2), which leads to the formulations on page 163 of Crow et al. (1960), to

arrive at a prediction variability, s~, for the model

Now, Cl.z(f,R) represents a IItrue ll value of specific attenuation for any given f and R.

Expression (3) obtains specific attenuation, which must be combined with an lI effec

tive path length,1I Le , to give the total path attenuation T;/f) at percentile, p.

In an attenuation distribution, the percentile, p, will correspond to a particular

rain rate, R. However, T~(f) has a year-to-year variability that has been modeled
for both terrestrial links (Dutton, 1984} and earth-space paths (Duttonet al., 1982).
In that modeling, we essentially use an expression of the form

(4)
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where c(f) is for convenience treated here as a nonrandom function* of frequency
(only) for specific attenuation that, when multiplied by the random variable, L

e
.

(i .e., variable on a yearly basis at percentile, p) produces the random variable

T~(f), which is also variable on a yearly-basis~. This permits us to develop a
reasonable, yet tractable, analysis. Now, with the application of (3), we have
introduced statistical variability into the specific attenuation, so that

a product of two random variables. Using (4), (5) can be rewritten as

(6)

If we take logarithms in (6), we will have the expression

(7)

that can be more readily manipulated. This is because we now have the sum of two

random variables rather than the product of them. However, it also implies that as

well as knowing the distribution functions of the random variables we will have to

ascertain the distributions of the logarithms of these variables. Probably the most
straightforward and manageable approach to this is to use normal distributions for

the logarithms, which implies lognormal distribution of the individual variables
themselves.

How feasible is this approach? The basic variance analysis procedures associ

ated with linear regression of the form of (3) requires the assumption of normality;

thus, for 10910Qz(f), use of normality is a consistent procedure (Crow et al., 1960,

* c(f) is a function of the random variable, R, and is thus in reality a random

function. However, the variability of t~(f) must be at least as large as the varia
bility of c(f), as can be noted from (4), so that the overall effect of including it

would be at most to add an additional variance of the order of s~p to (15). In

other words, the dominance of s2 in (15) would remain intact. It should also be
u

noted that predicted values of rain attenuation in the rightmost three columns of

Table 1 should be slightly larger.
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page 150). The lognormal distribution is probably a valid distribution to use in

connection with the modeling of the year-to-year variability of T~(f), although we

have preferred the use of a truncated normal distribution (Dutton, 1977). In the

development that follows, we shall make use of the fact that a lognormal distribu
tion represents the total year-to-year distribution of T~(f) reasonably well, and

the fact that a normal distribution represents the upper 50% portion of the

year-to-year distribution of Tp(f) very well. This apparent inconsistency can be
resolved via the truncated normal distribution.

It is known that (Beckmann, 1967, page 415) if the ratio of the year-to-year

standard deviation, Syp' of T~(f), to the mean value of T~(f), <T1(f) , is
sufficiently small, i.e.,

(8)

then the truncated normal distribution can be approximated by the normal distribu

tion, itself. This, as is indicated in Dutton (1977), is almost always the case for

T~(f). This also means that

(9 )

where T~,50(f) is the median value of Tp(f). If we now let

then the variance of v at percentile, p, s~p is given by

2

sv2p ~ 0.18861 [Syp ]
T~,50(f)

(10)

(11 )

(Crow et al., 1960, page 69) so long as the condition (8) holds. However, Panter

(1972, page 354) notes that if T~(f) is lognormally distributed, then

(12 )
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Again, if the condition (8) applies, (12) becomes

s2 rv 0.18861 [ I sYP(f)] 2 (13)
vp rv T 50p,

which is identical to (11). While this, as the mathematicians say, may not be

"su fficient" rationale for the dual use of a normal and a lognormal distribution of

the year-to-year variability of T~(f), it turns out to be inconsequential, anyway.

This is because, as will be shown, the variability due to the regression procedures

to obtain az(f) is by far the dominant variability effect in the following analysis.

Any assumption for the year-to-year variability of T~(f) vis-a-vis the regression
variability of az(f) appears to have little impact on the final results.

