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AN EXTENDED SINGLE-ERROR-STATE MODEL
FOR BIT ERROR STATISTICS

Lewis E. Vogler®

Fritchman's single-error-state (SES) model for describing the
error statistics of digital communication channels is modified to
allow the prediction of error statistics as a function of the bit
error rate (BER). From the data samples of a measurement program,
cumulative distributions (CD's) of the statistics are obtained, and
simple analytic relationships are derived between error statisties
and the BER at any CD level. A computer program based on the
extended SES model has been written that evaluates the block error
rate, burst error rate, error gap distribution, and counting
distribution for any desired BER. Comparisons are shown of model
predictions and measured data taken over a switched
telecommunications network.

Key words: bit error statistics; error statistics modeling; digital
communication channels

1. INTRODUCTION
1.1 Background

During the development of digital communication systems in the last 25
years, there have been a number of error statistics models suggested by various
workers. A survey paper by Kanal and Sastry (1978) provides a comprehensive
overvieﬁ of the subject and describes the theofy and methods of many of the
proposed models. Most of the individual papers presenting the models have
included data cohparisons and show good agreement between model and
measurements.

The question naturally arises: why, after 25 years, hasn't one or more of
these models been adopted by system designers or performance evaluators to
predict system error statistics of interest, such as block‘error rate or error
burst rate? The answer lies in the fact that a designer needs to know what the
effects on error statistics are when the bit error rate (BER) is varied over a
range of values. For instance, how does the block error rate change as BER

goes from, say, 103 to 10722

Few of the models can answer this question
because their predictions are valid only for a particular BER--the BER that is

associated with the particular experiment or collection of measurements they

¥The author is with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce,
Boulder, CO 80303. |



are describing at the time. The limitations of this "characteristic" or "long-
term" BER has been recognized by Johannes (1984), who discusses the need for a
more practically oriented approach to error statistics modeling.

An exception to the above limitation is provided by the ﬁwo—state Markov
model (Crow, 1978), of which the binary symmetric channel (BSC) is a special
case. The two-state Markov gives analytic relationships between the error
statistics and BER and, consequently, is sometimes used under appropriate
circumstances to predict performance. Unfortunately, the two-state Markov

model does not, in general, characterize real channels very accurately.

1.2 Data Acquisition

In order to obtain bit error statistics over digital communication links,
measurements are often made of bit error rates (BER's) and block error rates
(BLER's). An interval of time is chosen, which determines the number of bits
Ng transmitted during the interval. The BER 1is then the number of bits in
error during the interval divided bj Ny. For the BLER the interval is divided
into blocks of N bits and a count is made of the number of blocks in which one
or more bit errors occur. The BLER is then the ratio of this number to the
total number of blocks inlthe interval., Ideally, measurements should be made
for a wide range of N values.

As a practical matter When many samples are taken, a particular BER will
be associated with many different values of BLER, depending on the bit error
distribution within the sample interval. A plot of BLER (for a given N) versus
BER often results in a scatter diagram with little apparent relationship
between the two quantities. However, if cumulative distributions (CD's) of BER
and BLER are obtained from‘a large number of samples, one-to-one relationships
can be determined by reading values at the same CD level. This process, of
course, can also be used to relate BER to other measurable-quantities such as
reéeived signal level, signal-to-noise ratio, burst error rates, etc.

The above procedure was followed in some switched network measurements
made by Bell Labs and presented in a paper by Balkovic et al. (1971). Figure 1
is the reproduction of a figure from that paper showing the éumulative
distributions (for a 1200 b/s data rate) of the burst error rate, the bit error
rate, and block error rates for block sizes N = 100, 500, 1000, 5000, and
10000. The ordinate, labeled "percent of calls", gives the CD levels at which

the vérious measured quantities were determined.
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1.3 Model Limitations

The samples (or calls) measured during the course of the experiment show a
wide range of BER's, and this is typical of measurements over any type of data
channel: switched network, HF, troposcatter, etc. Most error statistics
models describe methods of obtaining the statistics of interest for a given
experiment over a channel but determine only one overall, "limiting" BER; the
effects of other values of BER on the statistics of the channel are difficult,
if not impossible, to evaluate. In other words, no practical analytic
relationship between BER and the other statistics is available.

The one exception to this appears to be the two-state Mérkov model and,
especially, the binary symmetric channel (BSC) model, which is a special case
of the two-state Markov. For instance, in a BSC the relationship between the
block error probability, BLER(N), and p=BER is simply

BLER(N) = 1 - (1-p)", (BSC). (1)

Given any value of BER, one can easily evaluate BLER(N) for possible use in
error control requirements or performance evaluations, Any finite sample
ylelds only an estimate of a model parameter, such as b in (1), so that an
exact fit cannot be expected from finite data even if the mddel is exactly
correct. However, the parameters, such as p, and their sample estimates are
not disfinguished by notation in the following.

Unfortunately, the BSC (and even the two-state Markov) model is not
satisfactory as a descriptor of real channels. On the other hand, more
sophisticated models, while better characterizing‘actual conditions during a
given experiment, have the disadvantage of the limiting BER problem mentioned
above. In previous work (Vogler, 1986), it has been suggested that Fritchman's
singlé-error-state (SES) model can provide a reasonable compromise between the
analytic intractability of sophistication and the nonrealism of two-state
Markov. Comparison of Fritchman's model with some of the measurements
presented in Balkovic et al. (1971) shows reasonable agreemeht in such
statistics as the block erroh rate and the cumulative counting distribution.
However, the model is applicable only at the overall BER--in this case, at thé
80% level in Figure 1 where BER = 7.6 x 10-6. What to expect from the
statistics of the channel at any other value 6f BER cannot be determined from

the model.



The restriction on Fritchman's model (and, in fact, most other models
except the two-state Markov) arises from the manner in which the model
parameters are found from the data. No process is provided for going from one
BER to another. Thus, the measured BLER at, say, the 90% level in Figure 1
cannot be estiﬁated unless one were suddenly to assume a BSC for convenience.
But a quick calculation from (1) shows that the channel is not characterized by
complete independence of the bit errors.

In the next section, the SES model wWill be extended to allow the
prediction of error statistics for any BER. The extension is based on
Fritchman's model and retains the shortoomings inherent in that model, i.e.,
the inability to account for conditional error gap dependence. However, it.has
the advantage of relatively simple analytic form and is easily programmed for a
computer. The validity of the model can be determined only by comparison with
actual ﬁeasurements and, because of the variety of error statistics it is
capable of evaluating, many experiments do not collect enough data (or the
right kind) to provide the necessary frequency counts for testing. However,
the switched network measurement program conducted in 1969-70 by Bell
Laboratories included estimates of a number of statistical quantities of
interest here. These data, presented in Balkovic et al. (1971), have been used
extensively té compare with the extended model. Besideé the measurements shown
in Figure 1, other (fixed-BER) statistics from the paper are shown in a later

section.

