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A GENERAL THEORY OF RADIO
PROPAGATION THROUGH· A STRATIFIED ATMOSPHERE

George Hufford*

When wave propagation through a stratified atmosphere
is formulated in operator theoretic terms, it becomes evi
dent that the problem does not follow the guide of the usual
examples of mathematical physics. Nevertheless, such a
formulation is useful to reveal why many of the usual proce
dures are valid and where they may be deficient. In parti
cular, even if the refractivity profile is merely required
to belong to a general class of perhaps badly discontinuous
functions, the problem always has a well-behaved solution'
that may be subjected to a modal analysis. On the other
hand, the resulting mode series converges neither rapidly
nor uniformly, and, as the asymptotic behavior of the modes
shows, one is advised to use that series only with
caution.

Key Words: Airy functions; contraction semi-groups; creeping wave modes;
modal analysis; radio wave propagation; stratified atmospheres;
wave guide modes; weak convergence

1. INTRODUCTION

The problem of electromagnetic propagation through a horizontally strati

fied atmosphere has been extensively studied by a great many authors. Among

the first were the contributors to Kerr (Freehafer et al., 1951) in their

descriptions of efforts made during World War II to explain anomalous radar

returns. The following decade saw a flurry of activity marked especially by

pUblication of the books of Wait (1962) and Fock (1965). These summarize the

problems involved and the advances made in obtaining satisfactory solutions.

Subsequent work has been abstracted in the extensive bibliography of Arora and

Wait (1978); recent examples include the numerically oriented reports of

Pappert and Goodhart (1977) and of Marcus and Stuart (1981).

In most of these previous studies one encounters such words as "eigen

values," "modes," and "orthogonality"--words that make one think of inner

products, Hilbert spaces, and self-adjoint transformations. There are, how

ever, two difficulties with these notions. First, despite the appearance of

*The author is with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U. S. Department of
Commerce, Boulder, CO 80303 3328.



the Helmholtz equation, the problem is not a self-adjoint one. The principal

reason for this is the radiation condition at infinity, which is an explicitly

nonreal condition. And second, it is difficult to see how Hilbert space can

enter at all since even the simple spherical wave eikr/r is not square-inte

grable in 3-space. The situation here can be contrasted with the theory of

cavities as described, e.g., by Jones (1964, Ch. 4). In that theory the

finiteness of a cavity (and the assumption of perfectly conducting walls)

gives rise to a satisfactorily self-adjoint problem, the solutions to which

have qualitative properties that are immediate consequences of this fact.

Despite the difficulties, there are functional analytic reasons for using

the above terms and it is our purpose here to explore these reasons using

modern operator theory. We believe that such an analysis will clarify many of

the mysteries of mode theory and that, indeed, we shall find some new and

useful results. Terminology and background for our approach may be found in

such texts as those of Stone (1932), Helmberg (1969), and Dunford and Schwartz

(1958, particularly Chapters 7 and 8).

Before proceeding to a particular problem, let us first recall how to

introduce Hilbert space and square-integrable functions into propagation

problems. We do this by the simple device of assuming that space is filled

with a small, but positive, conductivity. Using the time conventione- iwt we

shall assume that the wave number is complex and has the form

k

where ko and 0 are both real and positive. An outgoing wave will then be

characterized by the property that it decreases to zero exponentially.

The problem we shall treat is that of propagation around a spherical

earth and through a horizontally stratified atmosphere. We use a formulation

that can be traced back to Fock (1965, Ch. 13). Although this formulation is

scalar and two-dimensional and an avowed approximation, its solutions are the

same as the usual approximations to the solution of the more physically

realistic problem.

We suppose a rectangular coordinate system in which x is the distance

alo'ng the path of propagation, y is transverse to the path, and z is the

altitude above the earth's surface. Then we seek a function </>(x,z) that will

represent a component of the electromagnetic field and that satisfies
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i a2ep .
2k ~ + lkM(z)ep,

aZ
x > 0, z > 0 (2)

where M is the modified refractivity

M(z) N(z) + YZ.

Here, N is the refractivity of the atmosphere (with an order of magnitude of

perhaps 10-3 ) and Y (equal to about 157'10-9 m-1 in the case of Earth) is the

curvature of the assumed earth.

In addition, we require that at the surface of the earth the field satis

fies an impedance boundary condition

a
azep(x,O) -ikZep(x,O) , x > 0 (4)

with Re(Z) ~ 0, and that there be a "source function" u(z) so that

ep(O,z) = u(z), z > O.

The complex number Z is the "normalized surface impedance" and the condi

tion that its real part is nonnegative implies the earth absorbs energy. Very

often it is desirable to allow Z to become infinite so that the boundary

condition becomes ep(x,O) = O. Here, however, we shall, to simplify bur argu

ments, assume that Z is always finite.

It will also be necessary to impose conditions on the refractivity N.

Now we do not want to exclude the case where N has a jump discontinuity--i.e.,

where there are atmospheric layers of different properties, one lying directly

above the other. Therefore, particularly since it will not harm our argu

ments, we shall require only that N is a bounded measurable function. In

addition we assume that N is real and nonnegatlve with, say,

O~N(Z)~N1 (6)

and that N vanishes identically at sufficiently great heights so that there

exists a height za such that

N(z) = 0 for z > za (7)

These latter two requirements--that N be nonnegative and that it vanish at

sufficiently great heights--are probably not crucial for the solution to the

problem. For example, it should be sufficient to say that at great heights

N(z) approaches zero rapidly enough. However, the two requirements seem

physically realistic and they introduce enough simplification in what follows

to warrant their retention.
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Of course, the introduction of a possibly discontinuous N(z) means that

such equations as (2) must be understood to be valid only almost everywhere.

But this sort of qualification is always necessary when we are dealing with

spaces of integrable functions and we shall not mention the point again.

2. RESTATEMENT OF THE PROBLEM AND A FIRST SOLUTION

The only reason ~ = ° is not a solution to the problem described in (2),

(4), and (5) is the presence of the source function u in (5). Furthermore,

since the equations are all linear in ~, we expect the solution will be linear

in u. Indeed, we would expect that for each x > ° the solution defines a

function of z which is linear in u, and we would write ~(x,z) = T u(z) where
x

Tx is a linear operator that is presently unknown and whose discovery will

constitute the solution to the problem.