At any rate, we now have some justification for assuming loglOaz(f) and

lo910T~(f) to be normally distributed. If we let the random variable U represent

u loglOaz(f), Vp represent vp = lo910T~(f) - lo910c(f), and Wrepresent

w = lo910Tp(f), then

W= U + V
P

(14 )

from (7), where W, because it is the sum of two normally distributed random variables,

is also normally distributed (Beckmann, 1967, page 79). Also, the variance of
I~ 2 . . b"sw' 1S glven y

sw
2 = s2 + s2

u vp (15)

In (15), s~p is the variance of v at percentile, p, and is given by (12). Further

in (15), s~ is the variance of u, which, from (3) becomes

where E represents the "expected value Jl operator. As a consequence of the result

(16), it can be shown that

+ 1 +
n

7
I

(17)



in the case ofa linear regression such as (3). In (17), S. E. is the "standard

error of estimate" (Crow et al., 1960, page 163) of the linear regression, n is the

number of data pairs used in the regression analysis (in this case, 10glOa(f,R), and

l0910R), <1091i> is the mean value of 10910R, and s210910R is the sample vari
ance of log lOR.

On the basis that Wis normally distributed, we can write, with zp the standard

normal deviate value of interest,

w = w + Z s (18)p w

where w is the expected value of w. It is known that (Beckmann, 1967, page 82)

w = u + v (19)
P

where u and vp are expected values of u and vp' respectively. On the basis of the

relationships between lognormal and normal distributions and their respective param
eters, we can obtain

2 ]svp
£nLp,50(f) - 0.37722 - 10910c(f) (20)

expression (20) requires the implicit assumption

~p = 0.4343 [

by (12). Theh
2 .were s was glvenvp

of (9), as well. Since

(21 )

where the brackets indicate the expected value; thus

(22)

using (1). Since we now know all the parameters in (18), we can obtain Lp(f) as

u + v + Z s
Lp(f) = 10 p P w (23)

Let us now undertake a sample computation using (23) to determine its useful

ness and meaning. For this purpose we choose Washington, D. C., as the sample
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location, with an 11 GHz, 25 km link. Although not shown here, a millimeter wave

link in the same area, assumed operating at 50 GHz over 2 km gave even more divergent

results than those about to be presented. What is meant by the slightly ominous

"even more divergent" is shown in Table 1. Table 1 results are divided basically

into two parts. The first part represents the results of expression (4), with year

to year variability, Syp' yielding results at p = 0.001, 0.01, and 0.1 percent of a
year. The median (average annual) distribution is given, along with the extreme

99.5 percent upper limit distribution. Results have been calculated using six models

as described in Dutton (1984). The second part represents the results of (5), via

(23), for the same conditions as in the first part of Table 1. The salient feature
of Table 1 is the tremendous differential between the 50 percent and the 99.5 percent

confidence levels at corresponding exceedance percentiles in the second part of the

table. For example, at the 0.001 percent exceedance level, the difference is

1303.8 dB. This is clearly an overwhelming number that devoids the entire predic

tion process under these circumstances of any meaning, whatsoever. We must now

examine the source of these unacceptably large numbers.

Without going into detail, a sample hand calculation revealed that the primary

source of this aberration in values was in the standard error of estimate, S.E., in

(17) associated with the zonal linear regressions (3). The dispersion of the points

in all four of the zones analyzed in Dutton et al. (1983) is so great, apparently,
that it completely masks the more modest year-to-year variability effect (12). Thus,

when the variances are combined as in (15),

(24)

and the combination of variances process is "reductio ad absurdum." Once again,

then, this strongly suggests the need for more and improved data from which to
analyze the behavior of millimeter-wave specific attenuation and/or raindrop distri

butions, before the ability to proceed with any kind of meaningful variability

analysis will exist.

3. DIRECT RAINDROP-SIZE DISTRIBUTION MEASUREMENTS

Early on, raindrop sizes were directly measured with absorbent paper and water

soluble dye by Weisner (1895), or with a flour/powder method by Bentley (1904).