2. Formulation of Extended SES Model
The analytic form of BER (=p) in a single-error-state model 1is (see
Appendix A)

NS-1 -
p=1C[1+ 1-_2-1 Ripg/(1 = p)1

(2)

where NS denotes the number of Markov states and the Aj, pj may be determined
by fitting to measured data. It can be noticed that a sequence of BER values
can be formed by successivély eliminating the (end) terms of the summation;
and, furthermore, the sequence will be monotonically increasing if we stipulate

that Py and A, > 0. Thus, we have the sequence

< Piay i



S
-1
pg = [1 +’1Z1 Agpg/(1 = p)1 7, 8 =1,2, ..., NS - 1 (3)

Pi < Pyyq3 Pg ” Pgyqe

The variable p can now be made to take on continuous values from 0 to 1 by
rassuming certain conditions on the Ai and Py conditions that allow a smooth
variation from one fitted p value to the next. One of the simplest conditions

is to use the following form for the continuoué variable p:

p=[1+8P+Aaop/(1-p17", ()
S-1
SP = iE1Aipi/(1 - pi),

where A 1s defined as

A= cAS(p»- ps_1)/p(ps - 93_1),
(5)

c = 1n{p/ps_l}/ln{ps/ps_1}.
It can then be shown that, for a given value of p such that ps_1 2p 2 ps,
p = (pgq * CO/(1 +C), | (6)
where
01 = {(1 - p)/p - SP}(pS - ps_1)/cAS. (7

To extend the range of p to zero (p < pNS-1)’ we define NS’ ANS’ and ¢ as
unity in the equations for A and p.

Equation (4), along with (5) and (6), provides relationships between a
variable p and the fitting parameters A, p used in the SES model. Furthermore,
the p function has the required values at the interval endpoints; i.e.,



p/(1 - D) =0,

=)

at p

at p/(1 = p) = Aopo/(1 = po).

o
]
o
7]
=

sPs S

In Fritchman's model the Ai’ p; are calculated from measured error gap
distribution (EGD) data, and the parameters in turn then determine a fixed
value of BER. If predictions of error statistics at some other BER are
desired, another set of measured samples must be acquired with the hope that
the measured BER will be somewhere near the desired BER.

In the present approach, a more convenient statietic for fitting is the
block error rate, BLER(N), at a particular N. For instance if CD's of measured
BLER(N) and BER are known as in Figure 1, the parameters A and p can be found
in the following way.

The expression for the block error rate (BLER=B) in the SES model can be

given as [see Appendix A, equations (A2) and (A3)]

{1 - B(N}/p = SB + A, pﬂ/<1 -0, ), e (8)

SB

S-1 N
.z Ai Pi/(1 - Pi),
i=1

where S

Ty 25000y NS—j, and AX, Py denote values to be determined for a given
p (see below). It is to be understood that SB and SP are identically zero when
S =1. |

Since BLER(1) = BER = p, (8) provides two relationships between BLER and
p, i.e., N = 1 and the value of N selected for the fitting. Choosing NS-1
pairs of values, B(N) and p (at a fixed N), Ax and Py in (8) are calculated at
each pair by

exp [(ln R)/(N - j)], (9)

©
[}

=
i

x = {1 = p)/p - SPY(1 - p)/p (10)

where



N-1

R = px

= {(1 - B)/p - SB}/{(1 - p)/p - SP}. (11)
The order of evaluation is to start with the largest valued (B, p) pair
(designated in the computer program of Appendix B as B1, p1). The A's and p's
are then determined successively from each data pair as shown in (8) - (11).
The above procedure, along with (4), allows the numerical evaluation of

Ai, Py for any desired p. With one additional condition [from A(14)1],
EGD(1) = J A, p, < 1, (12)
i i"i-

we can now computerize and predict single-error-state error statistics as

functions of the bit error rate for any practical measurement system.

3. Comparisons of Model and Measurements

An example usiﬁg the extended SES model is shown in Figure 2 for the
Balkovic et alf (1971) data from Figure 1. The Ai, Py
BLER(1000) measurements and result in the solid curve of Figure 2. These same
Ai' p; are then used to generate the curves for BLER(10”) and BLER(jOO)T It
can be seen that the model predicts fairly good agreement with the N = 100 and
104 data.
| Daté points at four values of BER were used in the fitting process: BER =
10-6, 10-5, 10_4 and 10—3. Since the distributions were not sufficiently
detailed to gi#e accuraﬁe readings at larger BER, two pairs of Ai’ oy (obtained

were determined from the

from measured EGD data) were assumed in this region: (A1, p1) = (0.3087,
0f6521) and (A2, p2) = (0.16, 0.990278); thus, altogether, six pairs of A,p
were determined. The computer algorithm that determines the fitting parameters
allows the usér to adjust arbitrary values--those that cannot be obtained
directly from the measured distributions--in accordance with the criterion of
(12). Ideally, the data distributions should show enough detail over the whole
rangé of BER so that assumed values are unnecessary. The data point at BER =
0.003 was not used in the fitting process because 6f the uncertainty involved
1h reading Figure 1 at this BER value.

The question érises as to whethef the choice of an N other than 1000 will
affect the prediction capability. This is partially answered in the'next two
figures where the Ai’ py are determined from BLER(jOO) data in Figure 3 and
from BLER(10%) data in Figure 4. Predictions of the remaining two block error

rates in each case again agree fairly well with the measured data. Further

8
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study would be needed to determine if there is an optimum block length for the
initial fit, It is likely that smaller block lengths would be better simply
because of bractical considerations in taking measurement samples.

Model validation of other statistics also is possible using the Balkovic
data. For instance, an error burst is defined to be a succession of one or
more.bits beginning and ending with an error and separated from neighboring
bursts by K or more error free bits (Balkovic et al., 1971, p. 1361). Burst
rate, PB(K), is the number of bursts in a sample divided'by the4numbér of bits
in the sample.

With the observation that the beginning of a burst must follow gaps with
lengths > K, then it follows that the total number of bursts is equal to the
total number of gaps with lengths > K. Thus,

number of bursts - number of bursts
number of bits Ne/P

PB(K) =

= p EGD(K), (13)

where p = BER = Ne/Nt' and Ne’ Nt are the total number of bit errors and total
number of bits, respectively. EGD(K) is the usual error gap distribution (see
Appendix A4). |

The SES model burst rate for K = 50 (the value used in the Balkovic data)
is shown in Figure 5 and compared'with the measured data from Figure 1. The
Ry !
good agreement between model and measurement, especially at smaller BER. If
the Ai’ Py
in Figure 5.