Adoptin~ this approach, we note that each Tx carries functions of z into

functions of z. We must now specify what kind of functions we want to consi

der. For this we choose the Hilbert space of square-integrable functions of z

defined on the interval [0, 00). The inner product is the usual one given by

(u,v) = f~ u(z)v*(z) dz (8)

where the star is used to denote the complex conjugate. The norm is then

defined by

(u,u) foo 2
o lu(z)1 dz. (9)

Before continuing, let us note that the norm as thus defined has a useful

physical significance. Let us suppose that the original electromagnetic

problem involved vertically polarized waves and that the function ~ was de

fined so that the magnetic field has the component H = ~eikX. Now the basicy
premise on which are based the approximations leading to Fock's formulation

given above is that ~ is slowly varying, particularly as compared with the

exponential. Thus, taking the curl of the magnetic field and discarding the

derivatives of ~ we find that the dominant component of the electric field

is E = -Z ~eikx, where Zo is the intrinsic impedance of space. The corres-z 0

ponding component of Poynting's vector is then S = Z 1~12 exp[-2Im(k)x], andx 0
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it follows that for each x the square-norm of $(x,z) is directly related to

the dominant part of the total flow of power across the vertical plane at x.

We can now restate our problem in operator theoretic terms. We seek a

family {Tx ; x>O} of linear operators on the space of square-integrable func

tions u such that for each u

and

d-Tudx x ikAT ux (10)

lim T u = U
X-70+ X

where A is the unbounded operator defined, within its domain, by

( 11)

Au(z) 12u"(z) + M(z)u(z)
2k

(12)

the primes denoting differentiation with respect to z. The domain of A, which

we shall call D(A), is the set of functions on which A is defined. Its des

cription is as important for the definition of A as is the formula (12). It

consists of those functions u whose first derivatives are absolutely contin

uous functions (i.e., functions that equal the integrals of their deriva

tives), for which both u and Au are square-integrable, and for which

u'(O) + ikZu(O) = o. (13)

As is usually the case in such operator theoretic formulations, the boundary

conditions have been incorporated into the definition of D(A). Note that the

condition at infinity has been taken care of by the simple requirement that u

be square-integrable. In the end, A is a "closed" linear operator whose

domain is a linear manifold that is dense in the space of all square-inte

grable functions.

An equation such as (10) is sometimes called an "evolution" equation

since one can imagine watching the solution unfold as the distance x increas

es. It is very much like a system of first order ordinary differential equa

tions, and one refers to the function u of (11) as the initial value. One

even expects to be able to write Tx = e ikxA , if only one can ascribe a meaning

to the exponential. In this same vein there is a second interpretation one

can give the operator Tx+s when x and 5 are both positive: one imagines, as

the solution unfolds, stopping at the distance s to mark the solution and then
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continuing on for a distance x using now the new initial value. Consequently,

one expects Tx+s = TxTs ' and one speaks of the family {Tx ; x>O} as a one

parameter semi-group (the inverse required to form a group is absent) of

transformations. If such is the case the operator ikA is called the infini-

tesimal generator of the semi-group.

Assuming the Tx exist, there are some further preliminary remarks we can

make. In particular, consider the magnitudes of the Tx--i.e., the norms.

Because of (11) we would suppose that ~TxU~ ~ ~u~ as x ~ O.

Fur thermore,

d
dx

d-d(T u,T u)x x x

(ikAT u,T u) + (T u,ikAT u)x x x x

2 Re(ikAT u,T u),
x x

(14 )

so that one expects the norm to be a smooth, continuously differentiable

function whose initial value is simply Iluli.

Whether or not the Tx exist, the expression Re(ikAu,u) is interesting in

its own right. It is a quadratic form in u that evidently represents the

additional power flow across a vertical plane that is over and above what we

have called the "dominant" component given by the square-norm itself. Inte

grating by parts, we find that for any u in D(A)

(Au,u) I~[ 1 u"(z) + M(z)u(z)} u*(z) dz
o 2k2

(15)

Using the boundary conditions (since u is in D(A», the first term here can be

replaced by (iZ/2k)lu(o)1 2 and we find

Re(ikAu, u) 1 Re (Z) Iu ( 0 ) 1
2


2

:i 0,

sin

2ko

6

(16)



where the inequality arises because of the restrictions on 0, Z, and N. This

is an important inequality that we shall soon use to great effectiveness. It

seems to say that as distance increases, power is always lost, both to the

ground and to the conductive atmosphere.

For now, we can note from (14) that if the Txu exist, their norms are

always nonincreasing so that ITxu11 ~ Ilull for all x > O. The Tx are "norm

decreasing." Recalling that the norm of a bounded linear operator is given

by ~TI = sup ~TU~/lu~, we have

ITx I ~ 1, x > O. (17)

In trying to solve (10) one tool that comes to mind is the Laplace trans

form. If we are given the Tx we can then develop a second family of operators

R, = Jooo e-ik>"x T d
1\ X x, (18 )

where >.. may be complex. We would surely expect this integral to converge

whenever>.. is such that Re(ik>") > 0; indeed, from (17) there would follow

(19 )

To obtain a more direct formula for R>.. we apply ikA to both sides of (18),

finding

whence

ikAR>.. J~ e-ik>"x d~Tx dx

-ik>"x 100 Jooe-ik>".Xe T + ik>" T dxx 0 0 x

-1 + ik>..R>..,

(20)

ikR>.. = (A - A)-1 . (21)

We are thus led to a scheme for finding the Tx : we first solve for the

inverse operator in (21) as a function of >.. and then use the inverse Laplace

transformation. In pursuing this scheme it will be important to know for what

values of >.. the inverse ope~ator does and does not exist; indeed, in the

general theory of operators this knowledge is of great help in characterizing

the operator A. Values of >.. for which the inverse in (21) exists and is a

bounded linear operator are said to belong to the resolvent set and in that
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case ikR A is the resolvent of A. Other values of A--those for which the

inverse does not exist or is unbounded--comprise the spectru~ of A.

According to the general theory in which A is any closed operator, the

resolvent set is an open subset of the complex plane and within it the resol

vent is an analytic function of A. In particular, R
A

has a derivative

(22)

which we shall need later on.

At this point it is useful to introduce the adjoint A* of the operator

A. (Note that in our notation the star can mean either the adjoint of an

operator or the complex conjugate of a scalar. Note also that in (21) we have

used the scalar A to indicate the operator that simply multiplies a function

by A. Thus A* can denote an operator that is either the adjoint of A or the

product by the complex conjugate. Fortunately, the two are the same.) Since

A is unbounded, so also will be A*. Its domain is given as the set of those

functions v for which (Au,v) is a bounded linear functional as u varies

throughout D(A); and when v is such a function, A*v is defined by (u,A*v)

(Au, v). Using the definition of A and integrating by parts twice, we find

that for any u in D(A)

MvJ* dz

+ MuJ v* dz

I"" J"" 1 J""uv*') +. --uv*"dz + Muv*dz
o 0 2k2 0

J"" 1u(O) (v' (0) - ik*Z*v(O))* + u [-- v" +
o 2k*2

J"" 1[-- u"
o 2k2
1--(u'v* -

2k 2

1

2k 2

(Au,v)

Since the first term in this last expression is not bounded in u unless it

vanishes identically, it will follow that A* is the differential operator

given by

A*v(z) _1_.v" (z) + M(z )v (z )
2k*2

(24 )

where the domain D(A*) is the class of all functions v with absolutely contin

uous first derivatives, for which both v and A*v are square-integrable, and

for which
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V'(O) - ik*Z*v(O) = O. (25)

Comparing this with the definition of A, we note that A* is just the same

operator except that all coefficients and parametric values have been replaced

by their complex conjugates. One interesting way to say this is that the

problem adjoint to the original one is the same as the original except that

the opposite time convention is used. A consequence is that whatever we can

say about the characteristics of A will also be true of those of A* provided

all quantities involved are replaced by their complex conjugates.

