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AN EXTENDED SINGLE-ERROR-STATE MODEL
FOR BIT ERROR STATISTICS

Lewis E. vogler*

Fri tchman' s single-error-state (SES) model for describing the
error statistics of digi tal communication channels is modified to
allow the prediction of error statistics as a function of the bi t
error rate (BER). From the data samples of a measurement program,
cumulative distributions (CD's) of the statistics are obtained, and
simple analytic relationships are deri ved between error statistics
and the BER at any CD level. A computer program based on the
extended SES model has been wri tten that evaluates the block error
rate, burst error rate, error gap distribution, and counting
distribution for any desired BER. Comparisons are shown of model
predictions and measured data taken over a switched
telecommunications network.

Key words: bit error statistics; error statistics modeling; digital
communication channels

1. INTRODUCTION

1.1 Background

During the development of digi tal communication systems in the last 25

years, there have been a number of error statistics models suggested by various

workers. A survey paper by Kanal and Sastry (1978) provides a comprehensive

overview of the sUbject and descri bes the theory and methods of many of the

proposed models. Most of the indi vidual papers presenting the models have

included data comparisons and show good agreement between model and

measurements.

The question naturally arises: why, after 25 years, hasn't one or more of

these models been adopted by system designers or performance evaluators to

predict system error statistics of interest, such as block error rate or error

burst rate? The answer lies in the fact that a designer needs to know what the

effects on error statistics are when the bit error rate (BER) is varied over a

range of values. For instance, how does the block error rate change as BER

goes from, say, 10-3 to 10-5? Few of the models can answer this question

because their predictions are valid only for a partiCUlar BER--the BER that is

associated wi th the particular experiment or collection of measurements they

*The author is wi th the Insti tute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce,
Boulder, CO 80303.



are describing at the time. The limitations of this "characteristic" or "long­

term" BER has been recognized by Johannes (1984), who discusses the need for a

more practically oriented approach to error statistics modeling.

An exception to the above limitation is provided by the two-state Markov

model (Crow, 1978), of which the binary symmetric channel (BSC) is a special

case. The two-state Markov gi ves analytic relationships between the error

s ta tis tics and BER and, consequently, is sometimes used under appropriate

circumstances to predict performance. Unfortunately, the two-sta te Markov

model does not, in general, characterize real channels very accurately.

1.2 Data Acquisition

In order to obtain bit error statistics over digital communication links,

measurements are often made of bi t error rates (BER' s) and block error rates

(BLER's). An interval of time is chosen, which determines the number of bits

Nt transmi tted during the interval. The BER is then the number of bi ts in

error during the interval divided by Nt. For the BLER the interval is divided

into blocks of N bits and a count is made of the number of blocks in which one

or more bit errors occur. TheBLER is then the ratio of this number to the

total number of blocks in the interval. Ideally, measurements should be made

for a wide range of N values.

As a practical matter when many samples are taken, a particular BER will

be associated with many different values of BLER, depending on the bit error

distribution within the sample interval. A plot of BLER (for a given N) versus

BER often results in a scatter diagram with little apparent relationship

between the two quantities. However, if cumulative distributions (CD's) of BER

and BLER are obtained from a large number of samples, one-to-one relationships

can be determined by reading values at the same CD level. This process , of

course, can also be used to relate BER to other measurable Quanti ties such as

received signal level, signal-to-noise ratio, burst error rates, etc.

The above, procedure was followed in some swi tched network measurements

made by Bell Labs and presented in a paper by Balkovic et ale (1971). Figure 1

is the reproduction of a figure from that paper showing the cumulati ve

distributions (for a 1200 bls data rate) of the burst error rate, the bit error

rate, and block error rates for block sizes N = 100, 500, 1000, 5000, and

10000. The ordinate, labeled "percent of calls", gives the CD levels at which

the various measured quantities were determined.
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1.3 Model Limitations

The samples (or calls) measured during the course of the experiment show a

wide range of BER's, and this 1s typical of measurements over any type of data

ohannel: switched network, HF, troposcatter, etc. Most error statistics

models descri be methods of obtaining the statistics of interest for a gi ven

experiment over a channel but determine only one overall, "11mi ting" BER; the

effects of other values of BER on the statistics of the channel are difficult,

if not impossible, to evaluate. In other words, no practical analytic

relationship between BER and the other statistics is available.

The one exception to this appears to be the two-state Markov model and,

especially, the binary symmetric channel (BSC) model, which is a special case

of the two-state Markov. For instance, in a BSC the relationship between the

block error probability, BLER(N), and p=BER Is simply

BLER(N) = 1 - (1-p)N, (BSe) • (1 )

Given any value of BER, one can easily evaluate BLER(N) for possible use in

error control requirements or performance evaluations. Any fin! te sample

yields only an estimate of a model parameter, such as p in (1), so that an

exact fi t cannot be expected from fini te data even if the model is exactly

correct. However, the parameters, such as p, and their sample estimates are

not distinguished by notation in the following.

Unfortunately, the BSC (and even the two-state Markov) model is not

satisfactory as a descriptor of real channels. On the other hand, more

sophisti cated models, while bet tel" characteri zing actual condi tions during a

given experiment, have the disadvantage of the limiting BER problem mentioned

above. In previous work (Vogler, 1986), it has been suggested that Fritchman's

single-arreor-state (SES) model can provide a reasonable compromise between the

analytic intractability of sophistication and the nonrealism of, two-state

Markov. Comparison of Fri tchman' s model wi th some of the measurements

presented in Balkovlc et al. ( 1971) shows reasonable agreement in such

statistics as the block errol'" rate and the cumulati ve counting distri bution.

However, the model is applicable only at the overall BER--in this case, at the

80% level in Figure 1 where BER = 7.6 x 10-6• What to expect from the

statistics of the channel at any other value of BER cannot be determined from

the model.
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The restriction on Fritchman's model (and, in fact, most other models

except the two-state Markov) arises from the manner in which the model

parameters are found from the data. No process is provided for going from one

BER to another. ThUS, the measured BLER at, say, the 90% level in Figure 1

cannot be estimated unless one were suddenly to assume a BSe for convenience.

But a quick calculation from (1) shows that the channel is not characterized by

complete independence of the bit errors.