The block error probability at BER = 10 °, 10 2, 10
Ai’ Py of Figure 2 is shown in Figure 6 together wiﬁh data points at block
lengths of 100, 500, 1000, 5000, and 104, The agreement shown could have been

expected from a study of the results in Figure 2, but the added data points at

Py are those used in Figure 2--the N = 1000 fit. Again, there is fairly

from Figures 3 or 4 are used, the agreement is similar to that shown

6 4

5 , and 1073 using the

N = 500 and 5000 help to validate the model. Comparisons at other values of
BER have been made and, in all cases tested; the agreement for BLER(500) and
BLER(5000) is at least as good as that indicated in Figure 6. Let it again be
emphasized that, as far as user input to the computer program is concerned, the

comparisons at fixed BER involve only the single set of fitting parameters used

12
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in Figure 2; i.e., the six pairs of Ai, Py that were determined from the
BLER(1000) fit,

Another statistic for which measured data are available is the error gap
distribution (EGD). The Balkovic EGD data (Figure 17 of that paper using the
curve labeled "Pooied") appears to be characterized by a BER of about 7.6 x
10_6, i.e., the BER at the 80% level of Figure 1. The comparison of data and
model (using the Aj, pj of Figure 2) is shown in Figure 7. It is seen that
predicted probabilities of gap lengths greater than about iOOO are noticeably
optimistic, and agreement is not as close as some of the other statistics.
Whether this is consiétently so at other BER cannot be answered because thé
data are not available.

Yet another statiétic for which comparisons can be made is the cumulative
counting distribution PC(M,N): the probability of M or more errors in a block
of N bits. Measured data are presented in Balkovic et al. (1971, Figure 14,
p. 1371) fbr BER = 7.6 x 10_6, and some comparisons are showh in Figure 8. The
médel is consisteﬁtly high in the middle portions of the curveé for
N = 200, 500, and 1000. Perhaps this is caused by some conditional error-free-
gap dependency at iargér gap lengths that cannot be accounted for in a single
error state model. The data points at M = 10 are not predicted very well by
the model nor are.the points at M = 1, In the latter case one would expect
better agreement with the measurements because PC(1, N) = BLER(N); but the
Balkovic 1200 b/s data shows: two different values in this case. Whether
' different CD levels have been used for the two quantities cannot be deﬁermined
from the text. |

Finally,.in Figure 9, comparisons are made of the cumulative burst length
distribution PBC(K,L) for a gap characteristic of K = 50 and BER = 7.6 x 10-6.
The measured datavare taken from the 1200 b/s curve in Figure 12, b. 1369 of
the Balkovic paper, and the solid curve shows the prediction of the extended
SES model. It 1is apparent that a first order Markov process does not
accurately‘portray the distribution, although the values are within a factor of
two for L < 40. It should also be recognized that a valid frequency count of
long burst lengths requires a very large number of samples, and the data values
near 100 are less reliable. To indicate the superiority of an SES model over
the two-state Markov, the'latter prediction is shown as the dashed curve in

Figure 9. A much improved prediction is possible if we are given the added

15
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information of the two measured values, PBC(K,1) and PBC(K,2). Denoting these

by Pm1 and Pm we form the factors ao=(1—Pm1)/(l-Ps1) and a1=(Pm1-Pm2)/(Ps1-

2’
PsZ)’ where Ps1 5
factors to multiply appropriate terms of the equation for PBC (see (A1T7),

Section A.4) results in the curve labeled "Modified SES" in Figure 9. This

and PS denote the corresponding SES values. Using these

curve, of course, cannot be derived strictly from first order Markov theory,
but is simply a semi-empirical approximation to the burst length distribution.

4. CONCLUSION
4.1 Summary

The single-error-state model bresented here evaluates error statistics as
functions of the bit error rate. Previous models develop procedures for
calculating the statistics, but the results are applicable only to a
characteristic BER that is determined from some particular sample collection.
An exception, of course, is the two-state Markov model, which provides analyﬁié
relationships between the error statistics and BER. This model (and
particularly the BSC) is often used for design predictions'simply because it is
one of the few models available that allows the engineer to estimate the
statistical effects of varying the BER. However, the two-state Markov model
is, in general, not representative of réal channels. ’

In this paper an extended form of the SES mddel has been developed and
compared with some measured switched network error statistics. Reasonable
agﬁeement is found for the block error rate and the burst errbr rate as a
function of BER. Somewhat poorer agreement is found in the comparisons with
the error gap distribution and the cumulative counting distribution at a
particular BER.

The model‘has been implemented in a computer program that calculates the
block error rate, burst error rate, error gap distribution, counting
distribution, and cumulative counting distribution. Also included in the
program 1is the procedure for evaluating the fitting parameters, which are
obtained simply by entering pairs of BLER versus BER measured data.

Because data sampling on a real channel is essentially a statistical
process, the entity being sampled will have a range of values, with little
apparent relationship to any other statistic during any one particular sample.
The most reasonable way to organize the data is to form cumulative
distributions of the statistics of interest (BER, BLER, etc.) from the
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collection of sample measurements; this then will provide one-to-one
correspondences among the statistices at any particular CD level. The
organization of the data in the above manner is implicit in the extended SES

model presented here.

4,2 Future Studies

Although the comparisons 6f model and switched network measured data in
the preceding sections serve as an initial evaluation of the model, it is
highly desirable to compare data from other types of communication channels.
Measurement over HF, VHF, troposcatter, and satellite channels should bé
undertaken and efforts made to acquire a comprehensive set of statistical data.
The quantities of interest should include not only those concerned with link
performance objectives, but also those useful in the evaluation of efficient

. coding schemes. '

Future sfudies might also wish to investigate whether characteristic
values of the fitting parameters can be used to describe different types of
communication channels. The establishment of a criterion such as this would
greatly aid system designers in developing their required performance
objectives. In network design, the overall evaluation of various combinations
of individﬁal link dependence could be investigated in considerable detail
since link statistics are easily calculated once a set of fitting parameters
are given.

A reiated problem for future consideration is to determine if there is a
distribution or family of distributions that can describe BER. If, for
different channel types under prescribed conditions, "characteristic" BER
distributions can be found, then a complete and fully analytic description of
statistical information is available. Furthermore, the statistics can be
related directly to transmission paramefers such as received signal levels and
signal-to-noise ratios. Notice that this is exactly the procedure followed in
most texts on digitél communication; however, the discussions are, by
necessity, limited to very simple channels such as the BSC. The development of
analytic relationships for more realistic channels will broaden the application

of theory to actual systems.