Later Jones and Dean (1953) developed a camera that could photograph and size

raindrops from 0.4 to 8.0 mm in diameter. Probably the most common direct drop-size

measurement device in use today is the impact distrometer introduced by Joss and

9



Table 1
Prediction Comparison Results

for Washington, D.C., on an 11 GHz, 25 km link*

Rain Attenuation
Computations for Unvarying Specific

Attenuation; i.e., Equation (4)

Rain Attenuation
Computations for Variable Specific
Attenuation; i.e., Equation (23)

r~odel Median (50%)
Percentile level

.001 .01 .1

(99.5%)
Percentile level

.001 .01 .1

Median (50%)
Percentile level

.001 .01.1

(99.5%)
Percentile level

.001 .01 .1

106.2 42.6 6.3 186.8 78.2

66.9 30.6 10.2

44. 1 24.0 6.7

17.9 60.4 24.1 5.6 1369.2 535.4 129.5

10.5 20.7 12.0 3.0 466.9 270.5 86.4

17.3 48.5 20.6 3.1 1165.0 496.5 96.3

18.7 40.8 24.5 4.6 908.0 543.5 119.27

......
o

PROMOD (Dutton, 1984)

Barsis et al. (1973)

Battesti et al. (1971 )

Global (Crane, 1980)

Two-Component
(Crane, 1982)

Li n (1977)

27.3 6.1

26.1 15.0

66.5 40.5

6.9

7.1

8.5

95.4 43.0

60.2 35.9

64.4 37.9

50.3 28.9

84.2 56.6

16.4 11.9

13.9 12.1

7.2 3.2 337.7 199.4 87.8

7.1 3.5 302.8 174.2 84.3

*Note that year-to-year variability has been added to some of these models in the manner prescribed in
Dutton (1984).



Waldvogel (1967). This device measures the momenta of falling raindrops, then with

the terminal velocities of raindrops as established by Gunn and Kinzer (1949),

drop masses and diameters can be ascertained. Ugai (1977) used a water-soluble dye
and castor oil technique for drop-size measurement.

The various methods of direct drop-size measurement tend to yield consistent

results for drops of diameter 1 mm or greater. The drop density, N(D), of the mode

diameter (~l mm) is typically a few hundred per cubic meter per millimeter of dia-
. (-3 -1). ( )metrlc range m mm for moderate raln rates. Laws and Parsons 1943, and

t~arsha11 and Palmer (1948), established an empirical relationship for drop density
in rain of the form,

N(D) = No exp[-A(R)D] (25)

Here No is a constant, A is a function of rain rate Rand D is drop diameter. The

expression is represented by a straight line on a logarithmetic versus linear plot,
and its slope is observed to be related to rain rate. The model (25) has been used

for a long time and is satisfactory for the larger drops. Unfortunately, the model

predicts more (typically thousands) very small drops (D«l mm) than are commonly

observed. For example, Ajayi and Olsen (1983) found only a few «100) drops of very

small diameter with an impact disdrometer. However, it should be noted that Ugai

(1977) found hundreds of thousands of very small drops (m- 3mm- l ) in moderate rain

fall. These disparities in directly measured densities of small drops are perplex

ing, and with increasing use of millimeter waves will be of growing practical concern,

4. INDIRECT RAINDROP-SIZE DISTRIBUTION MEASUREMENTS
Raindrop-size distributions can be inferred indirectly from measurements of

microwave or millimeter-wave attenuations and phase variations in propagation

through rain cells. Sophisticated solutions to the mathematical problem of

inversion have been discussed by Furuhama and Ihara (1981), and Bebbington (1983).

The indirect radio wave measurement method is implicitly based on the

Lambert-Bouguer law of basic optics. It is assumed that a plane wave (source

effectively at infinity) propagates in the parallel beam through a homogeneous

slab that is transverse to the direction of propagation. Under these assumptions,

the intensity, I, (watts/m2
) can be expressed as

I = 1
0

exp(-aL)

11

(26)



wher.e 1
0

.is the initial intensity, L is the distance of penetration, and a is an

attenuation ~oefficient. It is generally taken that a represents loss of intensity

by absorption and scattering. The absorption and scattering due to water droplets

are usually treated in the manner o~ Mie (1908). Each spherical raindrop has an

absorbing cross-secti ona1 area ca and a scattering cross-sectional area cs ' which

are functions of both D and frequency, as will be noted later. Rain typically con

tains drops of various sizes.. So, if there are n(D)dD particles per unit volume

having diameters, D, in the range from D to D+ dD then the total number of drops,