In the next section, the SES model will be extended to allow the

prediction of error statistics for any BER. The extension is based on

Fritchman's model and retains the shortcomings inherent in that model, i.e.,'

the inability to account for conditional error gap dependence. However, it has

the advantage of relatively simple analytic form and is easily programmed for a

computer. The validity of the model can be d.etermined only by comparison with

actual measurements and, because of the variety of error statistics it is

capable of evaluating, many experiments do not collect enough data (or the

right kind) to provide the necessary frequency counts for testing. However,

the swi tched network measurement program conducted in 1969-70 by Bell

Labora tor i es incl uded estimates of a number of statistical quanti ties of

interest here. These data, presented in Balkovic et ale (1971), have been used

extensively to compare with the extended model. Besides the measurements shown

in Figure 1, other (fixed-BER) statistics from the paper are shown in a later

section.

2. Formulation of Extended SES Model

The analytic form of BER (=p) in a single-error-state model is (see

Appendix A)

p
NS-1

\ -1[1 \+ L. A.p./(1 - p.)]
i=1 1 1. 1

(2)

where NS denotes the number of Markov states and the Ai' Pi maybe determined

by fitting to measured data. It can be noticea that a sequence of BER values

can be formed by successively eliminating the (end) term,s of ,the, summation;

and, furthermore, the sequence will be monotonically increasing if we stipulate

that p. < P.+1 and A. > O. Thus, we have the sequence
111
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1 ,2, ••• , NS - 1

The variable p can now be made to take on continuous values from 0 to 1 by

'assuming certain conditions on the Ai and Pi' conditions that allow a smooth

variation from one fitted p value to the next. One of the simplest conditions

is to use the following form· for the continuous variable p:

[1 + SP + A p/( 1 - p)J
-1 (4)P

S-1
SP a L'A i Pi / (1 - Pi'),

1=1

where A is defined as

A

A = CAS(p, - PS-1 )/p(PS - PS-1)'

It can then be shown that, for aglven value of p such that PS- 1 ~ P ~ PS'

p = (pS-1 + C1 ) I (1 + C1 ) ,

where

(6)

To extend the range of p :0 zer~ (p < PNS-1)' we define PNS' ANS ' and Cas
unity in the equations for A and p.

Equation (4), along with (5) and (6), provides relationships between a

variable p and the fitting parameters A, p used in the SES model. Furthermore,

the p function has the required values at the interval endpoints; i,e.,

6



at P PS- 1 : A p/(1 - p)

at p PS: A p/(1 - p)

0,

In Fri tchman' s model the Ai' Pi are calculated from measured error gap

distri bution (EGD) data, and the parameters in turn then determine a fixed

val ue of BER. If predictions of error statistics at some other BER are

desired, another set of measured samples must be acquired with the hope that

the measured BER will be somewhere near the desired BER.

In the present approach, a more convenient statistic for fitting is the

block error rate,BLER(N), at a particular N. For instance if CD's of measured

BLER(N) and BER are known as in Figure 1, the pa~ameters A and p can be found

in the following way.

The expression for the block error rate (BLER=B) in the 'SES model can be

given as [see Appendix A, equations (A2) and (A3)J

{1 - B(N)}/p NSB + A p 1(1 - P ),x x x (8)

S-1 N
SB - L A. p./(1 - p.),

· 1 1 1 11=

where S = 1, 2, ••• , NS-1, and A , p denote values to be determined for a given. x x
p (see below). It is to be understood that SB and SP are identically zero when

S 1 •

Since BLER(1) = BER = p, (8) provides two relationships between BLER and

p, i.e., N = 1 and the value of N selected for the fitting. Choosing NS-1

pairs of values, B(N) and p (at a fixed N), A and p in (8) are calculated atx x
,each pair by

where

A
x

exp [(In R)/(N - 1)J,

7
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R {(1 - B)/p - SB}/{(1 - p)/p - spl. ( 11 )

(12 )

The order of evaluation is to start wi th the largest val ued (B, p) pair

(designated in the computer program of Appendix B as 8" p,)~ The A's andp's

are then determined successively from each data pair as shown in (8) - (11).

The above procedure, along wi th (li), allows the numerical evaluation of

Ai' Pi for any desired p. With one additional condition [from A(14)],

EGD (1) = I A. Pi < 1,
, i 1 -,

we can now computerize and predict single-error-state error statistics as

functions of the bit error rate for any practical measurement system.

3. Comparisons of Model and Measurements

An example using the extended SES model is shown in Figure 2 for the

Balkovic et ale (1971) data from Figure 1. The Ait Pi were determined from the

BLER(1000) measurements and result in the solid curve of Figure 2. These same
lJ .

Ai' Pi are then used to generate the curves for BLER (10 ) and BLER (1 00) . It

can be seen that the model predicts fairly good agreement with the N = 100 and

104 data.

Data points at four values of BER were used in the fitting process: BER =
10-6, 10-5, 10-4 and 10-3• Since the distributions were not sufficiently

detailed to give accurate readings at larger BER, two pairs of Ai' Pi (obtained

from measured EGD data) were assumed in this region: (A1, P1) = (O~3087,

0~6521) and (A2 , 'P
2

) = (0.16, 0.990278); thus, altogether, six pairs of A,p

were determined. The computer algorithm that determines the fitting parameters

allows the user to adjust arbi trary v~lues--those that cannot be obtained

directly from the measured distributions--in accordance with the criterion of

(1~). Ideally, the data distributions should show enough detail over the whole

range of BER so that assumed values are unnecessary. The data point at BER =

0.003 was not used in the fitting process because of the uncertainty involved

in reading Figure at this BER value.

The question arises as to whether the choice of an N other than 1000 will

affect the prediction capability. This is partially answered in the next two

figures where the Ai' Pi are determined from BLER (100) data' in Figure 3 and

from BLER(104) data in Figure lie Predictions of the remaining two block error

rates in each case again agree fairly well wi th the measuJ~ed data. Further

8
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study would be needed to determine if there is an optimum block length for the

initial fit. It is likely that smaller block lengths would be better simply

because of practical considerations in taking measurement samples.

Model validation of other statistics also is possible using the Balkovic

data. For instance, an error burst is defined to be a succession of one or

more bi ts beginning and ending wi th an error and separated from neighboring

bursts by K or more error free bits (Balkovic et al., 1971, p. 1361). Burst

rate, PB(K), is the number of bursts in a sample divided by the number of bits

in the sample.

With the observation that the beginning of a burst must follow gaps with

lengths ~ K, then it follows that the total n~mber of bursts is equal to the

total number of gaps with lengths ~ K. Thus,

PB(K) = number of bursts
number of bits

= p EGD(K),

number of bursts
Ne/p

where p = BER = N IN
t

, and N , Nt are the total number of bit errors and totale e .
number of bits, respectively. EGD(K) is the usual error gap distribution (see

Appendi x A).