20



5. REFERENCES

Balkovie, M.D., H.W. Klancer, S.W. Klare, and W.G. McGruther (1971), High-speed
voiceband data transmission performance on the switched telecommunications
network, Bell Syst. Tech. J. 50, pp. 1349-1384,

Cox, D.R. and H.D., Miller (1965), The Theory of Stochastic Processes, Methuen &
Co, 'Ltd, London. ‘

Crow, E.L. (1978), Relations between bit and block error probabilities under
Markov dependence, OT Report 78-143, March, 16 pp.

Elliott, E.O. (1965), A model of the switched telephone network for data
communications, Bell Syst. Tech. J. U4, pp. 89-119.

Fritchman, B.D. (1967), A binary channel characterization using partitioned
Markov chains, IEEE Trans. Inform. Theory IT-13, pp. 221-227.

Johannes, V.I. (1984), Improving on bit error rate, IEEE Commun. Mag. 22,
No. 12, 'pp. 18-20. ' ‘

Kanal, L.N. and A.R.K. Sastry (1978), Models for channels with memory and their
applications to error control, Proc. IEEE 66, pp. 72u4-Tul,

Vogler, L.E. (1986), Comparisons of the two-state Markov and Fritchman models

as applied to bit error statistics in communication channels, NTIA Report
86-193, May, 32 pp.

21






APPENDIX A: EQUATIONS OF THE SES MODEL
A.1 The Block Error Rate, BLER(N)

The single-error-state (SES) model developed by Fritchman (1967) can be
described as a multistate Markov chain, one state of which is denoted the error
state. The state transition probability matrix and state diagram are shown in
Figuré A-1, which indicates some of the notation used in later equations and
also shows the relationships between the transitions and the parameters A, .p
introduced by Fritchman. The number of states is denoted by the symbol NS, and
this symbol when used as a subscript also identifies parameters associated with
the error state. Note that transitions between nonerror states (1, 2, ..., NS-
1) are not allowed.
| Since the modél is based on a Markov process, one may calculate the state
equilibrium probabilities wj (Cox and Miller, 1965; pp. 101ff), which in terms
of A and p - (A > 0, 0O < p < 1) become | |

NS-1
1/1rNS =1 + 121'Aipi/(1 - pi), (wNS = BER = p), (A1a)
TS Ty Aipi/(1 - pi), i=1, ..., NS-1. (A1b)

Using these results along with the transition probabilities of Figure A-1, one
may derive a simple expression for the block error rate BLER(N), the
probability of one or more errors in a block of N bits. If we denote the
probability of no errors in a block of N bits by P(O,N), then

NS-1 NS-1
P(O,N) = § mp N1 =p ¥ "A.p.7(1 - p,), N>1, (A2)
. iPi . iPi i 2
- i=1 i=1
and
BLER(N) = 1 - P(0,N). (A3)

Equation (A2) can also be obtained from the formula for P(0,N) given by
Kanal and Sastry (1978). The usual notational convention is assumed wherein a
"O0" denotes a correct bit, a "1" denotes an error, and a positive integer

exponent indicates the number of consecutive identical bits. Thus, a string of
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k correct bits between two incorrect bits would be written as 10K1. From Kanal
and Sastry (1978),

N-1 .
P(O,N) =1 -p [N- ) (N3P0 11/1)1, N > 1, (A4)
. 521 .
where P(Oj_11/1) is the conditional probability of the bit sequence 03—11 given

an error. As stated above, (Al4) may be algebraically reduced to (A2) in the
case of the SES model.

A.2 Counting Distributions, P(M,N) and PC(M,N)
The counting distribution P(M,N) is defined as the probability of exactly
M errors in a block of N bits. Elliott (1965) has shown that, in terms of the

error statistic probabilities,lP(M,N) is given by

N-M

P(M,N) =p ) P(O"/1)R(M,N-k), 1 < M < N, (45)
: k=0 - ‘
where
M
R(M,i) = ] P(0O"1/1)R(M-1, i-k-1), 2 < M < i, (A6a)
k=0 a ' ‘
R(1,1) = PC0Y"1/1), 1> 1. (A6b)

Simpler expressions, comparable to (A2), apparently are not available
generally for P(M,N), although three special cases are derivable for the SES
model:

N-1

P(N,N) = p pyg s N2 15 (A7)
NS-1
- - p o2 - N-2 ~ - ;
P(N-1,N) = p pps” [2(1 = pyg) + (pNS) 121 Aips(1-p)], N > 25 (A8)
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NS-1
N-1
)

P<1,N) pl

. Ayey {(N-z)Ai + 2}

1

2

+

2 ) (A

N_
s jpj)(Akpk){(pj

- oy /oy = p O, (49)

ok =1, ..., NS = 1; N > 2.

The algorithm that calculates P(M,N) in the computer program is based only on
(A5) and, because of the recurrence relations in (A6), requires more computer
time as N becomes large.

The cumulative couﬁting distribution PC(M,N) is defined as the probability

of M or more errors in a block of N bits and is computed from P(M,N) by

N
PC(M,N) =. ] P(k,N), 0 <M <N, N> 1. (A10)
k=M '

From the preceding definitions, it is apparent that the following relationships
hold:

PC(O,N) =1, (A11a)
PC(1,N) = 1 - P(O,N) = BLER(N), (A11b)
PC(1,1) = P(1,1) = BLER(1) = BER. (A11e)

A.3 The Error Gap Distribution, EGD(M)

=1
The bit sequence 10 1 delineates what is defined as an error gap (or

error-free gap) that 1is characterized by a gap length, GL =
(2 =1, 2, 3, «..). The error gap distribution (EGD) may be written as
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EGD(%-1) = Pr{GL > 2} = J P(0¥ T1/1)
- k=4

- p* /), 0> 1. (A12)

From Figure A-1 and the relationships of (A12), it follows that, in the SES

model,
NS-1 M
EGD(M) = ) ~ A,p., M > 1, (A13)
iPi? T 2
i=1
NS-1
EGD(1) = 121 Aoy = 1= pyg- (A14)

Equation (A1Y4) is important in that it serves as a condition that must be
satisfied when détermining the fitting parameters Ai’ Py [see (12), Section 2].
Furthermore, a measured value of PN = P(1/j) at a particular BER can be useful
for estimating A1, P in those situations where the CD's of BLER(N) and BER
show insufficient detail at larger BER.