N, per unit volume is

ex>

N = fo n(D)dD,

and the total absorption cross section, Ka , is

ex>

Similarly, then

ex>

and the total attenuation or extinctiDn cross section, Ke~ is

K = K + Ke a s

Fi na 11 y then

L
I = 1

0
exp(-foKed9;)

(27)

(28)

(29 )

(30)

(31 )

The extinction cross section may be calculated as described by Mie (1908),
Van de Hulst (1957), or Wickramasinghe (1973), from raindrop size, incident wavelength,

and index of refraction of the raindrops as modeled by Ray (1972). With the calcu

lated extinction cross sections, the measured propagation parameters of attenuation

and phase, and the inversion methods mentioned, it is then possible to infer

raindrop-size distributions.
The indirect methods of drop-size measurements are mathematically elegant and

have produced some interesting, consistent results. A prudent experimentalist,

however, may choose to be a bit circumspect in his measurement approach, assumptions

in the inversion method, and interpretation of results.
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Propagation path geometry should be chosen so that measurements are made when

the rain cell does not approach the receiver too closely. The technique used by

Furuhama and Ihara (1981), for example, utilizes a result obtained by Van de Hulst

(1957). This result that describes the amplitude of an electromagnetic wave received

through a scattering-absorbing slab, is predicated on small-angle forward scattering
that may not be the case when a rain cell is close to the receiver.

Expression (30) has been derived on the assumption that there is no multiple

scattering within the propagation medium. Whether or not this is so is not entirely

clear. Respected workers have published disparate views concerning the significance
of multi p1 e scatteri ng of mill imeter waves and mi crowaves in ra in cell s. Uzunog1 u

and Evans (1978) found insignificant multiple scattering in rain for frequencies to

100 GHz, while Ishimaru and Cheung (1980) found that multiple scattering may be

significant at frequencies above 30 GHz in moderate rain, or at lower frequencies in

heavy rain when drop sizes are more likely to be more comparable in size to a

wavelength. Bayve1 and Jones (1981) found that multiple scattering may be signifi

cant if KeL ,t 0.01. Further, it has been suggested by Capsoni et a1. (1977) that

total attenuation of millimeter waves in a rain cell is nonlinear with distance and
is related to multiple scattering.

T~e indirect raindrop-size measurement methods of Furuhama and Ihara (1981)

and Bebbington (1983) are similar. Each method presupposes Mie (1908) scattering
by spherical raindrops. The assumption of sphericity is certainly an appropriate

first trial approach to use, particularly if it is assumed that nearly 32 percent

(Jones, 1959) of the observed drops are spherical and the prolate and oblate

ellipsoidal drops are about equal in number.
The two indirect methods discussed here differ primarily in that Furuhama and

Ihara (1981) assume a known form (25) of drop-size distribution, while Bebbington

(1983) states that no particular form of drop-size distribution (maximum entropy

method) is assumed. It is interesting to note, as discussed in Section 3.3, that

Bebbington (1983) does have to assume a value of No from ~~arshall and Palmer (1948)

as part of the inversion process. The final results of both methods are similar

distributions that are reminiscent of expression (25) where No ranges from about
10,000 to 20,000 (m-3mm- 1) at maxima. It is disappointing that these indirectly

inferred raindrop-size distributions do not confirm either the low drop densities of

small drops as reported for by Ajayi and Olsen (1983), or the large, high-drop

densities observed by Ugai (1977).
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5. USES OF MULTIPLE FREQUENCIES TO DETERMINE
PATH-AVERAGED DROPSIZE DISTRIBUTIONS

Instantaneous or nearly instantaneous "snapshots" of the atmosphere often give

the best information about it. The use of multiple frequencies along a given propa

gation path is a widely used tool for attempting to discern such properties of the
atmosphere. This is one of the techniques of the process known as "remote sensing."

This approach may also hold some hope for the eventual determination of path-aver

aged raindrop distributions during stormy conditions to help evaluate millimeter-wave

specific attenuations. As discussed in Section 2, these specific attenuation

results are desperately needed at this stage of millimeter-wave model development.