The SES model burst rate for K = 50 (the value used in the Balkovic data)

is shown in Figure 5 and compared with the measured data from Figure 1. The

Al , Pi are those used in Figure 2--the N = 1000 fit. Again, there is fairly

good agreement between model and measurement, especially at smaller BER. If

the Ai' Pi from Figures 3 or 4 are used, the agreement is similar to that shown

in Figure 5.
-6 -5 -4 -3The block error probability at BER = 10 , 10 ,10 ,and 10 using the

Ai' Pi of Figure 2 is shown in Figure 6 together wi th data points at block

lengths of 100, 500, 1000, 5000, and 104• The agreement shown could have been

expected from a study of the results in Figure 2, but the added data points at

N = 500 and 5000 help to validate the model. Comparisons at other values of

BER have been made and, in all cases tested, the agreement for BLER(500) and

BLER(5000) is at least as good as that indicated in Figure 6. Let it again be

emphasized that, as far as user input to the computer program is concerned, the

comparisons at fixed BER involve only the single set of fitting parameters used

12
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in Figure 2; i.e., the six pairs of Ai' Pi that were determined from the

BLER(1000) fit.

Another statistic for which measured data are available is the error gap

distribution (EGO). The Balkovic EGO data (Figure 17 of that paper using the

curve labeled "Pooled") appears to be characterized by a BER of about 7.6 x

10-6, i.e., the BER at the 80% level of Figure 1. The comparison of data and

model (using the Ai, Pi of Figure 2) is shown in Figure 7. It is seen that

predicted probabilities of gap lengths greater than about 1000 are noticeably

optimistic, and agreement is not as close a,s some of the other statistics.

Whether this is consistently so at other BER cannot be answered because the

data are not available.

Yet another statistic for which comparisons can be made is the cumulative

counting distribution PC(M,N): the probability of M or more errors in a block

of N bits. Measured data are presented in Balkovic et ale (1971, Figure 14,

p. 1371) for BER = 7.6 x 10-6, and some comparisons are shown in Figure 8. The

model is consistently high in the middle portions of the curves for

N = 200, 500, and 1000. Perhaps this is caused by some conditional error-free­

gap dependency at larger gap lengths that cannot be accounted for in a single

error state model. The data points at M = 10 are not predicted very well by

the model nor are the points at M = 1. In the latter case one would expect

better agreement with the measurements because PC(1, N) = BLER(N); but the

Balkovic1200 bls data shows· two different values in this case. Whether

different CO levels have been used for the two quantities cannot be determined

from the text.

Finally, in Figure 9, comparisons are made of the cumulative burst length

distribution PBC(K,L) for a gap characteristic of K = 50 and BER = 7.6 x 10-6•
, .

The measured data are taken from the 1200 bls curve in Figure 12, p. 1369 of

the Balkovic paper, and the solid curve shows the prediction of the extended

SES model. It is apparent that a first order Markov process does not

accurately portray the distribution, although the values are within a factor of

two for L < 40. It should also be recognized that a valid frequency count of

long burst lengths reqUires a very large number of samples, and the data values

near 100 are less reliable. To indicate the superiority of an SES model over

the two-state Markov, the latter prediction 1s shown as the dashed curve in

Figure 9. A much improved prediction is possible if we are given the added

15
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parameters are the same as in Figure 2, and 'measured data is
from Balkovic et ale (1971, p. 1371).
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distribution PBC(50,L) for BER = 7.6 x 10-6• The solid
curve is the extended SES model (same parameters as in
Figure 2) and measured data is from Ba1kovic et al.
(1971, p. 1369).
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information of the two measured values, PBC(K,1) and PBC(K,2). Denoting these
, ..

by Pm1 and Pm2 , we form the factors ao=(1-Pm1)/(l-PS1) and a,=(Pm,-Pm2 )/(Ps ,-

P 2)' where P 1 and P 2 denote the corresponding SES values. Using theses s s .
factors to mUltiply appropriate terms of the equation for PBC (see (A 17) ,

Section A.4) results in the curve labeled "Modified SES" in Figure 9. This
. ,

curve, of course, cannot be derived strictly from first order Markov theory,

but is simply a semi-empirical approximation to the burst length distribution.

4. CONCLUSION

4.1 Summary

The single-error-state model presented here evaluates error statistics as

functions of the bi t error rate. Previous models develop procedures for

calculating the statistics, but the results are applicable only to a

characteristic BER that is determined from some particular sample collection.

An exception, of course, is the two-state Markov model, which provides analytic

relationships between the error statistics and BER. This model (and

particularly the BSC) is often used for design predictions simply because it is

one of the few models available that allows the engineer to estimate the

statistical effects of varying the BER. However, the two-state Markov model

is, in general, not representative of real channels.

In this paper an extended form of the SES model has been developed and

compared wi th some measured swi tched network error statistics. Reasonable

agreement is found for the block error rate and the burst error rate as a

function of BER. Somewhat poorer agreement is found in the comparisons wi th

the error gap distribution and the cumulati ve counting distri bution at a

particular BER.

The model has been implemented in a computer program that calculates the

block error rate, burst error rate, error gap distri bution, counting

distribution, and cumulative counting distribution. Also included in the

program is the procedure for evaluating the f1 tting parameters, whi ch are

obtained simply by entering pairs of BLER versus BER measured data.

Because data sampling on a real channel is essentially a statistical

process, the enti ty being sampled will have a range of values, wi th Ii ttle

apparent relationship to any other statistic during anyone particular sample.

The most reasonable way to or'ganize the data 1s to form cumulative

distributions of the statistics of interest (BER, BLER, etc.) from the
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collection of sample measurements; this then will provide one-to-one

correspondences among the statistics at any particular CD level. The

organization of the data in the above manner is implicit in the extended SES

model presented here.

4.2 Future Studies

Al though the comparisons of model and awi tched network measured data in

the preceding sections serve as an ini tial evaluation of the model, it is

highly desirable to compare data from other types of communication channels.

Measurement over HF, VHF, troposcatter, and satelli te channels should be

undertaken and efforts made to acquire a comprehensive set of statistical data.

The quantities of interest should include not only those concerned with link

performance objectives, but also those useful in the evaluation of efficient

. coding schemes.

Future studies might also wish to investigate whether characteristic

values of the fi tting parameters can be used to descri be different types of

communication channels. The establishment of a cri tarion such as this would

grea tl y ai d system desi gners in developing their required performance

objectives. In network design, the overall evaluation of various combinations

of indi vidual link dependence could be investigated in considerable detail

since link statistics are easily calculated once a set of fitting parameters

are given.