A.4 Error Burst Statistics
An error burst of gap and length characteristics K and L, respectively, is
defined to be the pattern, 181, where B is of length (L-1) bits and may contain
any succession of 0's or 1's except Oi(i > K); the burét pattern is separated
from neighboring bursts by K or more error-free bits. Using this definition,
Wwe can express the conditional probability of the burst pattern, P(81/1) =
BC(K,L), as

L=1  L-1-%
} P(O - 1/1)BC(K,%), L <K
2=0 o |
BC(K,L) = (A15)
' L-1
5 POY T M/1)BC(Kk,0), L > K
=L-K
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where BC(K,0) = 1 and K > 1. The function BC(L,L) is identical to the
autocorrelation function defined by Elliott (1965).

The burst error rate PB(K,L) is defined’as the probability of occurrence

of a burst and, since a burst is always preceded and followed by the patterns
10* and 0*1(i > ), it follows that

PB(K,L) = pP(0X/1)p(81/1)P(0K/1)
- p[EGD(K)I%BC(K,L), (K,L > 0) (A16)

where EGD(0) and BC(0,0) are defined as unity.

The cumulative distribution over L of error bursts for a constant K,
PBC(K,L), may be obtained from

PBC(K,L) = {1/pEGD(K)} ¥ PB(K,L)
: - g=L

= EGD(K) ) BC(K,%), (A17)
%=L '

where PBC(K,0) = 1. Note that the summation of (A16) over 0 < L < = is simply
PEGD(K) = PB(K), which is the same expression given by (13) in Section 3. This
follows by expanding the summation and rearranging the terms.

A.5 The Two-State Markov and BSC Models
It is often inﬁeresting to compare the two-state Markov model with
measurements, and, for convenience, this section lists formﬁlas of some of the
more common statistics. We assume the independent variables to be p = BER and

po = P(1/1); a BSC is the special case, pp = p. Then
A, = (1 - p2)/p1, p, = (1 - 2p+pp,)/(1 - p), (2-state)

Ay =1, 0y =1-p, (BSC) (A18)
and
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1 -0 - p)p?-j, (2-state)

BLER(N) = { N (A19)
1 - (1 -p) , (BSC)
(1 - p2)pb14-1 , (2-state)

EGD(M) = { ' (A20)
a - p)M ) (BSC)
p(1 - p2)p$-1', (2-state)

PB(K) = { ' (a21)

p(j - p)K ) (BSC)

The counting distribution for the two-state Markov model is given by (AS5)
and (A6), and PB(XK,L) is given by (A16) and (A15) where

k-1

P(Ok/1) = { (A22)
1 , k=0

(1'92)(7'91)°1k_1,

K k>0 '
P(071/1) = { (A23)
C p 2 s K =0
For a BSC,
PaLN) = (oot - )N, (BsC) (A24)

where (g) denotes the binomial coefficient.
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APPENDIX B: THE COMPUTER PROGRAM

This appendix contains a Fortran listing of the éomputer program PRBTAB
that calculates and tabulates bit error statistics based on the extended SES
model. The fitting parameters Ai’ p; can be either read in directly or
evaluated by reading in pairs of BLER(N) versus BER measured data. The program
is interactive, with data and responses being entered from a terminal keyboard.
After choosing a desired statistic (BLER, EGD, etc.), the user enters a data
point (usually either a block size N or BER) and thé value of the statistic is
displayed. This value, together with the data point value, is also stored in a
file that‘can be saved and used later for plotting purposes.

The program is written in FORTRAN 77 and contains 446Vlines of code plus
informative comments. Statisties that can be calculated include BLER(N),
PB(X), PB(X,L) and PBC(X,L), EGD(M), P(M,N), and PC(M,N). A listing is given
in the foliowing pages. . .
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NI OOD

995

1000

1010

[ X2 X 2]

PROGRAM PRBTAB

CALCULATES AND TARULATES(IN FILE PRBANS) THE STATISTICS,
1.BLER(N) OR PB(K) VS BERs FOR FIXED N OR K.
2.FOR FIXED BER?
EGO(M) VS M3 P(M)N) VS My FOR FIXED N3
PC(MyN) VS M, FCR FIXED N3 BLER(N) VS Nj
PB(K,sL) VS Ls FOR FIXED K.
THE A(I)»RHO(I) MAY BE READ IN EITHER AS GIVENS
OR DETERMINED FROM SLER VS BER DATA.
NOTESS
1,THE NOTATION, P=BER AND B(N)=BLER(N)» IS OFTEN USED.
2.FOR 2-STATE MARKOV OR BSC, ENTER! NS=2,A(1)»RHO(1)=0,
3.8L0CK LENGTH N IS USUALLY A POSITIVE INTEGER,
BUT FOR B(N) VS Py MAY BE NON-INTEGER AND/OR NEGATIVE.
4 REFERENCESS (1)COMPARISONS OF THE TWO-STATEeee
(2)EXTENDED SES MODELeee

COHHONIPARAHIAH(19)9RUH(19)07(19,)NSH:C‘LCP
DIMENSION l(0lZO)oRU(OIZO)pBDlT(ZOOl):PDAT(ZOOI)05(19)’P(I’)
OPEN(1, FILE='PRBANS®)
EPSAe=l,.E~10
EPSRe2,E6
GDNS=0.
SPNS=0,
A(0)=1,
RO(0)=0.
PRINT#, 'IF B VS P DATA ARE GIVEN, ENTER 1; OTHERWISE 0°
READ*, ITYPE
IF(ITYPE.EQ.1) 60 TO 100
PRINT#*, YENTER NUMBER OF STATES,NS?
READ®*)NS
RO(NS)=1,
A(NS)=1,
NS1sNS=-1
PRINT*, 'ENTER A(I)sRHO(I) FOR I=15NS=1 (RHO INCREASING)?
READ®s (A(J)sJ=15NS1)s (RO(K)»K=1,NS2)
DO 995 I=1,NS-1
ARD=A(I)*RO(I)
GDNS=GDNS+ARO
SPNS=SPNS+ARO/(1.=-RO(I))
CONTINUE
PRINT#, 'AT P(NS=1)s EGD(1)=?,GDNS
PRINT*,?
PRINT®, 'ENTER 1 FOR STATS VS P3 OR O FOR STATS AT FIXED P!
READ®, ITYP
IF(ITYP.NE.1) GO TO 1010
INAX=0
PRINT#, 'ENTER 1 FOR BLER(N) VS P3 OR 0 FOR PB(K) VS P?
READ®,ITYB
IF(ITYBL.EO.O) THEN
PRINT#, 'ENTER BURST PARAMETER,K?
READ*,KK
60 TO 1010
END IF
PPINT#*, 'ENTER BLOCK LENGTHsN?
READ®,BN
PRINT#*, 'ENTER P} OR =1 TO TABULATE?
READ®,PX )
IF(INT(PX).EQ.=1) 60 TO 2000