While the use of multiple-frequency techniques may provide a means of obtaining such

specific attenuation information, it is nevertheless uncertain regarding the extent

of the information that will be realized from such techniques.

Goldhirsh and Katz (1974) appear to have been among the earliest to examine a
multiple-frequency technique. They hoped to use radars operating at 1, 3, and 10 cm
to obtain results but stated that

II .one needs combined 2-radar accuracies of 1 dB to get

even marginal drop distribution accuracies. Such accuracies
are considered impractical at present. ... II

In other words, Goldhirsh and Katz (1974) decided that the use of multiple-frequency

techniques via radar for determining raindrop-size distributions was not feasible.
This hardly exhausts the set of multiple-frequency technique (MFT1s), however,

although it provides considerable discouragement for any radar-MFT combination.

Furuhama and Ihara (1981) investigated several potential applications of MFT's in

connection with an experimental microwave/millimeter-wave link of 1.3 km length in

Japan. In order to isolate the path-average drop-size distribution in the presence

of rain, they considered three different MFT1s:

(1) the method of a trial function
(2) the Phillips-Twomey method

(3) the Backus-Gilbert method.
These methods fa 11 under the general headi ng of II i nvers i on techni ques II

(Westwater and Strand, 1972), and, as such, they all suffer from a common deficiency.

As Westwater and Strand (1972) reiterate, solutions using inversion techniques

suffer instability (i.e., are equivocal) unless some preconditions about the behavior

of the solutions are assumed. This situation appears to apply regardless of the

method, and implies that no results that deviate much from some preconceived notion

(or prejudice) are going to occur, whether they actually occur or not. However, in



the particular instance of determining path-averaged raindrop-size distributions, the

path averaging may limit some of the deviation from preconceived notions, so that

such "initial guesses II may not be as restrictive as they might be in some other
applications.

Furuhama and Ihara (1981) intercompare· methods (1) through (3) above and show

results that lead to the conclusion that only method (1) produces any feasible

results. In connection with method (1), the trial-function method, Furuhama and

Ihara (1981) use an exponential trial function

nTDT = N exp(-AD)o (32)

to initially represent the path-average drop-size distribution density function,

nTDT. In (32), which is the classical representation of Marshall and Palmer (1948),
No and A are the unknown parameters of the distribution that are obtained from

method (1), and D is raindrop diameter, assuming spherical drops. Furuhama and

Ihara (1981) then proceed to determine some "representative" Nols and Als using

three frequencies at 11.5,34.5, and 81.8 GHz. For the determination of accurate

drop-size distributions for use at millimeter-wave frequencies, the choice of anal

ysis frequencies could be critical. This is because the electromagnetic effect of

small drop sizes is greatly magnified in the millimeter-wave region vis-a-vis the

microwave region. Hence the choice of two frequencies such as 11.5 GHz and 34.5 GHz,

rather than some higher values that might bias resultant distributions toward larger

drop sizes. The more frequencies used, the better the results, of course, but the

addition of frequencies could prove prohibitively expensive to an operational experi

menta1 sc heme.

As a final MFT to be discussed here, let us examine what is known as a

"max imum entropy method. II The basic concept of the maximum entropy method is con

veyance of as much information about an unknown quantity as possible to a user

through its application. However, certain appropriate relationships must exist in

order to apply the maximum entropy method, and this appears to be almost the case

in the raindrop-size distribution situation. The reason that it is not quite clear
that it is entirely applicable is the fact that a drop-size distribution is not a
strict probability distribution, and the maximum entropy method has been developed

for true probability distributions. In order to make a true probability distribution

out of a drop-size distribution, one must normalize the drop-size distribution by the

total number of drops, N, in a given volume of atmosphere. This, as we shall see,

causes a problem in the straightforward application of the maximum entropy method.
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To our knowledge, the first attempt to apply the maximum entropy method, as developed

by Jaynes (1957), to the raindrop-size distribution problem was made by Bebbington