A related problem for future consideration 1s to determine if there is a

distribution or family of distributions that can describe BER. If, for

different channel types under prescribed conditions, "characteristic" BER

distributions can be found, then a complete and fully analytic description of

stati st i cal information is available. Furthermore, the statistics can be

related directly to transmission parameters such as received signal levels and

signal-to-noise ratios. Notice that this is exactly the procedure followed in

most texts on di gi tal communi cat ion; however, the di scussions are, by

necessity, limited to very simple channels such as the BSC. The development of

analytic relationships for more realistic channels will broaden the application

of theory to actual systems.
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APPENDIX A: EQUATIONS OF THE SES MODEL

A.1 The Block Error Rate, BLER(N)

The single-error-state (SES) model developed by Fri tchman (1967) can be

described as a multistate Markov chain, one state of which is denoted the error

state. The state transition probability matrix and state diagram are shown in

Figure A-1, which indicates some of the notation used in later equations and

also shows the relationships between the transitions and the parameters A,.p

introduced by Fritchman. The number of states is denoted by the symbol NS, and

this symbol when used as a subscript also identifies parameters associated with

the error state. Note that transitions between nonerror states (1, 2, ••• , NS­

1) are not allowed.

Since the model is based on a Markov process, one may calculate the state

eqUilibrium probabilities Wi (Cox and Miller, 1965; pp. 101ff), which in terms

of A and po, (A > 0, 0 < p < 1) become

NS-1
1 + L .A_ P- / ( 1 - P1- ), ( 1T

Ns
BER P),

- 1 1 11=

W. = wNS A-P• / (1 - p.), i = 1, ••• , NS-1 •
1 11. 1 .

(A1a)

(A1b)

Using these results along with the transition probabilities of Figure A-1, one

may deri ve a simple expression for the block error rate BLER(N), the

probabili ty of one or more errors in a block of N bi ts. If we denote the

probability of no errors in a block of N bits by P(O,N)t then

NS-1 NS-1
P(O,N) .l= L 1I'.p.N-1 P L 'A_p~/(1 - Pi)' N > 1 ,

i=1 1 1 · 1 1 11=

and

BLER(N) 1 - P(O,N).

(A2)

Equation (A2) can also be obtained from the formula for P(O,N) given by

Kanal and Sastry (1978). The usual notational convention is assumed wherein a

"0" denotes a correct bi t; a "1" denotes an error, and a posi ti ve integer

exponent indicates the number of consecutive identical bits. Thus, a string of
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0 P22 ••• P2 •NS I 0 P2 ••• (1-P2)
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(1- P
1
)

I'V
~

p, P2 . -. .
A2 P2

A, P1

PNS

Figure A-I. The transi tion probabili ty matrix P and state
diagram for Fritchman's single-error-state
model.



k correct bits between two incorrect bits would be written as 10k,. From Kanal

and Sastry (1978),

P(O,N)
N-1

- P [N - LO (N-j)P(Oj- 11/1)], N > 1,
j=l

(A4)

where P(Oj-~1/1) is the conditional probability of the bit ~equenc~ OJ-~l given

an error. As stated above, (A4) may be algebraically reduced to (A2) in the

case of the SES model.

A.2 Counting Distributions, P(M1N) and PC(M,N)

The counting distribution P(M,N) is defined as the probability of exactly

M errors in a block of N bits. Elliott (1965) has shown that, in terms of the

error statistic probabilities, P(M,N) is given by

N-M
P(M,N) P L p(Ok/1 )R(M,N-k), ~ M~ N,

k=O

where

. i-M
R(M,i) L p(Ok1/1 )R(M-1, i-k-1), 2 < M < i,

k=O

(A5)

(A6a)

(A6b)

Simpler expressions, comparable to (A2), apparently are not available

generally for P(M ,N), a1 though three special cases are deri vable for the SES

model:

P(N,N) N-l
N > 1;P PNS ,

N-2 (N-2)
NS-1

P(N-1,N) p. PNS [2( 1 - P ) + LA i P.(1-P.)], N 2. 2;NS PNS 1=1 1. 1

(A7)

(A8)
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P ( 1 ,N)
NS-'~ N-1

p[ I AiP. {(N-2)A. + 2}
i=1 1 1

(A9)

j, k 1, ••• , NS - 1; N ~ 2.

The algorithm that calculates P(M,N) in the computer program is based only on

(A5) and, because of the recurrence relations in (A6), requires more computer

time as N becomes large.

The cumulative counting distribution PC(M,N) is defined as the probability

of M or more errors ina block of N bits and is computed from P(M,N) by

N
PC(M,N) =: 2 P(k,N), 0 < M < N, N > 1.

k=M
(A10)

From the preceding definitions, it is apparent that the following relationships

hold:

PC(O,N)

PC (1 , N)

1 ,

1 - P(O,N) = BLER(N),

(A11a)

(A11b)

PC (1 , 1) P(1,1) BLER(1) BER. (A11c)

A.3 The Error Gap Distribution, EGD(M)

The bi t sequence 1O~-11 delineates what is defined as an error gap (or

error-free gap) that is characterized by a gap length, GL = 1

(~ = 1, 2, 3, ... ). The error gap distribution (EGD) may be written as
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EGD(R,-1) Pr{GL ~ ~}

co

,I p(Ok-~ 111 )

k=R,

From Figure A-1 and the relationships of (A12), it follows that, 'in the SES

model,

NS-1
MEGD(M) I Ai Pi ' M > 1 ,

i=1

NS-1
EGD(1) L A. p. - PNS~

i=1
'1 1

(A13)

(A14)

Equation (A14) is important in that it serves as a condition that must be

satisfied when determining the fitting parameters Ait Pi [see (12), Section 2J.

Furthermore, a measured value of PNS = P(1/~) at a particular BER can be useful

for estimating A" P1 in those situations where the CD's of BLER(N) and BER

show insufficient detail at larger BER.

A.4 Error Burst Statistics

An error burst of gap and length characteristics K and L, respectively, is

defined to be the pattern, 181, where a is of length (L-1) bits and may contain

any succe~sion of a's ~r 11 s except Oi(l ~ K); the bur~t pattern Is separated

from neighboring bursts by K or more error-free bits. Using this defin~tion,

we can express the conditional probability of the burst pattern, p·(al/1)

BC(K,L), as

L-1 L-'1-i,
L. p ( 0 111) BC (K, i, ), L < K

1=0
BC(K,L) (A15)

L-1
L' p(OL-~-11/1)BC(k,i,), L > K

1=L-K
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where Be(K,O) = 1 and K > 1. The function BC(L,L) is identical to the

autocorrelation function defined by Elliott (1965).