With these preparations in hand we are already in a position to demon

strate the existence of a solution to (10), OUI' major technical tool being the

inequality (16). Suppose that A is any complex number satisfying Re(ikA»O.

We can then show that A is in the resolvent set. First, A - A is one-to-one;

for otherwise there would exist a function v ~ 0 such that (A - A)v = O. But

then, because of (16),

ReCikA) IIvl1
2 Re CikAV, v) ReCikAv,v) ~ 0, (26)

which is impossible. Second, the range of A - A is dense in the space of

square-integrable functions; for otherwise there would exist a function v ~ 0

such that ((A-A)u,v) - 0 for all u in D(A). But this would imply that v is in

D(A*) and that (A*-A*)v = O. From our remarks concerning A* and complex

conjugates, this would in turn imply that (A-A)v* = 0, which we have already

seen is impossible. Thus (A-A)-1 exists and is defined on a dense linear

manifold. Finally, we must show it is bounded. Let u be in the range of

A-A, and let v be the unique function satisfying ik(A-A)v = u. Then again

because of (16)

Re(ikA)~V~2 Re(ikAv + u,v) ~ Re(u,v) ~ ~u~ ~vl, (27)

so that Ivl ~ IU~/ReCikA). It follows that the correspondence of u with v

defines the bounded linear operator RA which satisfies (21) (and, incidental

ly, also (19)) and is a one-to-one correspondence of the entire space of

square-integrable functions with D(A).

~hus all of the lower half-plane defined by Re(ikA) > 0 lies within the

resolvent set and the resolvent satisfies the inequality (19). These are

exactly the requirements of the basic Hille-Yosida theorem concerning semi-



groups of operators (see Dunford and Schwartz t 1958 t or Hille and Phillips,

1957). The consequences are that ikA is indeed the infinitesimal generator of

a semi-group {T x} and that (10), (11), and also (17) are satisfied. One minor

shortcoming here (which we shall emend shortly) is that we are assured that

Txu is in D(A) only when u is already in D(A)--thus (10) is assured only for u

in D(A).

From the general theory there are also available to us several ways to

represent the solution Tx • These are all in terms of R
A

where A is in the

lower half-plane described above. In one of these representations we have

T u lim (i)" n
x n-+oo Rn/ikxu

lim ( 1 - ikxA)-nUn-+ oo n '

(28)

for each square-integrable u. The second formula here is merely a restatement

of the first using the definition in (21). The first formula imitates one of

the lesser known representations of the inverse Laplace transform, while the

second formula shows how Tx may be interpreted as an exponential function.

These formulas are probably not very useful for computations, and we would

prefer the more standard representation of the inverse transformation. There

are difficulties, but at this point we can say that when u is in D(A)

k f ikAxRlim 2~ L e AU dA
t-+ oo t

( 29)

, t t d' f t -itS, t t -i<5 ,where Lt is the straIght line can our ex en Ing rom - e -10 a e -10

with 0>0. In general, the convergence here is very weak and the restriction

on u and the use of the Cauchy principal value are both necessary.

In passing, we might note that these results do not depend on the strict

inequalities Y > 0, <5 > O. If either or both of these constants vanish, then

the inequality (16) remains valid and the existence of the Tx as bounded

operators on Hilbert space safisfying (17) is still assured. We shall have

more to say about this later on.

When <5 > 0 we can sharpen (16) somewhat and then obtain considerably

stronger results for the Tx• Let, be a small positive or negative number;

then as in (16) we may write

10



(30)

Now the second and third terms here are still negative provided 1,1 < o. The

first term is also nonpositive if either Z = 0 or 1,1 is small enough and

Re(Z) > O. Even if Z is pure imaginary we can show that the expression above

is negative when 1,1 is small enough by using inequalities such as

lu(0)1 2 - f~ d~lu(z)12 dz = -2 Re(u' ,u)

~ 2!u' I lull ~ C1/ko )fU 1 1
2

+ kolul2.

Then any tendency for the first term to be positive will be cancelled out by

the other two terms. In short, we can always find a '0 > 0 such that

(32)

whenever u is in D(A) and 1,1 < '0'

Let S be the sector in the complex 17plane that has its vertex at the

origin and that contains all 1 with -~-o-, < arg 1 < -0+,. Then S subtendso 0

an angle of ~ + 2, and contains the lower half-plane Re(ikl»O within itso
interior. Clearly, S defines the region within which Re(ei'ikl»O for

all" 1,1 < '0' Proceeding as we did before in developing the inequalities

(26) and (27), it is straightforward to show that S lies within the resolvent

set and that for any 1 in S

IR11 ~ 1/kod(1) (33)

where d(l) is the distance from the point 1 to the boundary of S.

Although we have enlarged the known part of the resolvent set only

slightly and although the inequality (33) is only ,a little stronger than (19),

the consequences are striking. The Tx now fo,rm what is called an "analytical"

semi-group (see Hille and Phillips, 1958, Ch. 11) in which these operators can

be analytically continued into a portion of the complex x-plane. In parti

cular, consider the difficult formula in (29). The contour there may now be

deformed into a contour r consisting of two rays that meet near the origin and

that lie above Lt making positive angles (say '0/2) with it. The inequality
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(33) will assure that integrals over the two small arcs joining the end points

will vani sh as t goes to infinity. In the result ing int egral the ter'm

exp(ikAx) is now exponentially decreasing as A goes to infinity along either

leg of r, and the integral is therefore absolutely convergent. We may drop

the requirement for the principal value and also any restrictions on the

operand u. There results the satisfyingly simple expression

T
x

(34)

which is valid for all x > O. Further consequences are that Txu is in D(A)

for all x > 0 and all square-integrable functions u, that (10) is always

satisfied, that, indeed, Txu is infinitely differentiable and belongs to

D(An ), for all n, and that Tx is continuous in the "uniform operator topo

logy." This last statement means IT - T ~ tends to zero as s approaches x
s x

from either side; it is not true when x = O.

3. THE RESOLVENT

With almost nothing in the way of hard analysis,we have derived several

important results concerning the Tx ' Further progress, however, requires a

more detailed examination of the operator A. In particular, we need a more

nearly explicit representation of the resolvent.