(1983). Let us now discuss the maximum entropy procedure as applied to the deter

mination of raindrop-size distributions.
The maximum entropy method procedure as developed by Jaynes (1957) is evolved

from Lagrange's method of multipliers, which we shall briefly review. If we have a

function F = F(xl ,x2,...xm) of m variables that are not independent, but are con

strained by Mconditions (M < m),

¢l = ¢l (xl ,x2'· · ,xm)

¢2 = ¢2(xl ,x?'. · ,xm) = 0

¢M = ¢~~ (xl ,x;,. · ,xm)

(33)

then we can construct a function W= W(xl ,x2, ... ,xm) where

(34)

In (34), Al ,A2, ... , AM are the so-called "Lagrangian multipliers" (not to be con
fused with wavelength). The function Wcan then be maximized via setting

oW _ oW _
oX

l
- oX

2
-

- oW - 0- ax.-
m

(35)

and solving the m + Mequations in (33) and (35) for xl ,x2' ... ,xm' and
Al ,A2, ... ,AM" In order to obtain a probability density function p(x i ) at any xi'
i = 1 to m, using the Jaynes (1957) procedure, we must introduce a function,
f(x i ), such that

(36)

where <f(x i )> represents the expected value of the functi on f(x i ). Then

Jaynes (1957) obtains
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for several functions f. 1(x.), j = 2 to M. If we were to apply this result to rain-J - ,
drop distributions, let n(Oi) be the [path-averaged, with the overbar in (32)

dropped] number of drops per cubic meter of diameter, 0i between 0i - 60i /2 and
0i + 60i /2 where 60i represents some diameter region around 0i. Then if the attenu
ation A , in decibels, were to be used at frequency v., j = 1 to M- 1, as the

v J
measured quantity on a path of length L kilometers, we can work with the specific

attenuation, a , wherev.
J

a v.
J

Av._ J
- -L- (dB/km) (38)

to obtain a suitable F and ¢j1s. The F's and ¢.I S can be constructed as follows:
J

m n(Oi ) n(Oi )
F ~ £n- - N Ni =1

m
¢l = N - ~ n(Oi ) = 0 ,

i =1

and

(39)

(40)

¢. = a - 4.343 x
J v. 1J-

m
103~Q(0.,v. 1)n(0.)60.

£...J ' J- "
i =1

o , (41 )

j = 2,~~.

In (41), Q(O.,v. 1) represents the attenuation cross section in sguare meters of a, J- -
spherical raindrop as evaluated from Mie theory, with n(Oi) the number of drops per

cubic meter per millimeter of drop diameter, and the width 6Di in millimeters.

Equations (39) and (40) are essentially required formulations for the maximum

entropy condition, assuming

n (0. )
p(x i ) = p(Di ) = --=-N"-'- (42 )

where N is the (path averaged) total number of drops per cubic meter of air given
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by (27). We can also generate the f j _l (xi) = f j _l (Di ) in (36) as

f. 1(0.) = 4. 343 x 103NQ( 0. , \!. 1) , j = 2, t1 .
J- 1 1 J-

Then, using (37) and (42),

(43)

n(Oi ) N exp [- Al

i~

1:
j=2

Lf·l(O.)]J J- 1
(44)

The results (43) and (44) indicate the problem discussed earlier; namely, one

needs an independent assessment of N in addition to other parameters in order to

evaluate n(Oi). This is not helpful because one would hope to obtain N from the

maximum entropy method itself, via (27), and thereby minimize biasing in the pro
cedure by keeping it self-contained. Now, however, one must resort to methodology
additional to the maximum entropy analysis to obtain N. Bebbington (1983) leaves

one with the impression that N can somehow be gleaned from the maximum entropy pro

cedure by what he calls a "shooting method. II There is not sufficient elucidation
in Bebbington's (1983) paper to ascertain whether this is so, but in view of the

preceding analysis it would seem unlikely. Of course, there are a variety of addi

tional procedures for estimating N along a path, but the potential of the maximum

entropy method seems somehow tarnished as a method for obtaining n(O.) as a result.
1

Now, when applied to the drop-size distribution problem, the maximum entropy method
requires some kind of additional information, or "initial guess" just as did the

inversion techniques.