The burst error rate PB(K,L) is defined as the probability of occurrence

of a burst and, since a burst is always preceded and followed by the patterns

10 i and Oi 1(i ~ K), it follows that

PB(K,L)

p[EGD(K)]2SC (K,L), (K,L ~ 0) (A16)

where EGD(O) and BC(O,O) are defined as unity.

The cumulative distribution over L of error bursts' for a constant K,

PBC(K,L), may be obtained from

co

PBC(K,L) {1/pEGD(K)} I PB(K,L)
~=L

co

EGD(K) I BC(K,~),

~=L

(A 17)

where PBC(K,O) = 1. Note that the summation of (A16) over °~ L ~ co is simply
. .

pEGD(K) = PB(K), which 1s the same expression given by (13) in Section 3. This

follows by expanding the summation and rearranging the terms.

A.5 The Two-State Markov and BSC Models

It is often interesting to compare the two-sta te Markov model wi th

measurements, and, for convenience, this section lists formulas of some of the

more common statistics. We assume the independent variables to be p = BER and

P2 = P(1/1); a BSC is the special case, P2 = p. Then

and

1 - p,

(1 - 2P+ PP 2)/(1 - p), (2-state)

(BSC)

28
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- (1 N-1 (2-state)

BLER(N) = {
- P)P1 .,

N
(A 19)

- (1 - p) (BSC)

{ (1
M-1 (2-state)- P2)p1

EGD(M) (A20)
M (SSC)(1 - p)

p( 1 K-1 (2-state)- P2)p, .',

PB(K) {P(1
(A21 )

K (SSC)- p).

The counting distribution for the two-state Markov model is given by (A5)

and (A6), and PB(K,L) is given by (A16) and (A15) where

(A22)

(SSC) (A24)

where (N) denotes the binomial coefficient.
M
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APPENDIX B: THE COMPUTER PROGRAM

This appendix contains a Fortran listing of the computer program PRBTAB

that calculates and tabulates bit error statistics based on the extended SES

model. The fitting parameters A., p. can be either read in directly or
1 1

evaluated by reading in pairs of BLER(N) versus BER measured data. The program

is int~ractive, with data and responses being entered from a terminal keyboard.

After choosing a desired statistic (BLER, EGO, etc.), the user enters a data

point (usually either a block size N or BER) and the value of the statistic is

displayed. This value, together with the data point value, is also stored in a

file that can be saved and used later for plotting purposes.

The program is written in FORTRAN 77 and contains 446 lines of code plus

informa t i ve comments. Statistics that can be calculated include BLER (N) ,

PB(K), PB(K,L) and PBC(K,L), EGD(M), P(M,N), and PC(M,N). A listing is given

in the following pages.
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P'OGRAM PRBTAB
cC CALCULATES AND TA~ULATESfIN FILE PP8AN$) THE STATISTICS.
C l.8LERCN) OR PBCK) VS 8EI_ FDRFIJED N OR K.
C 2.FOR FIXED BER.
C EGOC") VS ~J 'CM_HI VS "_ FOR FIXED M'
e PC(~.N) VS M. FOR FIXED N. BLERI") VS N.
e PBCK_L) YS L_ FOR FIXED ~.
C T~e AII),RHOrI) "AY BE READ IN EITHER AS elVENS
c OR DETERMI"EO FaDN !LER VS 8ER DATA.
e -a01ES.e 1.T~E NOTATION_ P-BER AND aIM)-BLERCN). IS OFTEN USED.
C I.FOR 2-STATE ~A.KOV OR 85C_ ENTER. NS-Z.A(1)_RHOll'·O.
C i.BLOCK LENGT~ ~ IS USUALLY I POSITIVE INTf&ER.
C 8UT FOR BCN) VS P, MAY IE NON-INTEGER ANDIOR NEGATIVE.
C I.REFERENCES' Cl)CD"P'.ISO~S OF THE TWO-STATE •••
C CZIEXTENDED SES "ODEL •••
e

CO~"ON/'AR'~/AHr19J,RDH(19),Tr191,NSH.CALCP
Dl"ENSIDN 'COI201.ROIO'20),80ATI2001I,'OATI2001).8C19),'1191
OPENC1,FILE-tPRBANS')
EPSA-l.E-l0
EPSR·2.E6
CDNS-O.
SPNS·O.
ACOJ-l.
ROIOI-O.
'.INTt,'IF B VS P DATA ARE &IVEN, ENT£R 1. OTHERWISE O'
READt_ITYPE
IFCITYPE.EQ.l1 CD TO 100
"INTt,'ENTER NU"8ER OF STATES,NS'
READ._NS
ROCNS J-I.
AINS)-I.
NS1-NS-l
"INT•• tENTER AIII.RHOCI) FOR l-l,N$-1 CRHO INCREASING)'
REAO.,CACJI_J-l,NS1J.CROIK).K-1_NSll
DO 995 I-l,NS-l
'RO-ACJI·ROCII
CDNS-GDNS+ARO
SPNS-SPNS+ARD/C1.-ROC!I)

995 CDNTINUE
"INTt,'AT PINS-1,. EGDC1,·'.GDNS
'IINTt.' •1000 'RINTt_tENTER 1 FOR STATS VS .PI O~ 0 FOR STATS AT FIXED P'
RfAD.,ITYP
IFfITYP.NE.IJ GO TO 1010
IMIX-O
'RINTt_tENTER 1 FOR BLfRCNI VS PI DR 0 FOR P8CKI VS p'
R!AD.,ITVB
IFCITYB.EO.O) THEN

'RINT.,tENTER BURST ~ARA"ETER,K'
IEAO._KK
CO TO 1010

END IF
P'INT.,'ENTER BLOCK. LENCTH,N'
RfAD.,BN

1010 'RIMT.,'E"TER PJ OR -1 TO TABULATE'
REAO.,PX
JFCINTCPX1.EO.-l1 60 to 2000

c
C DETfRMINE Ael),RHOeI) FOR THE GIVEN P
C
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C-CT
'F-CT
ClC-l.
DO 10 I-1,NS
II-I
IFCII.EQ.M$J GO TD 20
CT_CT-ACII).ROCIIJ/Cl.-ROCII)I
IFCCT,LT.O.J &0 TO 15
'C-CT