DETERMINE A(I)»RHO(I) FOR THE GIVEN P

CTal1,=PX)/PX

31



10
15

40

(2 X2 X2

CeCT

PFeCT

CLCe=1,

DO 10 I=1,NS

11el

IF(I1.EQ,NS) GO TO 20
CTeCT-A(IT)®RO(II)/({1.=RO(II))
IF(CT+LTs04) GO TO 15

CsCT

CONTINUE

IF(I1.EQ.1) GO TO 20
PSele/(PF=CT¢1l,)
PLels/(PF=C4l,)
CLCeALOG(PX/PL)/ALOGIPS/PL)
CLCsAMAX1(CLC,EPSA)
C'C‘('U(XI)"O(IX‘I’)I(CLC“(II))
ROHMAT=(RO(II=1)+C)/(1e¢C)

AHAT!CLC‘A(II)‘(ROHAT-RO(II-I))I(ROHAT‘(RO(II)-RD(I!-I’))

AHATSAMAX1(AHAT,EPSA)
NSHsII+l
ROH(NSH=1)=ROHAT
ROHF =1, /(1.=ROHAT)
AH(NSH=1)sAHAT
IFC(NSH=NS)eGT+0) THEN
6DT=1+=GONS
IF((GOTeLEeOs) s DRo(NSIEQe2)) THEN
NSHeNS
AHINSH=1)=A(NSH=1)
SPT-SPNS-A(NSH-I)*RD(NSH-I)I(lo°RU(N$H-1))

ELSE
AH({NSH=1) sAMIN1 (AHAT,GODT)
SPT=SPNS

END IF

RATe(PF=SPT)/AH(NSH=1)

ROM(NSH=1)sRAT/(14+RAT)

ROHF=144RAT

END IF

DO 30 K=1,NSH=2
ROH(K)=RO(K)

AH(K)=A(K)

CONTINUE
T(NSH=1)sAH (NSH=1) #ROH(NSH=1)
SUMP=T{NSH=1) *ROHF

D0 35 I=1,NSH=2
T(I)=AH(I)*ROK(I)
SUMPsSUMP4T(I)/(1.=ROH(I))
CONTINUE
CALCPels/{SUMP+1,)
IF(ITYP,NEs1) THEN

IF(AH(NSH=1) sLE.EPSA) NSHeNSH-1

DO 40 I=1)NSH-1

PRINT#, TAH( !, 1, 1) =1 AHIT) ! RHOH( 'y Is9) =, ROH(I)

CONTINUE

CALL PRB

60 TO 1000

END IF

COMPUTE PR(K) FOR THE GIVEN P
IF(ITYB,EQ.0) THEN

SUMG=0,

DO 41 J=1,NSH-1

F=0.
IF('EAL(KK)‘ALOGIO}RDH(J))oGTo*lOO.) FuROH(J) **KK
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SUMGs SUNMG+AN(J) *F
41 CONTINUE
SUMGeCALCP*SUMG
PRINTS, 'CALC Pe?,CALCP,! PB('sKKs?)=?)pSUNG
PRINTS®, ¢ ¢
IMAXeINAXSL
BDAT( IMAX)eSUMG
POAT(IMAX)sCALCP
60 70 1010
END IF

COMPUTE BLER(N) FOR THE GIVEN P

[z X2 N 2)

IFIROHF 4GT.EPSR) THEN
Xs=(BN/ROHF)# (1. +¢5/ROHF)
60 TO 42
END IF
X=BN#ALOG (ROH(NSH=1)})
42 IF(XeLTe=6T4e) Xs=6T4e
SUMSAH(NSH=1)*EXP (X)#RONF
D0 50 I=1,NSH=2
X=BN¢ALOG(ROH(I))
IF(XeLTo=674e) Xo=6T4,
SUMsSUMSAH(T)*EXP(X)/(1+=ROH(I))
50 CONTINUE
ANSsCALCP*SUM
PRINT#, 'CALC Pot5CALCP? BLER(99BNy*)=?510=ANS
PRINT#,? ¢
IMAXsTHAX+1
BDAT(IMAX)=1.,=ANS
PDAT(IMAX)=CALCP
60 TO 1010

DETERMINE A(I),RHO(I) FROM B(N) VS P DATA

00 PRINT#*, VENTER NO. OF STATES»NS3 AND BLOCK LENGTHsN (NoGTel)!?
READ#*5NS» N
RO(NS)=1,
A(NS)=1.
SB=0.
SP=0.
PRINT#®, 'ENTER (NS=1) VALUES OF BLER AND P (DECREASING)!
READ*, {B(J)»J=1,NS=1) s (P(K)sK=lpNS=1)
102 D0 110 I=1,NS-1
IF(B(I)+EQele) THEN
PRINT®, YENTER A('5157)9RO(Is")?
PEAD*,ATHROT
A(1)=AT
RO(1)=ROT
60 TO 105
END IF
PFe(l.=P(I))/P(])
BFe{1.~8(I))/P(I)
RY=(BF=SB)/(PF=SP)
RO(I)-EXPLALOG(RX)/(N=1))
IF(RO(I)e6Eels) THEN
PRINT#, 'RHO( I, 9)e?,RO(I),? IS NOT VALID.'
PRINT®, YENTER SMALLER VALUE OF A('51=1,%)"
$8=0,
SP=0,
GONS=0.
¢0 10 102
END IF
A(I)e(PF=SP)*(1,~R0(1))/RO(])

oo
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105

110

120

NOOD

2010

99

XeNSALOG(RO(IN)
lF(loLTo‘b?‘o, Xe=6T4,
SBeSB+A(I)®EXP(X)/(1.=RO(I))
AROsA(I)eRO(])
GDONS=GDNS+ARD
SPeSP+ARO/(1.~RO(I))
SPNSeSP
CONTINUE
D0 120 Is=1,NS5-1
PRINT®,; A I, )mt,A(1)y" RHO( pTs0)=t,RO(I)
CONTINUE
PRINT®, 'AT P(NS=1), EGD(1)='5GDNS
PRINT®, ¢ ¢ :
PRINT#, 'ENTER 1 TO CALCULATE THE STATISTICSs!
PRINT®, 'OR O TO REDO THE A(I),RHO(I)} oRr =99 TO STOP!
READ®, IDEC
IF(IDEC.E0.~99) 60 TO 99
TF(IDEC.EQ,0) THEN
S8=0.
SPsQ,
GDNS=0.
60 T0 102
END IF
60 TO 1000