There is another aspect of the maximum entropy method that is somewhat bother

some, as well. This concern stems from the fact that the elementary application of

maximum entropy implies a flat, or uniform, density function p(x i ). Clearly this

cannot be so for n(Oi)' since there can be no drops with negative diameters, or at

infinity. Nevertheless, one wonders if there is not an implicit tendency of n(Oi)

toward uniformity (i.e., flatness) in the application of the maximum entropy method.

Unless it can be shown that this is not the case, this would seem to be yet another
reason to be circumspect about the interpretation of results derived from the

maximum entropy method, especially with only a few data points, or constraints,
available.

There is a means by which the path-average drop-size distribution can be bounded

using the basic conditions (40) and (41) assuming N is somehow known, although the

accuracy of the approximation remains uncertain. This procedure requires some

separate procedure to estimate the total number of drops, N, per unit volume, not

18



attempted here. Estimation of the exact distribution itself does not seem very

likely because of a host of problems and assumptions associated with the essential
problem of integral inversion discussed earlier.

A restatement of (41) in precise (integral) format yields

a
'J. 1J-

= 4.343 x Q(D,'J. 1 )n(D)dDJ- (45)

where Dmax is the maximum drop diameter occurring in a given volume of air, and D
is any drop diameter. Using (42) and (43), (45) can be rewritten as

Dmax
a'J. 1 = 1 f j _1( D) p(D) dD

J- 0

(46)

However, since the a 's are measured, and the f. 1 IS are theoretical, assuming
'J. 1 J-J-

spherical droplets, etc., more than likely (46) should read

f
Dmax

a = f, l(D)p(D)dD + E ,
'J. J- -J-l 0

(47)

where E is an error resulting from the attempt to predict a using fJ'_l(D). In
'J. 1J-

view of (47), it is unlikely that any very precise determination of p(D) via integral

inversion will result. Therefore, we shall take the approach of trying to determine

reasonable bounds for p(D) or n(D).
If we break the integral in (46) into m intervals of width ~D, then we can

write

m~D

fa
'J, 1J-

~D

= f fj_l(D)p(D)dD +
o

2~D

!f·_l(D)P(D)dD
~D J
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+... + f. 1(D)P(D)dD.
J-

(m-l )~D

(48)



By the mean value theorem for integrals, then, we can write (48) as

a
v. 1J-

60 260

= p(i;l) f fJ·_l(O)dO + p(i;2) 1 f·_l(O)dO + .. , +
o 60 J

m60

p(i;)1 f·l(O)dO
m (m-l)60 J-

(49)

where (i-l)60~i;i~i60 for i=l to m. Thus we have the array

(50)

i60
where a .. = f f. l(O)dO in rows j=2 through Mof (50). Row of (50) is a

J 1 ( i _1)60 J-

restatement of the condition (40), where ali = 60. Furthe~ in
where the reader is cautioned that these x. IS are not the same

1 -

If we now set m = M (i.e., determine M
2 values of aji ) then we

(50) x. = p.(i;.),
1 1 1

X. IS used earlier.
1

have

all a12 . al f,1 Xl
a X = a21 a22 a2r~ x2 = a = avl.

aMl ar12 . . ar.lf~ x~1 a
v:vl_l

which can be solved for !; i.e.,

(51 )

-1X = a a (52)

The solution of (52), however, hardly solves the problem. First of all, we

still have no idea of exactly what i;i should be. Second, the error term in (47)

causes instability in the! matrix, with the result that we can possibly obtain

some negative xi's in a solution--a result that seems to occur as often as not.
However, a negative Xi is a clear violation of the definition (42). Although the
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problems above are not conducive to precise solutions for the x. 's, there are various,
"ad hocisms" we can initiate to obtain bounds on the drop-size distribution.

At a given frequency, f. 1(0) increases rapidly with diameter 0, if that
J-

frequency is between 10 and 100 GHz. Thus the last column of the ~ matrix, ajM , is
often much larger than the preceding column values, especially if Mis not very

large (say M= 4 or 5). Quite often ajM is numerically larger than avo l' requiring
J-

a very small xM to offset it. If the maximum drop di ameter, 0max' is on the order
of 0.6 cm, then this is understandable, since there are few drops of that size ever
observed in a given volume of air. Often xM' when obtained from (52), is one of

the negative xi's mentioned earlier. The fact that xMis negative, either alone or

along with other x,. IS, and usually small, caused us to set the value of 0 muchmax
lower, so that the range of 0 covered by xMis essentially ignored. This was only

done when either x~l or some other x. (or both) were negative. Proceeding to
", *diminish 0max in a systematic way seems to eventually produce all positive xi1s.