Given the square-integrable function u we want to find an expression for

the function v = RAu. This means we want to solve the equation ik(A-A)v = u,

or equivalently to find a function v in D(A) that satisfies the ordinary

differential equation

2v"(z) + 2k (M(z)-l)v(z) 2iku(z) • (35)

Of course, (35) always has a unique solution to the "initial value problem"

when values of v and v' are prescribed at some particular value of z (see,

e.g., Coddington and Levinson, 1955). The question for us will be whether

such a solution is in D(A). Bl.ltany solution to (35) will have abf:wlutely

continuous first derivatives, and all that remains is to assure that the

boundary conditions at the earth's surface and at infinity are satisfied.

12



To solve this "boundary value problem" we use the standard "variation of

constants" methbd. The :first step here is to find suitable solutions to the

"homogeneous" equation where in (35) the function u is replaced by zero. In

particular, consider what happens at infinity. We recall that for z > za we

have N(z) = 0, so that the homogeneous equation becomes

2v"(z) + 2k (Yz-A)v(z) = 0, z > za
(36)

A simple change of variables converts this to Airy's equation

d
2

2 w( a) - aw (a )
da

o (37)

which is one of the standard second order differential equations of mathemat

ical physics. Since the coefficients are analytic functions of a, the equa

tion and its solutions may be extended to the complex plane. Indeed, since

the equation has no singular points in the finite plane, any solution of (37)

will be an "entire" function--i.e., a function that is analytic in the entire

complex a-plane.

Because Airy's equation and its solutions are so important to us, we

should like to pause here to discuss the related notation. The standard

solutions to (37) are the Airy functions AHa), Bi(a). Their definitions and

a list of many of their properties may be found in Abramowitz and Stegun

(1964), for example. They are linearly independent and "real" in that they

have real values when a is real. The function Ai, in particular, is widely

used in the study of caustics and of the general theory of asymptotics invol

ving "turning points" of differential equations.

It would seem useful to supplement the two standard solutions with others

that resemble "traveling waves" when a is real and negative. This has been

done by many authors, but always in an ad hoc way.

Here, we would like to suggest a more formal notation that expands upon

the standard notation described above and imitates what is done to define the

Hankel functions. In this notation we would write

13



Wi (1 ) ( 8) Ai(8) - i8i(8) = 2ein/3Ai(ei2n/38)

e in/6 (_8/3) 1/2H~;~(} (_e)3/2)

Ai(8) + i8i(8) = 2ein/3Ai(ei2n/38)

(Wi ( 1) ( 8*) )*

(38)

These two functions, which we might call "Airy functions of the third kind."

are linearly independent solutions of (37). Except for multiplicative con

stants they correspond to what Fock (1965) calls w1 and w2 and to what Wait

(1962) calls w2 and w1•

One property of these functions that will be important to us concerns

their asymptotic behavior as e becomes large. In the almost complete circle

defined by -5n/3 < arg e < n/3, it can be shown that

where the remainder term is uniform so long as arg e remains bounded away

from n/3 or -5n/3. Roughly speaking, Wi(1) is either exponentially large or

exponentially small, depending on whether Re(e 3/ 2) is positive or negative.

The radials at arg e = -5n/3, -n, -n/3, and n/3 mark where Re(e 3/ 2) = 0 and

separate the plane into three equal sectors within each of which the sign of

this quantity is constant. Only in the sector -n < arg e < -n/3 is the func

tion exponentially small; in the other two it is exponentially large. At the

crack where arg e = n/3 (or -5n/3) one can picture two representations obtain

ed by continuing (39) up to and beyond the two boundaries. These representa

tions differ, particularly since their exponents have opposite signs, and the

proper asymptotic expansion in this region is simply the sum of the two.

Qualitatively, the appearance of Wi (1) along this radial is that of a "stand

ing wave." Using complex conjugates as suggested in (38), we find immediately

that Wi(2) is exponentially small in the sector n/3 < arg e < n and has the

appearance of a standing wave along the radial arg e -n/3.

Returning to the problem posed in (36), if we set

(40)

then two linearly independent solutions are
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w+OjZ)

W_OjZ)

Wi (1 ) ( 8(z) )

Wi(2) (e-(z}) (41)

As Z tends to infinity, arg 8(z) tends to -1T -+- 20/3j thus, no matter what

complex value A may have, 8(z) eventually takes on values in the third of the

complex plane where Wi(1) is exponentially small. Indeed, for fixed A we have

~ 83/ 2 = ~ I2Y ikz3/ 2 - ikA/2z/Y + O(z-1/2
3 3

(42)

and since the lead term here has a negative real part, it will follow from

(39) that w+ is eventually exponentially decreasing. On the contrary, w_

increases exponentially. As the notation indicates, w+ resembles an upgolng

wave while w_ resembles a downgoing wave.

We are now in a position to describe the solution to the resolvent equa

tion (35). We first find (which is computationally the hard part!) two func

tions g (AjZ), g(AjZ) satisfying the homogeneous part of (35) with prescribedo
initial values. For definiteness we suppose

g (0) = 1,
o

g(Z) = w (z)
+

g' (0) = -ikZ
o

for Z >Za

Thus go satisfies the boundary condition (13) and g is exponentially decreas

ing to zero for large z.

Since the initial values and the differential equation are analytic in

the parameter A, it will follow that for each z, these two are entire func

tions in A. They will be related in that their Wronskian

pO) = g (z) g'(z) - g(z) g' (z)o 0
(44)

is independent of z. In particular, setting z o and using (43), we have

pO) g' (0) + ikZg(O) (45)

Of course, the two functions are linearly independent if and only if their

Wronskian peA) does not vanish.

We can now construct a "Green's function"
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jg(Z) go(l;;)

go(z) g(l;;)

o ~ 1;; ~ z

o :il z ~ I;;
(46)

in terms of which we would want to define a linear operator

J~ G(AjZ,I;;)U(I;;) dl;;

g(z) J~ go(l;;)u(l;;) dl;; + gO(z) J: g(Z;;)u(Z;;) dZ;;
( 47)

The function G is continuous in its three variables and, for fixed z and 1;;, an

entire function in A. That it is symmetric in z and I;; is an expression of the

"law of reciprocity"; but that it is not Hermitian symmetric shows once again

that our problem is not self-adjoint. At z = I;; the first derivative of G with

respect to either z or I;; has a jump discontinuity whose size is exactly the

Wronskian p(),).