10 CDNTI"UE
15 IFIII,Ea.1) GO TO 20

'S-l./CPF-CT+l.)
, L-I • / ( PF-c +1 • J
CLC-ALOSCPX/PLJ/ALOGCPS/PLI
CLC-AMAXICCLC,fPSA)

20 C_C.CROCIIJ-RO(II-IJJ/fCLC.'fll»
RDHAT·CRO(II-l)~C)/Cl.+CJ
AMAT_CLC.'CIII.CROHAT-ROCII-1»/CRDHATtCROCIIJ-RDCII-1IJ)
AHAT-A"AXICAHAT,EPSA)
NSH-II+1
RDHCNSH-1J-ROHAT
ROHF-1./C1.-ROHATJ
AHCNSH-l)-AHAT
IFCCNSH-NS).GT.OI THEN

CDT-1.-CDNS
IPfCCDT.LE.O.J.OR.CNS.EQ.Z) T~E"

NSH-NS
AHCNSH-IJ-ACNSH-l)
SPT_SPNS-ArNSH-1J.ROCNSH-l)/Cl.-RDCNSH-1JI

fLSE
A~(NSH-IJ-A"INICAHAT,GDTJ

SPT·SPNS
END IF
RAT-CPF-SPT,/AMCNSH-l.
ROHCNSH-l)-RAT/(l.+RATI
ROHF-l.tRAT

END IF
DO 30 K-l,,.SH-Z
RDHCKJ-ROCKI
AHeKI-AIK)

10' CONTINUE
TCNS~-1)·AHf~SH-l).RDHCNSH-1J
SU~P.T(NSH-l).ROHF

DO I' l-l,NSH-2
TCIJ-AH(II.RO~CI)
SU"P-SUMP+TCI)/Cl.-ROHCI»

I' CO"TINUE
CALCP-l./CSUM'+l.)
IFCITYP.NE.l) THEN

IFCAHCHS~-lJ,LE.E'SAJ NSH-NSH-l
DO 40 I-l,NSH-l
PRINTt"A~c',r,I)-"AHCIJ,'RHOHI',r,I)·',ROHCI'

40 CONTINUE
CALL PRS
GO TO 1000

END IF

JFCITY8,EO.OJ THEN
SU"G-O,
DO Itl J-l,NSH-l
F-O.
IFCREAlCKKI.ALOGI0fRDHCJ».ST.-100.J F-Ra~(J)··KK

c
C COMPUTE PRCK) FOR THE GIVEN'
C
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SUMG·SU"G.A~CJ)·F

'1 CO"TINUE
SU~G-CALC'.SUMG
'IINT.,'CAlC P.-,CAlCP,' P81',KK,').',SUM'
'II ..T.,' ,
1"'X-I"'X+1
I)DATCIM,.)-SU"G
PDATCIMAX)-CALCP
CO TO 1010

fttO IF
c
C CO"PUTE IlERINl FOR THE ~IVEN P
C

JFI.D~F.GT.EPSR) THEN
X_-CBN/ROHF).Cl.+.5/RDHFI
CO TO 42

END IF
X-8N••LDGIRDHCNSH-l"

42 IFIX.lT.-614.' X--674.
SU"-&HINSH-l)·EXPCX).ROHF
DO 50 l-t,NSH-!
X-8Nt&LOGCROHfl»
IFCX.LT.-674.) X--674.
SUM-SU"+AHCI)*EXPCX)/Cl.-ROHCI»

50 CONTINUE
'NS-CILCP.SUM
PRINT.,'CALC P-',CALCP,- BLERC',IN,')-I,l.-ANS
PAINT*,' ,
1"'X-IM'X+1
BDATCIMAX)-l.-ANS
PDATCIMAX)-CALCP
10 TO 1010

,C
C DETEq~INE ACI),RHOC!) FROM 8CN) VS , DATA
C
100 'RINT*,'ENTER NO. DF STATES.MS, AND BLOCK LENGTH,N (N.GT.I)'

READ.,NS, N
RDINS)-I.
"NS)-l.
58-0.
5'-0."INT.,'ENTER CNS-l) VALUES DF ILER AND P 'CDECREASIN8),
READ*,(BIJ),J-l,NS-l),CPCKJ,K-l,NS-l)

102 DO 110 l-l,NS-1
IFI8CI).EQ.l.) THEN

'RINTt,'ENTER AC',J,II,ROC',I,')'
REAO.,AT,RDT
AII)-AT
ROlli-ROT
CO TO 10'

END IF
'F-Il.-PCII./PCI)
IF-Il.-BCIII/PCI)
RJ-(BF-$RJ/CPF-SPJ
IOII)·eXPCALOGCRXI/CN-l»

, IFC'OfIJ.,e.l.) THE~
'RINT*"R~OC"I,,)•• ,ROCI',' IS NOT VALID.'
'RI"T.,'ENTER S"ALLER VALUE OF AI',I-l,'"
$8-0.
SP·O.
CONS-O.
Ct' TO 102

E"O IF
ACIJ-CPF-SPJ.Cl.-ROCIII'RDII)
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105 X-~.'LD'(RO(II)
IFCI.LT.-67~.J r·-67~.
Se-S8+ACIJ.EIPCXI/Cl.-ROCI»
ARO-ACIJ ••OCI)
CDNS-CiDNS.ARD
SP-SP.'.O/Cl.-ROCIJ)
SP"S-SP

110 CONTINUE
DC 120 I-l,NS-l
'.I"T.,'A(-,I,"-',AII),I _HOC-,I,·)·' ••ael)

120 CDNTINUE
'II"T.,-AT PCNS-I', I&Del,-I,GDNS
,. INT., - ,
'IINTt,'ENTER 1 TO CALCULATE THE STATISTICS.·
'.INT.,'OR 0 TO REDO THE ACII,RHOII), D' -99 TO STOP'
REAOt,,1 DEC
I'CIDEC.EO.~9') 80 TO 9'
IFCIDEC.EO.OJ THEN