When this occurs, the resultant all-positive set of xi's is used to obtain a drop

size distribution. There is no real justification for this approach other than that

just given, and thereby represents one of the arbitrary "ad hocisms" we used.

If we desire to plot the dropsize distribution, Nx i , versus diameter, we have

no way of exactly locating the unknown diameters, ~i' along the abscissa. Hence, we

have no way of exactly locatirig the distribution. However, if we assume that the

distribution is monotonically decreasing with increasing drop diameter, then we can

approximately bound the distribution by plotting two distributions at the end points

of ~i; i.e., at diameters of (i-l )~O and i~D.

To demonstrate the foregoing procedures, let us consider an example drawn from

the data of Furuhama and Ihara (1981). The observed attenuations were made at three

frequencies of 11.5, 34.5, and 81.8 GHz over a 1.3-km link during rain. If we use
the same test case as they did in their paper, we obtain a 's of 3.23, 14.69, and

v. 1J-
25.85 dB/km at 11.5, 34.5, and 81.8 GHz, respectively. Thus M= 4, and if we ini-

tially choose 0 = 0.6 cm and solve (52) for X, we find that x4 is negative, asmax -
is x2• He then decrease 0max until 0max = 0.46 cm; whence, all four xi's are
positive results. Having chosen four equal increments between diameters of 0 and

0.46 cm, ~O = 0.115 cm.

*Although continued diminution of 0max can again result in some negative xi's again.
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Figure 2. Calculated bounds on a drop-size distribution resulting from
the data of Furuhama and Ihara (1981), and their resultant
exponential distribution.
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Figure 2 shows the two bounds thusly obtained on the drop-size distribution.

The four points obtained via (52) are plotted at the lower limits of ~i to consti

tute the lower bound, and at the upper limits of ~i to constitute the upper bound.

Each set of four points has then been joined by solid straight line segments in

Figure 2. For comparison, the exponential drop-size distribution, of the form of

(32), that Furuhama and Ihara (1981) obtained from this data set is shown as a

dashed straight line on the semilogarithmic plot of Figure 2. In Figure 2, we used

the value of N that results from the distribution (32) for these data to obtain the

bound values.

6. CONCLUS ION

Throughout the earlier part of this report, the need for and importance of

raindrop-size distribution information at millimeter-wave frequencies in addition

to that already available was demonstrated. The latter part of the report indicated,
however, that this need was not likely to be entirely fulfilled by the use of

existing electromagnetic remote-sensing techniques. The authors do not really feel

comfortable recommending any of the afore-discussed multiple-frequency techniques

for the determination of representative path-averaged raindrop-size distributions

for the eventual use in establishing a data base for use in rain attenuation predic

tion. One method, the trial function method of Furuhama and Ihara (1981), has the

redeeming features of directness and apparent relative simplicity. The method

explicitly assumes a functional form for the drop-size distribution, whereas the

other MFT's, including the maximum entropy method, appear to have to make the same

assumption, or an analogous one, implicitly at some point, anyhow. Because the

trial function method IIknows" it has to make an initial assumption about the

drop-size distribution, this could make the method more meaningfully applicable than

the other MFT1s. Any particular use of the trial function method may have to be

slightly different from that presented by Furuhama and Ihara (1981) because their

usage was tailored to their particular application. Based on an initial analysis,

we harbor some confusion as to the application of a least-squares procedure to an

exponential drop-size distribution to obtain the parameters A and No in (32) in
exactly the manner as prescribed by Furuhama and Ihara (1981). Therefore, we are

withholding complete approbation of this method until we have contacted the authors

and resolved the confusion. Until that time, however, we do not feel that we can
really recommend any of the methods discussed herein above any of the other methods

as preferable.
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