For fixed z, G is exponentially decreasing in I;; and therefore square

integrable. It follows that when u is square-integrable the function

v(z) = G),u(z) exists and is finite for each z > O. Evaluating the first two

derivatives of (47), it can be seen (1) that v satisfies (35) provided the

right-hand side is replaced by pO)u(z), and (2) that v satisfies the boundary

qondition (13). There remains the niggling question as to how v behaves for

large z. Even this has an immediate answer provided u belongs to the class of

square-integrable functions that vanish for all sufficiently large z; for then

(for that same sufficiently large z) v is simply a multiple of g and hence is

exponentially small. For this special class of functions we find that G),u is

in D(A) and that

ik(),-A)G u = p(),) u
A 2ik

To further refine thi s statement, it is now useful to show

(48)

for then it will follow that G), is a bounded operator that can be applied to

all square-integrable functions. Toward this end, we first note there is no

difficulty with the integral in the finite portion of the (z,I;;)-plane.

Indeed, if either of the two variables remains bounded, G is exponentially
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small in the other and convergence is assured. It is only along the diagonal

Z = 1; that we may find trouble. It will therefore suffice if we can show that

(49·)hdlds whehboth lower limits are replaced by a value n that is at our

disposal. We suppose that n is, first, greater than za and, second, large

enough so that asymptotic estimates of w+ and w_ are fairly accurate. Because

of the first criterion, it will follow that within the integral g equals w+

and go is some particular linear combination of w+ and w_. The part of go

that is a multiple of w+ will not cause problems since, again, this part will

be exponentially decreasing. There remains only to show

Let o(z) 2 Re(-(2/3)6(Z)3/ 2). Then for large Z we have

(50 )

O(Z) = } m k
o

o I (z) = 2m k
o

sin 0 z3/2 + 0(z1/2)

sin 0 z1/2 + O(z-1/2)

-1/2 0cz e
1

(51)

where c1 and c2 are constants depending on A. As a function of z the inte

grand in (50) is 0(z-3/2) and hence is integrable, although just barely.

We have thus demonstrated that the integral in (49) is finite and that,

therefore, for each complex A the operator G
A

is bounded. (Actually, we have

even shown the stronger property that G
A

is "compact.") Thus (48) is valid

for all square-integrable u, and consequently the resolvent exists for all

A where pO) " 0 and

(52)

We also note that as an operator-valued function of A, G
A

will be entire.

Thus R
A

is the quotient of two entire functions and hence is "meromorphic"-

i.e., it is analytic everywhere in the complex plane except at certain isola

ted poles.

This rather straightforward behavior of· the function RA can be contrasted
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with the situations that arise when either Y or 6 is allowed to vanish. In

the case of a flat earth when Y = 0, the functions in (41) become meaningless

and the subsequent analysis invalid. It is, however, easy enough to solve

(36) for this case; but note that A1/ 2 appears and that it is impossible to

find a solution such as w+ which decreases to zero for large z and which is

entire in A. Indeed, it is quickly seen that the entire ray defined by

arg A = n - 26 belongs to the spectrum of A, thus introducing the well-known

"branch cut" into consideration.

On the other hand, when Y > 0 but 0 = 0 (so that k is real), the func

tions in (41) still define solutions to (36); it is only the subsequent asymp

totics that are false. The first term in (42) is pure imaginary but we can

still appeal to the second term to show that g is again exponentially decreas

ing provided, however, that Re(ikA) > 0 --i.e., that A lies in the lower half

plane. When A is in the upper half-plane, we can still attempt to find the

resolvent in terms similar to (52) and (47). But now we cannot define g as in

(42); instead we must assume g{z) = w_(z) for z > za' since now it is this

function that is exponentially decreasing. This approach succeeds in the

special case when Re(Z) = 0, for then (16) becomes Re(ikAu,u) = 0 and argu

ments similar to those of section 2 will show that RAexists and satisfies

IRAI ~ 1/IRe(ikA) I. Thus RA exists on both sides of the real line but is

described by two different analytic functions. The real line is a "natural

boundary" separating the two branches and consequently the entire real line

forms the spectrum of A.

This peculiar result is partly an artifact of our choice of function

space in which to operate. Note, indeed, that when k is real and Z pure

imaginary then the operator A is, according to the rules of that function

space, self-adjoint. This seems to be one example of where being able to say

an operator is self-adjoint is of little help.

Returning to the straightforward case where both Y and 0 are positive,

consider what happens when A satisfies peA) = O. Then because of (45), the

function g satisfies the boundary condition at the earth's surface; it there

fore belongs to D(A) and then (A-A)g = 0, so that the operator A-A is not one

to one. We say that A is an eigenvalue (a modal value) and that g is an

eigenfunction (a mode). The function

ikAx
~(x,z) = g(A;z)e
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safisfies (2) and the boundary conditions, and its initial value is g(z).

More generally, if a proposed source function u can be expanded as a linear

combination of several such eigenfunctions, then the final solution to our

problem is the same linear combination of functions of the form (53).

There is a general approach to such linear combinations. Let B be a

closed linear operator with adjoint B*. Suppose A1, A2, ••• are distinct

eigenvalues of B with corresponding eigenfunctions $1' $2' ••• Then

A*1' A*2' ••• are in the spectrum of B* and are very likely to be eigen

values. Suppose they are and that W1, W2, ••• are corresponding eigenfunc

tions. Then

(An$n'Wm) - ($n,A~Wm)

(B$n'Wm) - ($n,B*Wm) = °
(54)

so that $ and Ware orthogonal provided n ~ m. We say that {$ } and {W }n m n m
form a biorthogonal pair of sequences. Such a pair is not so powerful a tool

as the usual single orthogonal sequence that plays an important role in the

basic theory of Hilbert spaces. Nevertheless, we may note that if

(55)

then

(56)

which may be solved for am provided ($ ,W ) ~ 0, a condition that is notm m
guaranteed.

In the case of the particular operator A, let us suppose that {Am} is a

set of distinct eigenvalues and that gm(z) = g(Am;z) are the corresponding

eigenfunctions. Then indeed A * are eigenvalues of A* and the corresponding
m

eigenfunctions are the complex conjugates gm*" It" follows that

0, n ~ m

and that if u is a linear combination of the gm then

u (58)
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provided, of course, that none of the denominators vanish. Although the

expression (u,g*) seems a rather tortuous way to write fugdz, we shall retain

that notation because it is a continual reminder of the relationship between

the solution to our problem, the role the adjoint plays, and the particular

form taken on by the adjoint.