SI-O.
5'·0.
lONS-O.
10 TO 102

END IF
10 TO 1000

c
C TABULATE I~ FILE PRBANS
C
1000 IFCITYI.EQ.OI THEN

WRITEC1,'C1Hl,8HHEAD,'BC,t5,14HI VS BER,CALC.)'JKK
10 TD 2010

END IF
VRITEC1.'C1Hl,10HHEAD,8LERC.F10.4,14H) VS BER,CALC.)'IIN

1010 VRITEC1,'C1X,14HND. OF PDINTS·,J4,J'J!MAX
V. rTE 11, • C1 X» • J
"MIN-1
"MAX."INOCJMIN+7,J"AXJ

1010 VRITEll,·CIX,'E'.4)'JC8DATCJJ,J-J~IN,J"AXJ
VRITEC1,'C1X,IE9.41'JCPOATCJI,J-J"IN,J"AX)
VII rTE C1, • C1XI • »
....IN·""'X.1
"MAX.MINOIJMIN+7,1"'X)·
IFCJ"IN.GT.IM'X) THEN

'.INT.,'ENTER 1 TO CONTINUE. OR -99 TO STOP'
READ.,ICONT '
IFCleDMT.ea.-991 GO TO 9.
GO TO 1000

END IF
CD TO 2030

•• STOP
END
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SU8"OUTINE PRB
c
C CALCULATES PIM,N), THE PROBABILITY OF " ERRORS
C IN A BLOCK OF N BITS (BY ELLIOTT'S FOR~~L'IJ
e OR BlE"CN)-I-PCO,N), THE BLOCK ERROR RATE
C (THE PROBAeILITY OF 1 OR MORE ERRORS IN A BLOCK
C Of ~ PIT~-- BY THE IMPROVED FORMULA, INPUTa NI,
e DR EGO("', THE f~RO_ GAP OISTRIBUTIO~ CTHE P~08-
e ABILITY OF " CORRECT BITS FOLLOWING AN ER~ORIJ
C OP PCCM,N), THE PRORAB1LITY OF " OR MORE fRRORS
C IN , BLOCK OF N BITS--'(~CCl,N)-BLER(NII'
C OR PBCK,LI, THE BURST ERROR RATE WITH
e GAP AND LE~GTH CHARACTERISTICS, K AND L,
C DR PBCCK,LI, THE PROBA8ILITY OF ERROR BURSTS
C WITH FI'ED K AND LE~GTHS GE LJ patcK,O)-I.
C INPUT. ~S,A(K),RHO(K), 2 LENS LE 20J
e . M', N, 0 LE M LE ~, lL f N. LE 131000J
e 1 LE ~ LE 1000, 0 LE 1 LE 1000. .
·e CFOR BLERCN), N NAY EX~EED 131000.)
C

CONMON/PARA"'AHCIQ).ROHC19',TC19J,NSH,C'LCP
DIMENSION PD(!OOOOI,PPC300001,RC!OOOOI
DIMENSIO~ TPC19J,VOATC2001J,XDAT(2001)
NS-NSH
NS1-NS-l
PHS-I.
51-0.
DO , I-l,~Sl

51-S1+TIII
PNS-PHS-TCII

5 CONTINUE
BER-CALCP
PRINT."BER-"B~R,. RHONS-',PNS
PR INT.,· •

1 PRINT*,'ENTER ITYP FOR DESIRED STATISTIC, WHERE ITYP IS"
PRI~T.,'l ~DR EGOCM), OR 2 FOR PCM,N),'
P_INT.,fOR 3 FOR PCCM,NI, OR 4 FOR BlERCNIJ'
PRINT.,'OR , FOR PBCK,L), DR 6 FOR PBCCK,ll'
-READ.,ITYP
.1"')(-0

IFfITYP-2) 200,10,300
10 PRINT','ENTER -,N FOP. P(M,NIJ DR 0,0 TO TABUlATf'

READ., .. ,N
IFCN.EO.OI GO TO 190

C
C CO"PUTE ,~",N)
C
11 DO 12 I-t,NS1

T(I)-AH(I)·Rn~CIJ

12 C~NTINUE

"fIC-N+1-f!'
PDCl)-I.
PD(2)-51
'PCll-PHS
PPC21-0.
0013 I-l,NSl
TP(IJ-TCIJtCl.-ROHfII)
PP(2)-PPCZJ+TPCIJ

1·3 CONTINUE
IFCM.EO.OJ GO TO 405
RIN")-1.
IFIN-.EO.IJ GO TO 15
"(NP4-1 J -S 1

15 IF(N~.LT.3J GO TQ 30

35



MI-N"-l
fI12-NflI1-2
DO 20 r-l,H2
PDf 1+2 J-0.
PP(I+2)-0.
DO 17 J-1,NSl
TCJ)-TCJ)·ROHeJ)
TPfJ)-TPCJ).POHfJI
POfI+2)-POfI+2)+TfJJ
PPCI+2)-PPCI+2)+TPfJ)

17 CONTINUE
ffC~1-I)-PDfI+2)

20 CONTINUE
30 IF(M.EQ.l) GO TO 6'

1TOT-l
40 r"'IN-1
!SO IP-O

RT-O.
DO 60 'I -I"IN, NM
IP·IP+1
RT-RT+PPCIPI·RC!)

60 CONTI"UE
RCIMI .. ,-RT
I.-rN-IMIN+1
IFCIHtN.LE.N") GO TO 50
ITOT-ITOT+1
IFCITOT.LT.M) SO TO 406' IP-O
RT-O
DO '0 I-I,N"
IP-IP+l
RT-RT+POCIPt*RCI)

10 CONTINUE
ANs-eER*RT

71 IFfITvP.EO.3' GO TO 330
IFCITYP.EO.2J GO TO 72
PRINT*,'BLER(',N,"-',BLER
If4AX-IMAX+l
YOATCIMAX)-BLER
XDATCI"'X)-N
CO TO 400

72 PRINTt,·P(·,M,',·,N,').',ANS
IMAX-I"'X+l
VDATe IMAX' -ANS '
XDATCIM'X)-"
CO TO 10

l~O VAtTEC1,~(lHl,9~HEAD,8ER-,Eq.4"~,P(~,,I5,7H),CALC.)·)CALCP,N

GO TO 1000
c
C CO~PUTE EGDCM)
C
200 PRINT.,'ENTER M FOR EGDf"). OR -1 TO TABULATE'

READ.,"
rF(~.EO.-l) GO Tn 290

205 SU..G-O.
DO 210 J-l,NSl
FaO.
IFfREALCM)tALOG10CROHCJ».GT.-l00.J F-RO~fJJ··M

SUMG-SUMG+AHCJ)·F
210 CONTI"UE

IFCITYP.fO.'J JO TO '10
IFCITYP.fO.6) GO TO 610
PAI~T."E,n(,,",·J·',SU~G

rMAX-IMAX+1
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YDATCIMAX)·SU"G
XOATCI"AX).M
GO TO 200