TABULATE IN FILE PRBANS

IF(ITYBL.EQ.0) THEN
WRITE(1,* (1H1, BHHEAD,PB(»I5514H) VS BERsCALCe)')KK
¢0 T0 2010

END IF
WRITE(1,? (1H1,10HHEAD,BLER(»F1044514H) VS BERsCALCo)')BN

WRITE(1,"(1Xs14HNDs OF POINTS=,I45)")INAX
WRITE(1,'(1X)?) :
JHINel
JNAX=MINO (JMIN+T» IMAX)
WRITE(1,? (1Xs8E9.4) 1) (BDAT(J)»J=JMIN, JHAX)
WRITE(1,'(1Xs8E9e4) ?) (PDATII)»J=JNINsJNAX)
WRITE(1,°(1X)*)
JNINsJHAX+L
JHAXSMINO(JHINST, IHAX) .
TF(JNINGGTo IMAX) THEN
PRINT#, 'ENTER 1 TO CONTINUE; OR =99 TO STOP!
READ#®, ICONT
IF(ICONT EQe=99) GO TO 99
60 TO 1000
END IF
60 TO 2030
sTOP
END
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OO

SUBROUTINE PRB

CALCULATES P(M)N), THE PROBABILITY OF M ERRORS
IN A BLOCK OF N BITS (BY ELLIOTT'S FORMULA)}
DR BLER(N)®1=P(0,N), THE BLOCK ERROR RATE
(THE PROBABILITY OF 1 OR MORE ERRORS IN A BLOCK
OF N RITS== BY THE IMPROVED FORMULA3 INPUT: N)}j
DR EGD(M), THE ERROR GAP DISTRIBUTION (THE PROB~-
ABILITY OF M CORRECT BITS FOLLOWING AN ERROR)}
OR PC(MsN), THE PRORABILITY OF M OR MORE ERRORS
IN A BLOCK OF N BITS== (PC(1,N)=BLER(N))}
OR PB(KyL)s THE BURST ERROR RATE WITH
GAP AND LENGTH CHARACTERISTICS» K AND L}
OR PBC(KsL)s» THE PROBABILITY OF ERROR BURSTS
VITH FIXED K AND LENGTHS GE L3 PBC(K»0)=l,
INPUTS NS»A(K)pRHO(K)y 2 LE NS LE 203

MsNy» O LE M LE Ny 1 LE N LE 1310003

1 LE K LE 1000, 0 LE L LE 1000,

(FOR BLER(N), N MAY EXCEED 131000.)

COMMON/PARAM/AH(19) sROH(19)5T(19)sNSH,CALCP
DIMENSION PD(30000),PP(30000),R{30000)
DINENSICON TP(19),YDAT(2001),XDAT(2001)
NS=NSH

NS1sNS=-1

PNSs=1,

S1=0,

DD 5 I=1,NS1

S1sS1+T(I)

PNSsPNS=T(I)

CONTINUE

BERsCALCP

PRINT*, 'BER=?yBERy ! RHONS=!,PNS

PRINT*,0 ¢ '

PRINT*, "ENTER ITYP FOR DESIRED STATISTIC, WHERE ITYP ISs!?
PRINT*, 91 FOR EGD(M)3 OR 2 FOR P(MyN)3!?
PRINT#, 'OR 3 FOR PC(MsN)3 OR & FOR BLER(N)}!?
PRINT*, '0OR 5 FOR PB(KsL)j OR 6 FOR PBC(K,L)?
READ®,ITYP

.IMAX=0

IF(ITYP=2) 200,510,300 )

PRINT#, YENTER M,N FOR P(MyN)3 OR 0,0 TO TABULATE'
READ*,M,N

IF(N.EQ.D) GD TO 190

COMPUTE P(M,N)

D0 12 I=1,NS1
T(I)=sAH(I)*ROK(I)
CONTINUE

NMaN+l=M

PD(1) =1,

PD(2)=S1

PP(1)ePNS

PP(2)=0.

D0 13 I=1,NS1
TP(I)sT(I)*(1.=ROM(I))
PP(2)=PP(2)+TP(I)
CONTINUE

IF(MeEQ,0) G0 TO 405
R(NM)=l,

IF(NW,EQ,1) GO TD 15
R(NM=1)e51
IF(NM,LT.3) 60 TD 30
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MlaNM=]
M2asNM=2
D0 20 Ts=1,M2
PD(142)=0,
PP(142)=0,
D0 17 J=1,NS1
T(J)eT(J)*ROH(J)
TP(J)=eTP(J)*ROH(J)
PD(I+2)=PD(142)4T(J)
PP(I142)sPP(I¢2)¢+TP(J)

17 CONTINUE
R(M1=1)=PD(I+2)

20 CONTINUE

30 IF(M.EQ.1) 60 TO 65
I1TNT=1

40 IMINe]l

50 1Ps=0
RT'O.
D0 60 I=IMIN,NM
IPsIP+]
RT=RT+PP(IP)*R(I)

60 CONTINUE

. RUIMIN)=RT

IMINSIMINS]
IFC(IMINC.LE.NM) GO TO 50
ITOT=ITOT+1
IF(ITAT.LTeM) GO TO 40

65 1P=0
RT=0
DO 70 I=1,NM
IPsIP+l
RT=RT+PD(IP)*R(I)

70 CONTINUE
ANS=RER*RT

7 IF(ITYP,EO,3) GO TOD 330
IF(ITYP,EQ.,2) GO TO 72
PRINT#®, 'BLER("sNy )= ?,BLER
IMAXsIMAX+1
YOAT(IMAX)=BLER
XDAT(IMAX)=N
60 TO 400

72 PRINT#, 'P(9,Ms"ytyNy?)m?yANS

- IMAXsIMAX$]

YDAT(IMAX)=ANS
XOAT(IMAX)=M
60 T0O 10

190 VRITE(1:l(IHI;QHHEADpBER'pEQo695U:P(":o!5o7H);CILC.)')CALCP;N

GO TO 1000
c COMPUTE EGD(M)

¢

200 PRINT#, 'ENTER M FOR EGD(M)3 OR =1 TO TABULATE!
READ*)M
IF(M,E0.=1) GO TO 260

205 SUMG=0,
D0 210 J=1,NS1

F=0,
TF(REAL(M)*ALOGIO(ROH(J))e6Toe=2004) FuROK(J)**M
SUMGsSUMG+AH(J ) SF
‘210 CONTINUE
IF(ITYP.EO.,5) GO TO 510
IF(ITYP.EQ.6) 60 TO 610
PRINT®, 'ECD("sMy?)=?, SUMG
IMAXeIMAX+]
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YDAT(IMAX)sSUMG