Let us examine the conditions under which one of the denominators in (58)

might vanish. Let ~ be a particular eigenvalue; then the corresponding go

will be a scalar multiple of g and, indeed, we may write

g(z)/g(O) (59)

(Note that g(O) cannot vanish; for if it did then by (45) it would also be

true that g'(O) would vanish, whence g would vanish identically, contradicting

(43).) It will then follow from (46) that

G(~;z,l;) g(z)g(l;)/g(O) (60)

On the other hand, substituting (52) in (22) we find

and, in particular,

(61)

p' (].l)G
~

(62)

But from (60) we have

2(u,g*)(g,g*)g/g(O)

(g,g*) G u
g(O) ~

whence

(64)

Thus (g, g*) vani shes if and only if p' (~) vani shes. Fur thermore, if p' (~)
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~ 0 then from (52) we see that the Laurent series expansion of R
A

about ~ has

the form

+ ••• (65)

so that (g,g*) does not vanish if and only if ~ is a simple pole of RA•

4. THE RESOLVENT FOR LARGE A

Thus far we have said how the solution might appear if there were a

sufficient set of eigenfunctions; we have not shown that even one exists. To

remedy this omission we now consider what happ,ens when the contour of the

integral in (29) or (34) is deformed into a large semicircle in the upper

half-plane, and we shall show that as it is deformed it must cross poles of

the integrand.

Our first task in this process will be to determine the asymptotic behav

ior of R
A

and its components as A becomes large. As a general note we remark

that since A appears in the differential equation (35) only in the term N(z)

+ yz - A, we might expect that when A is large it completely dominates the

expression and asymptotic results should be independent of the refractivity

function N(z). We would expect to obtain the same results as when N is, say,

identically zero. As it turns out, this expectation is only partly satisfied.

First we consider the function gO(A;Z). Let

et = e:k(2A)1/2 (66)

where e: ±1 , the sign being chosen so that Re(et) ~ o. Then go satisfies

k2 z
- e-2et(Z-~)e-et~g (~)d~-etZ

JoM(~)(1e g (z) +
0 et 0

(67)

~( 1 -2etz _ ikZ(1 -2etz
2 + e )

2et - e )

since by direct differentiation and evaluation one can show that it would then

satisfy the homogeneous part of (35) and the initial values (43). Now (67)
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can be treated as an integral equation for the function e-azg (z). As such
o

the kernel is M(~)(1_e-2a(z-~)) and is uniformly bounded in a so long as

Re(a) ~ 0 is satisfied. Because of the coefficient a- 1 in front of the inte

gral, we see that when z is constrained to lie in some bounded interval the

integral operator reduces to a small perturbation. It follows that

where the remainder terms are uniform so long as z remains bounded.

Next we turn to the function g(A;Z). Setting

(68)

g(Z) (69)

we note that the remainder rvanishes identically for Z > za and otherwise

satisfies the inhomogeneous differential equation

2r" + 2k (M-A)r 2-2k Nw+ (70)

With a again as in (66) one may check thatr also satisfies

( 71)

azwhich may be treated as an integral equation for the function e r(z). As

such we again find the kernel is bounded so long as z < za (which is all that

interests us anyway); as before the coefficient a-1 means that the integral

operator will introduce only a small perturbation to the solution.

We need, then, to estimate the integral that forms the inhomogeneous part

of (71). When -5~/3 < arg k2/3 A < ~/3 we may use (39) to determine how w+

behaves for large A. From (40) we find

8 - E: az + 0 (1/a )

(k/3Y) (2A)3 /2

22
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wherecvand e>areas ih (66). There follows

where Co is the constant (2k2Y/~3)1/6 and the remainder term is uniform for

bounded z. The inhomogeneous part of (71) then becomes

Concerning e, we note that it is positive when larg k2AI ~ ~ and negative

in the adjacent intervals. It therefore seems useful to define two sectors of

the A-plane

Then e is in 8 1 and -1 in 8 2 • To complete eoverage of the plane we would

also define a third sector 80 which includes a neighborhood of the ray

arg A = ~13-2013.

In the sector 8 1 , where e = 1, the last exponential under the integral in

(74) disappears and the integral is a bounded function of~. Thus the inhomo

geneous part of (71), and hence also the function eazr, is of order e 8a-3/2•

It follows from (69) that in 81

g (76)

This is just a small perturbation of the function ·w+.

In 82 , however, that same exponential does not disappear. Indeed, it

becomes a large and important factor, thus making the analysis more complica

ted. We can separate the expression (74) into two parts obtaining

~1/2 8+ 2aza-c a e Q(a)(l + 0(1/a»o
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where

The second part of (77) is quickly disposed of. The integral it contains is

bounded and hence the complete term is of order a-3/2e8+2az. From (71) the

corresponding part of reaz will be of the same order of magnitude and hence

the corresponding part of r will be 1/a times the order of magnitude of w+.

When combined with w+ as in (69) this becomes just another of the second order

terms.

We are left with only the first part of (77). Substituting this in (71)

and (69) we find that for A in S2 and z < za

g

The last element of this expression is the new one; it involves a large expo

nential factor and is not just a small perturbation of the original function

w+. One might argue, however, that this exponential is multiplied by what is

evidently the small coefficient Q(a); so perhaps the term is not so large

after all. Certainly, from the definition (78) one notes the integral there

is bounded so that Q tends to zero at least as rapidly as 1/a. But more than

this, the integral will probably also tend to zero, although just how rapidly

will depend on differentiability properties of N(z). Nevertheless, if one

supposes that za is particularly chosen to be the smallest elevation with the

property that N(z) vanishes for z > za' then Q will never go to zero so fast

as an exponential in a. Thus the last term in (79) will be large

whenever Re(a) is large.

Of course (79) shows how the field represented by g can be separated into

an upgoing and a downgoing wave. What is perhaps surprising is that in some

circumstances the downgoing wave dominates. Note, however, that when z ap

proachesza or when Re(a) approaches zero, then the exponential approaches a

moderate size, the smallness of Q takes over, and this downgoing wave is

absorbed into the other second-order terms.

When A is in So the proper asymptotic expression for g is simply the sum

of the expressions (76) and (79). In (79) the quantity 8 must be replaced by
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-s to account for the fact that we have changed arg A by 2n.

We can now write down asymptotic expressions for the Wronskian p(A).

Differentiating (76) ancl(79) and evaluating (45) we find

. 1/2 S(1 + O(l/a» in Sl1C a e
0

1/2 S 2az
pO) cae [1 + O(l/a) + e aQ(a)( 1 + O(l/a»J in S2 (80)

0

icoa1/ 2[eS(1 + O(l/a» ie-S(l + O(1/a» in S
-S-2az 0

. a Q(a)(l + O{l/a»J-1e

It is interesting to note that in these expressions the surface impedance Z

has been absorbed in the second-order terms.

As a passing remark, we also note that dominating the expressions in (80)

is the factor e±S. Since S = 0(A 3/ 2) we see that p is an entire function of

order 3/2. Because the order is not an integer it follows from Picard's

"little theorem" (see, e.g., Copson, 1935, Ch. 7) that p attains all complex

values infinitely often. In particular, it follows that p has an infinite

number of zeros, thus answering at least one of our questions.