290 WPI TEf 1 , t (,1 H1 , 9~HE AD, BE R- , E9• It,13H, EGDC(Ie I, C'LC• I • )CALCP
(;O'TO 1000

c
C COMPUTE 'C(~~N'
C
300 IFCITYP.GT.3) GO TO 400

PPINT.,fENTER C~AXI"U")M,~ FOR PCIM,NI'
READ.,'""' X, N
SUMC-l. '
"·-1320 IFCM.EQ.MM'X-l) GO TO 390
M.M+l
IFCM.EO.O) GO TO 405
GO TO 11

310 SUKC·SUMC-ANS
PRIHT."PCI',"+l,·",N,·J-"SU~C
IMAX.IMAX+l
YDATfIMAX)·SUMC
XDATC IMAX') - M+1
GO TO 320

390 WR ITE 11,' 'r lH1, 9HHE AD, BER-,E9. 4,6H, PC CH" 15,1H), CALC. ) '» CALCP,N
GO TO 1000

c
C COMPUTE SLERCH) DR PCO,N)
C
400 IFCITYP.GT.4J GO TO 500

PRJNY.,'ENTER N FOR eLER(~JJ OR -1 TO TABULATE'
READ.,N
IFCN.EO.-1J GO TO 490

405 SUM·O.
DO 410 1.1, N51
X....'LDG(RDHCI)
IFCX.LT.-674.J X·-674.
SU" • SU" +AH( I J• EXPCX) I Cl' •-It0HCI I )

410 CONTINUE
ANS-CALCPtSU"
BLER·l.-ANS
GO TO 71

490 V'ITE(1"(lHl,9~HEAD,8ER.,E9.4,14H,BLER(N),CALC.J·)CALCP

GO TO 1000
C
C CONPUTE PB(K,LJ
C
500 IFIITyp.GT." GO TO 600

P'INT.,'ENTER K,L FOR PBCK,LII OR 0,0 TO TABULATE'
REAO.,KK,LL
IFCK~.EQ.O) GD TO 590
... ·U( ,
GO TO 205

510 PB·C'Lep.~U"G.SU"G
SCltL-I.
,IFCLL.HE.O) CALL CORfLCKK,LL,BCKLJ
P~.PB.8CKL ,
'RINT."P8(,,~k"",LL,')-"P~
IMAX·I,.AX+l
YDA TrI" Ar J.'~
XDAT(t~A)f)·Ll

GI'1 TO 500''0 WPITEfl,.(lHl,9~HEAD,BER-,E9.4,4M,P8(,I',1~"I',7H),CALC.)')
)fCALC,,~~,LL '

GCI Tn 1000

37



C
C COMPUTE P8C(~,L), L ,e 1
C
600 '.INT.,'ENTER K,("AXI"U~)L ~OR PBeCK,ll'

READ*,KK,LIt,X
"'-I<K
(:[1 TO 205

610 SUMS-O.
LL--!

620 IFCLL.EQ.LMAX-IJ GO TO 690
LL-LL+l
BCKL-l.
IFILL.HE.O) CALL COREL(~K,LL,8CKL)

SU"B-SU"B+BCKL
P8C-l.-SU.. '.SU"B
PRINT.,'P8CC·,KK,',',LL+1,·)-·,PBC
J"AX- 1M AX +1
YDATCI"AXI-PBC
XOATCI"AX)-LL+l
tiD TO 620'

690 VIITEC1,'C1Hl,9HHEAD,8ER-,E9.4,5H,JBCC,I5,9H,LI,CALC.JI)
XCALCP,KK

&0 TO 1000
c
C TABULATE tN FILE PR8ANS
C
1000 VRITEC1,'(lX,14HNO. OF PDINTS·,I~,Jt)I"AX

..aITEll,'ClX)')
"MIN-l
J"AX-MINOCJ"IN+1,IMAX)

1010 VR!TEC1"CIX,8E9.4)'~CYDAT(J),J-J"IN,J"A')
VR!TE(1"Clx,8Fq.O)')rXDATCJ),J·JMIN~J"AX)

WIIlErl,'CIXI')
J"IN-JMAX+l
JMAX-"INOIJMIN+7,IMAX)
r~CJ"IN.'T.!"AX) GO TO 1020
GO TO 1010

1020 'RINTt,'ENTER 1 FOR MORE STATS AT THE GIVE" BERI'
PRINTt,'OR 0 FOR A NEW BEl' OR -99 TO STOP'
REiDt,IC,ONT
IFIICONT.EO.-9Q) GO TO ~9

IFCICONT.EO.O) RETUR"
GO TO 1

99 STOP
END
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CONMON/PA_AM'AHCltt,ROHC191,TC191,NSH,CALCP
DIMENSION DEGC10001,BCCOll000),VC191
8CCO)-1.

cC CALCULATES 8CCK,L), THE BURST CORRELATION FUNCTION.
C 1 LE L,K LE 1000.
C NOTEI 8CCL,LI IS THE AUTOCORRELATION FUNCTION
C FROM ELLIOTTC196'"EG.C31,'.105.
C

C
C ,CO"'UTE EXPONENT TEST VALUES
C

DO 10 l-l,NSH-l
VCI)--100.'ALO&JOCROHCI»

10 COt4TINUE
C
C COMPUTE EGO DIFFERENTIALS CARRAY DEI)
e AND BURST CORRELATION FUMCTIONS CARRA' BCI
C

, LUP-MINOCK_ LI
DO 40 J-l,LUP
SUMD-O.
DO 20 l-l,NSH-l
,RC-l.-ROH CI I
IFCJ.EO.1J RC-RDHCII
Fl-AMCII.RC
F-O.
JFCREALCJI.LT.VCI.) F-ROHCII.·C~-ll

SUMO-SU"D+Fl·F
20 CONTINUE

DEGCJI-SUMD
IFCJ.EO.I' DEGCJJ-l.-DEGCJ)
Su"c-o.
DO 30 "J-l, J
SUMC-SUMC+DEGCJJJ.aCCJ-JJ.

30 CONTINUE
BCCJ'-SU"C

40 CONTINUE
ICKL-SUflC
IFfL.LE.K) RETURN
JUP.L-K
DO 60 J-l,JUP'
SUNe-o.
DO '0 "J-l,1<
SUMC-SU"C+DEGCJJJ*8CCK+"-JJ)

50 CONTINUE
8CCK+J)·SUMC

60 CONTINUE
BCICL-SU"C
RETU~N

END
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