XDAT(IMAX)=M
60 10 200

290 HFITE(I:'(1H1:9HHEAD;BER';E9o4013H:EGD(")oCALC-)')CALCP
60 TO 1000

¢ :

c CNMPUTE PC(MyN)

c

300 IF(ITYP,GT+3) GO TO 400
PPINT#, 'ENTER (MAXIMUMIM,N FOR PC(MyN)*
READ®,MMAX, N
SUMC=1,
Me=]
320 IF(MeEQoMMAX=1) GU T0 390
MaMel
IF(M.EQ.0) GO TO 405
60 70 11
330 SUMC=SUMC=ANS
PRINT#, 'PC(1,Me1y 1,9 ,Ns?)e?, SUMC

IMAXsIMAX+1
YDAT(IMAX)=SUMC
XDAT(IMAX) =M+l
60 T0 320
390 HRITE(I:'(1H1)9HHEAD:BER-.E9.4:6H:PC(H"IS'TH):CALCo)')CALCP)N
G0 TO 1000
c
(4 COMPUTE BLER(N) OR P(O,N)
c

400 IF(ITYP.GT.4) 60 TO 500
PRINT#, 'ENTER N FOR BLER(N)} OR =1 TO TABULATE!
READ#,N
IF(N.EQ.=1) GO TO 490
405 SUM=0,
DO 410 Is=1,NS1
XsN#ALDG(ROH(I))
IF(XelTe=674,) Xs=6T74e
SUMsSUMSAH(TI)*EXP(X)/(1+=ROH(I))
410 CONTINUE

ANS=CALCP*SUM
BLER=1,=ANS
G0 70O 71
490 WRITE(1s'(1H1,9HHEAD»BER=»E9e4s14H,BLER(N)SCALCS) "ICALCP
60 TO 1000
c
(4 COMPUTE PBI(K»L)
c

500 IF(ITYP.GTs5) GO TC 600
PRINT#, 'ENTER KyL FOR PB(KsL)$ OR 0,0 TC TABULATE!
READ*yKKy LL
IF(KK.EQ,0) GO TO 590
LEL4
G0 TO 2085
510 PBeCALCP*SUMG*SUMG
BCKL=1,
IF(LL.NE.O) ClLl COREL(KK»LL,BCKL)
PRePB*BCKL
PRINT#*, 'PB("yKKs ') tsLly?)m?,P8
IMAXsIMAX ]
YDAT(IMAX)=PR
XOAT(IMAX)s=LL
en TO 500
590 VPITE(I)‘(1“1'9HHEADuBER-DEQc‘!‘"I?8(:15!1“9015)7H)JCALC )
XCALCPyKKyLL
60 TN 1000
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COMPUTE PBC(KsL)» L GE 1

. Az Xa Xzl

00 PRINT#*, VENTER Ky (MAXIMUM)L FOR PBC(KsL)!?
READ* KKy L™AX
MsKK
&0 TN 205
610 SUMB=0,
Lis=l
620 IF(LL.EQsLMAX=1) GO TO 690
LiL=lLe+l
BCKL=1,
IF(LLoNELO) CALL COREL(KKsLL»BCKL)
SUMB=sSUMB4BCKL
PBCel,~SUMG*SUNMB
PRINT#, 'PBC(t9KKy 'y tyLL+1,")=?,PBC
INAX=sIMAX+]
YDAT(IMAX)=PBC
XOAT(IMAX)sLL+1
GO TO 620
690 HRITE(I,'(IHIpQHHElD’BER':E9oQD5H)’BC(’15’9H’L)oCALC.")
XCALCP,KK
60 TO0 1000

TABULATE IN FILE PRBANS

000 WRITE(1,'(1X,14HNDe OF POINTS=»I4,)*)INAX
WRITE(1,'(1X)?)
JMIN=]
JMAXSMINO(JMING?, IMAX)

1010 WRITE(1,"(1XsBEGe4) ") (YDAT(J)»J=JMIN,INAX)
WRITE(1s"(1Xs8F9,0) ) (XDAT(J)pJmJMINyJIMAX)
WRITE(1,0(1X)")

JNINsJMAX+1

JMAX=MINO (JMIN+7, IMAX)
IF(JMINCGT.INAX) 60 TO 1020
60 T0 1010

1020 PRINT#, 'ENTER 1 FOR MORE STATS AT THE GIVEN BER3!
PRINT#,'0R O FOR A NEW BER3} OR -99 TO STOP!
READ*, ICONT
IF(ICONT.EQ.~99) GO TO 99
IF(ICONT.EQ.0) RETURN

' G0 T0 7

99 sTOP

END
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O0n OO0

OO

30
40

50
60

SUBROUTINE COREL(K,L,BCKL)

CALCULATES BC(X,L), THE BURST CORRELATION FUNCTIONS
1 LE LyX LE 1000,

NOTEs BC(LoL) IS THE AUTOCORRELATION FUNCTION

FROM ELLIOTT(1963)5EQe(3)sPe103,

COMMON/PARAMZAH(19) pROH(19) 5 T(19)sNSH,CALCP
DIMENSION DEG(1000),8C(081000),V(19)
BC(O)=1,

COMPUTE EXPONENT TEST VALUES

DO 10 I=1,NSH-1
V(I)==1004/AL0GI0(ROHII))

CONTINUE

CONPUTE EGD DIFFERENTIALS (ARRAY DEG)
AND BURST CORRELATION FUNCTIONS (ARRAY BC)

LUP=MINO(K, L)

D0 40 Je=1,LUP

SUMD=0,

DO 20 Is1,NSH=1
RCe1.,=ROH(I)

IF(JeEQel) RC=ROH(I)
F1sAH(I)*RC

F=0,

TF(REALCJI)«LToVII)) FeROH(I)**(J=-1)
SUMD=SUMD+F1#F

CONTINUE

DEG(J)=SUMD

IF(J.EQ¢1) DEG(J)=1.-DEGLJ)
SUNMCs=0,

DO 30 JJ=1,J
SUNC=SUMC+DEG(JJ)*BC(JI=JJ)
CONTINUE

BC(J)=SUMC

CONTINUE

BCKL=SUNC

IFC(L.LE<K) RETURN

JUPsl=K

DO 60 J=1,JUP

SUNC=0,

DO 50 JJslyK
SUMCsSUMC4DEG(JJ) *BC(K+J=JJ)
CONTINUE

BC(K+J)aSUMC

CONTINUE

BCKL=SUMC

RETURN

END
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