More to the point, perhaps, a closer examination of (80) yields some

details concerning the zeros of p. There will be two sets of zeros along the

two boundaries of S2--i.e., one set in So and another near where
2arg k A = -n and Re (a.) = 0; there are no (large) zeros in Sl' In So it be-

comes a matter of solving

2az
e2S = i+ 0 (1 / a) + i e aQ(a) (1 + 0 (1/ a) ) (81)

when arg k2/ 3A '" 1T/3 and Re(S) '" O. As functions of A the term (3 varies more

rapidly than does a, and the left-hand side of (81) varies much more rapidly

than does the right-nand side. Choosing some approximate value for A, we may

evaluate the right-hand side (which will usually be large), then move A

towards Sl so that the real part of (3 becomes large enough to make the magni

tude of the left-hand side match that of the right, and then adjust the

imaginary part so that the arguments (phases) match. Since this latter will

happen infinitely often as (3 steps through values separated by about in, we

deduce an infinite sequence A(l) of eigenvalues with the property
m
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lim A( 1) 1m2/3
m

m~co

(82)

At the other boundary of 32 we need to solve an equation of the form

2azae Q(a) = -1 + O(1/a) (83)

Throughout most of 82, Re(a) is large and the exponential in (83) dominates

making the left-hand side large. When, however, a is on the boundary of 82
where Re(a) = 0 the smallness of Q makes the left-hand side small. Since the

exponential varies much more rapidly than does Q, we may adjust A so that

first the real part of a becomes just large enough to offset the smallness of

Q and then the imaginary part to match phases. Again, this latter will happen

when az steps through values separated by about iTI. We find a second infi

nite se~uence A~2) of eigenvalues, this one such that

The first of the above series leads to the "creeping wave" (Ekersley)

modes while the second leads to the "waveguide" (Gamow) modes. Note how the

first series becomes more dense as m increases while successive elements of

the second series become further and further apart. In the literature one

reads also of "trapped" modes and "whispering gallery" modes. These are

special modes whose associated eigenvalues are small or at most moderately

large; they can be only finite in number. While they are often the most

important terms in a modal expansion, they do not appear in our present consi

derations since we have restricted ourselves to those with large eigenvalues.

We have seen that except when peA) vanishes the resolvent RA is an inte

gral operator with kernel R(A;Z,~) 2ikG(A;z,~)/p(A). We can now combine the

expansions of go' g, and P to obtain the asymptotic behavior of this kernel

as A becomes large. The results will be uniform in z and ~ provided, however,

these two variables are constrained to lie within some bounded interval. As

such an interval becomes larger, the expressions will be valid only if A be

comes sufficiently larger.

In 8, we combine (68), (76), and (80) to obtain
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RCA.;z,l;) -ik [e-aIZ-l;I(l + O(l/a» + ~a(z+l;) (1 + O(l/a»] (85)
a

y,rl1i,qh·seems simple enough. If Z and l; are bounded away from 0 and arg a is

bounded away from -~/2, then the second term (looking like a wave reflected at

the earth's surface) disappears since it is exponentially smaller than the

first. We might also note it is no acc ident that the dominant term

e-al z-l; I looks like an approximation to the Ijelta function. From (18) and

(11) it follows that for any square-integrable u the expression ikAR
A
u tends

to u when A tends, say, to -i~.

When A is in S2 the results are more complicated. We express them here

using only dominant terms, each of which should be multiplied by a factor

1 + O(l/a). We also assume l; ~ Z and appeal to symmetry for the contrary

case. Assembling the previous results we find for A in S2 and Z < za

R(A;Z,l;)

2a(z -z)
ik [eaIZ-l;1 + ea(z+l;)] 1 - e a Q(a)
a 2az

+ e a Q(a)

(86 )

When Z ? Z , (86) is still valid except that the term in the numeratora
involving Q(a) will disappear. We should also note that we do not mean to

exclude the "degenerate" case when the refractivity vanishes identically.

Then Q will also vanish and corresponding terms in both numerator and denomi

nator of (86) will disappear.

We are now ready to attack the inverse Laplace transform as given in (29)

or (34). These formulas involve an integral in the A-plane whose contours

extend roughly from left to right and lie below any poles that the integrand

might have. Our plan is to deform those contours into a rough semicircle Ct
having radius t and extending into the upper half-plane. Then the original

integral will equal the integral over Ct plus the residues at any poles the

deformation will have had to cross. If we ca.n sho,w that the integral over Ct
tends to zero as t goes to infinity, we will have the desired result: that

Txu equals the sum of the residues at all poles of RAu.

If we replace R
A

by its representation as an integral operator, then our

integral becomes an iterated integral in the variables A and 1; and involves

the kernel R(A;Z,1;) that we have just been studying. The results of our

study, however, are valid only when Z and 1; both remain bounded. Before
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applying them we must limit ourselves to those situations in which this is

true.

Let Bo be the collection of all square-integrable functions each of which

vanishes for sufficiently large z. These are the functions with "bounded

support." Clearly, Bo is a linear manifold that is dense in the space of

square-integrable functions. Then if in (29) or (34) we restrict u to lie in

Bo ' the resulting integral over ~ is effectively a finite integral and we may

treat ~ as bounded. To bound z similarly we simply restrict ourselves to

consider the integral only for a fixed z. Then since large t implies that A

is large all along Ct , our asymptotic results for R(A;Z,~) will apply.

Note that with u in Bo the two integrals of our iterated integral are

both over finite intervals. The integrals may therefore be interchanged and

we may first turn our attention toward estimating

f
ikAxC R(A;z,~)e dA

t
(87)

for fixed z and~. To help here, we recall that Ct lies in the upper half

plane so that when x > 0 the exponential in (87) has a negative real part-

except perhaps at the two end points.

The contours Lt of (29) and r of (34) both lie within the sector 81•

Following along Ct one finds a small arc at the beginning and about one-third

of the semicircle at the end that lie in 81• From (85) it follows that the

resolvent kernel R is O(1/a) and hence, by Jordan's lemma, that these portions

of (87) tend to zero with increasing t.

About two-thirds of Ct lies in 82• In this sector, as one sees from

(86), the function R can be exponentially large. The worst case (when R is

largest) comes about in the degenerate situation when Q(a) vanishes identical

ly; then R is of order a-1exp(a(z+~)). But a is O(A
1/2

) and hence for large

enough A the integrand in (87) is still dominated by the negative

exponential exp(ikAx). This suffices to show that this portion of (87) also

tends to zero as t increases.

There remain to be considered the sector 80 and a small sector at the

other boundary of 82 where Re(a) = O. In these two sectors there are points

where p(A) vanishes and the function R has poles. For large A the poles thus

form two picket lines running radially out from the origin. Clearly one must

deform the contours Ct somewhat so that they cross these lines transversely at
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about midway between two of the successive poles. Furthermore, when a Ct
crosses either of the sectors in that fashion peA) will remain large

and R(A;z,s) relatively small. For example, at the lower edge of S2

where Re(a) is nearly zero when one crosses midway between poles, the denomi

nator of (86) will be of order unity. Our previous estimates of the magnitude

of the function R within S2 will still be valid. Similarly, as Ct crosses So

the minimum magnitude of peA) will be 0(A 1/ 4) which is still large. Both

lines of poles can be crossed in such a way as to keep the function R within

bounds. and the negative exponential in (87) will assure that these portions

also tend to zero as t increases.

Thus all portions of (87) tend to zero and clearly the convergence is

uniform as long as z and s remain bounded. The iterated integral that defines

the inverse Laplace transform also tends to zero and we have left only the

residues at the poles of the function R. If we assume the poles are all

simple poles and that their locations Am' m = 1,2, • •• , are numbered in order

of increasing magnitude, then from (29), (58), (64), and (65) we see that when

u is in Bo we have

T u(z)x (88)

Concerning what multiplicity the poles have, we may note that when A is large
m

our asymptotic results show that the associated poles certainly are simple.

If some of the smaller values of m correspond to mUltiple poles. the corres

ponding terms in (88) must be replaced by the proper residues. These will

involve factors of the kind xjexP(ikAmX).

The result in (88) provides for point-wise convergence only, although

clearly we also have uniform convergence for bounded z. In the infinite

interval, however, we cannot expect uniform convergence nor any kind of

convergence in the mean. Indeed, consider one of ·the creeping wave modes

gm(Z). Its global behavior is determined fairly well by the function 8(z) de

fined in (40). As Z goes from 0 to increasingly higher heights, 8 begins high

up in the first quadrant with arg 8 ~ n/3 and moves along a straight line to

the left and downward (because of the positive conductivity we have imposed),

first passing into the second quadrant and then eventually into the third.

Thus when yz » IAml the function gm is exponentially small and
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some circumstances the coefficients will

of about eXP(bm1/3) where b is positive.

when yz « IA I it resembles a standing wave of only moderately large size. Inm
between, however, 8(z) is high up in the second quadrant and gm(z) will be

very large. In particular, it is clear that Ig ~ tends rapidly to infinitym
with increasing m. Nor can we expect help from the other terms in (88). The

denominators, for example, are only moderately large since they pertain to

properties of gm at z = o.
Of course, from the practical point of view of numerical evaluation, the

result in (88) seems quite sufficient. That we require u to be in Bo--in

other words, that the source be of finite extent--does not seem like much of a

restriction; and computations will normally involve only a finite number of

values of z. It is only when one wants to use the series in a further analy

sis that one must be wary.

Nevertheless, it is a curiosity worth mentioning that (88) is not a

rapidly converging series. For example, consider only the creeping wave

modes. These make up a subset of the terms of the series and consist of

coefficients multiplying the exponentials exp(ikA x) where the A grow at am m
rate proportional to m2/3 • Estimating the coefficients is difficult since

they seem to be subject to important second-order effects. But note that the

proof of (88) definitely required x > OJ if one simply sets x 0 one expects

that the resulting series of coefficients alone will diverge. Indeed, under

actually grow in magnitude at a rate

Convergence is therefore controlled

by the exponentials whose magnitudes are dominated by a factor exp(-am2/3 )

where a is positive. This factor tends to zero faster than any power of 11m,

but it also fails the ratio test: the ratio between successive factors tends

to unity. This means that the series does not converge as rapidly as a geo

metric series. If x is small and more than a few creeping wave modes are

needed to obtain the desired accuracy, then one can expect that a great many

of these modes will be required.

Fortunately, a modal expansion is normally used for computations only

when x is large and z is small so that the points of interest are all well

beyond the horizon. Fortunately also, the accuracy one requires is not greatj

one creeping wave mode often suffices. Indeed, when ducting occurs it is

often true that no creeping wave modes--and even no waveguide modes--are

needed, for the miscellaneous smaller eigenvalues have very small imaginary

parts and contribute the only major terms.
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The result in (88) can be expressed in functional analytic form. Let

s(n)u represent the sum of the first n terms of the series. Then, using our
x

comments about uniform convergence for bounded z, we have that for any u and v

in Bo

lim (S~n)u,v) = (TxU'V)
n~co

(89)

We say that s~n)u converges to Txu "in the weak topology generated by Bo" and

that s~n) tends to Tx "in the weak operator topology." Each of the s~n) is,

of course, a bounded linear operator defined for all square-integrable func

tions. The trouble--and the reason the introduction of a weak topology is

necessary--is that the norms Is(n) I tend to infinity with n. We should also
x

note that the weak topology used here is even weaker than that usually descri-

bed in textbooks; in the latter, one allows the functions u and v of (89) to

be any square-integrable functions.

There is a fairly simple way to think of a weak topology such as that

defined above. Let u be any square-integrable function; then the inner pro

duct (u,v) is like a "coordinate" of u along the "v-axis." (The likeness is

stronger if v has unit norm, but this is not important here.) Thus (89) says

that each (permissible) coordinate of s(n)u tends to the corresponding coor-
x

dinate of Txu. If the basic space were of finite dimension this would in turn

imply "strong" convergence, but in the space of square-integrable functions it

is definitely a weaker statement.

Finally, we can at last reply to the question raised at the beginning of

this section as to whether there are sufficiently many eigenfunctions. By

"sufficiently many" we would mean that to any square-integrable function u

there exist finite linear combinations of the eigenfunctions that approximate

u as closely as desired--in other words, that any suggested source can be

approximated by a sum of modes. The answer to this question is a qualified

yes and arises from the fact that s(n)u is itself' a finite linear combination
x

of the eigenfunctions and from (11) which says that Txu approximates u. Using

our present array of tools, an actual approximation would proceed in three

steps: first, we would choose a Uo in the set Bo that adequately approximates

u (simply truncate u at a sufficiently large value of z); then we would choose

x > 0 small enough so that Txuo adequately approximates uO • Finally, we would

choose n large enough so that, by (89), s~n)u() adequately approximates Txuo •
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This latter will also be the desired approximation for u.

The rub here comes from the last step. According to (89) we can approxi

mate any finite number of "coordinates," but we cannot go further to approxi

mate, for example, over the infinite z-axis. While we can say that the weak

closure of the linear manifold spanned by the set {gm} is the entire space of

square-integrable functions, we cannot say this of the "strong" closure.

Although textbooks do not mention the subject, we might say that the biortho

gonal pair of sequences {gm} and {gm*} is "weakly complete."

5. CONCLUSION
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verges so poorly and that it is particularly the creeping wave modes that give

the greatest trouble. We would also suggest that cleaner and more complete

results might be obtained with a change· in function space. For example, the

particular form of the weak topology introduced above with its emphasis on

functions of bounded support reminds one of the theory of distributions and

generalized functions.
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